Calculus 2, Midterm Test 2

25th May, 2023

1. (16 points) Let $f(x, y)= \begin{cases}\frac{(y+1) x^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
a) Calculate the partial derivatives of f where they exist. (At the origin use the definition.)
c) Where is f differentiable?
2. (18 points) Let $f(x, y)= \begin{cases}y-\frac{y^{2}}{x^{2}+y^{2}}-2 x \sin \left(\frac{\pi}{1+y^{2}}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
a) Calculate the partial derivatives of f if $(x, y) \neq(0,0)$.
b) Show that f is differentiable at the point $P(1,1)$.
c) Find the equation of the tangent plane of f at the point $P(1,1)$.
d) Find the directional derivative of f at $P(1,1)$ in the direction $\boldsymbol{v}=(1,2)$.
3. (16 points) Determine the Taylor polynomial of order 2 of the function $f(x, y)=x^{2}+y^{2} \arctan x$ at the point $P(1,1)$.
4. (16 points) Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f(x, y)=\left(y e^{x+2 y}, 3 \sqrt{x^{2}+5 y^{2}}\right)$. Show that in a small neighbourhood of $f(2,-1)=(-1,9)$ the inverse function f^{-1} exists and determine the derivative $\left(f^{-1}\right)^{\prime}(-1,9)$.
5. (18 points) Determine the local minima and maxima of the function $f(x, y)=2 x^{2} y+2 x y-3 y^{2}$
6. (16 points) Determine the maximum and minimum of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ under the constraint $z^{2}=x^{2} y+4$

7.* (10 points - BONUS)

Let $f(x, y)= \begin{cases}\frac{x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
Using the definition, show that f is not differentiable at the origin.

Solutions

1. (16 points) Let $f(x, y)= \begin{cases}\frac{(y+1) x^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
a) Calculate the partial derivatives of f where they exist. (At the origin use the definition.)
c) Where is f differentiable?

Solution.

a) If $(x, y) \neq(0,0)$ then
$f_{x}^{\prime}(x, y)=\frac{2 x(y+1)\left(x^{2}+y^{2}\right)-(y+1) \cdot x^{2} \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}}, \quad f_{y}^{\prime}(x, y)=\frac{x^{2}\left(x^{2}+y^{2}\right)-x^{2}(y+1) \cdot 2 y}{\left(x^{2}+y^{2}\right)^{2}}$ (6p)
If $(x, y)=(0,0)$ then
$f^{\prime}{ }_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{(0+1) h^{2}}{h^{2}+0}-0}{h}=\lim _{h \rightarrow 0} \frac{1}{h}$, it doesn't exist.
$f^{\prime} y(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{(h+1) \cdot 0}{0+h^{2}}-0}{h}=0$.
b) Outside of the origin the partial derivatives are continuous, so f is differentiable on this open set.

At the origin f is not differentiable, since $f^{\prime}{ }_{x}(0,0)$ doesn't exist. (4p)
2. (18 points) Let $f(x, y)= \begin{cases}y-\frac{y^{2}}{x^{2}+y^{2}}-2 x \sin \left(\frac{\pi}{1+y^{2}}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
a) Calculate the partial derivatives of f if $(x, y) \neq(0,0)$.
b) Show that f is differentiable at the point $P(1,1)$.
c) Find the equation of the tangent plane of f at the point $P(1,1)$.
d) Find the directional derivative of f at $P(1,1)$ in the direction $\boldsymbol{v}=(1,2)$.

Solution. a) $f^{\prime}{ }_{x}(x, y)=\frac{2 x y^{2}}{x^{2}+y^{2}}-2 \sin \left(\frac{\pi}{1+y^{2}}\right)$
$f^{\prime} y(x, y)=1-\frac{2 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}+\frac{4 \pi x y}{\left(1+y^{2}\right)^{2}} \cos \left(\frac{\pi}{1+y^{2}}\right)$ (6p)
b) The partial derivatives are continuous at $P(1,1)$, so f is differentiable at this point. (2p)
c) The equation of the tangent plane is $z=f(a, b)+f^{\prime}{ }_{x}(a, b)(x-a)+f^{\prime}{ }_{y}(a, b)(y-b)$.

Here $(a, b)=(1,1) \Longrightarrow f(1,1)=-\frac{3}{2}, \quad f^{\prime}{ }_{x}(1,1)=-\frac{3}{2}, \quad f^{\prime}{ }_{y}(1,1)=\frac{1}{2}$
\Longrightarrow the equation of the tangent plane is $z=-\frac{3}{2}-\frac{3}{2}(x-1)+\frac{1}{2}(y-1) . \quad(5 \mathbf{p})$
d) Since $\|\boldsymbol{v}\|=\sqrt{1^{2}+2^{2}}=\sqrt{5}$ then the unit vector parallel to \boldsymbol{v} is $\boldsymbol{e}=\frac{1}{\|\boldsymbol{v}\|} \cdot \boldsymbol{v}=\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$.

The gradient vector of f at $P(1,1)$ is $\operatorname{grad} f(1,1)=\left(\begin{array}{c}3 \\ \left.-\frac{1}{2}, \frac{1}{2}\right)\end{array}\right.$.
The directional derivative of f at $P(1,1)$ in the direction $\boldsymbol{v}=(1,2)$ is
$\boldsymbol{e} \cdot \operatorname{grad} f(1,1)=<\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right),\left(-\frac{3}{2}, \frac{1}{2}\right)>=\frac{-3}{2 \sqrt{5}}+\frac{2}{2 \sqrt{5}}=-\frac{1}{2 \sqrt{5}}$
3. (16 points) Determine the Taylor polynomial of order 2 of the function $f(x, y)=x^{2}+y^{2} \arctan x$ at the point $P(1,1)$.

Solution. Calculate the first-order and second order partial derivatives of f and evaluate them at the given point:
$f(x, y)=x^{2}+y^{2} \arctan x \quad \Longrightarrow f(1,1)=1+\frac{\pi}{4}$
$f^{\prime}{ }_{x}(x, y)=2 x+\frac{y^{2}}{1+x^{2}} \quad \Longrightarrow f^{\prime}{ }_{x}(1,1)=\frac{5}{2}$
$f^{\prime}{ }_{y}(x, y)=2 y \arctan x \quad \Longrightarrow f^{\prime}{ }_{y}(1,1)=\frac{\pi}{2}$
$f^{\prime \prime}{ }_{x x}(x, y)=2-\frac{2 x y^{2}}{\left(1+x^{2}\right)^{2}} \quad \Longrightarrow f^{\prime \prime}{ }_{x x}(1,1)=\frac{3}{2}$
$f^{\prime \prime}{ }_{x y}(x, y)=\frac{2 y}{1+x^{2}} \quad \Longrightarrow f^{\prime \prime}{ }_{x y}(1,1)=1$
$f^{\prime \prime}{ }_{y x}(x, y)=\frac{2 y}{1+x^{2}} \quad \Longrightarrow f{ }^{\prime}{ }^{\prime}{ }^{\prime}(1,1)=1$
$f^{\prime \prime}{ }_{y y}(x, y)=2 \arctan x \quad \Longrightarrow f^{\prime \prime}{ }_{y y}(1,1)=\frac{\pi}{2} \quad$ (8p)

The Taylor polynomial of order 2 at a point (a, b) is
$T_{2}(x, y)=f(a, b)+f^{\prime}{ }_{x}(a, b)(x-a)+f^{\prime}{ }_{y}(a, b)(y-b)+$

$$
+\frac{1}{2}\left(f^{\prime \prime}{ }_{\mathrm{xx}}(a, b)(x-a)^{2}+2 f^{\prime \prime}{ }_{\mathrm{xy}}(a, b)(x-a)(y-b)+f^{\prime \prime}{ }_{\mathrm{yy}}(a, b)(y-b)^{2}\right)
$$

Substituting $(a, b)=(1,1)$:
$f(x, y) \approx T_{2}(x, y)=\left(1+\frac{\pi}{4}\right)+\frac{5}{2}(x-1)+\frac{\pi}{2}(y-1)+\frac{1}{2}\left(\frac{3}{2}(x-1)^{2}+2(x-a)(y-b)+\frac{\pi}{2}(y-1)^{2}\right)$
4. (16 points) Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f(x, y)=\left(y e^{x+2 y}, 3 \sqrt{x^{2}+5 y^{2}}\right)$. Show that in a small neighbourhood of $f(2,-1)=(-1,9)$ the inverse function f^{-1} exists and determine the derivative $\left(f^{-1}\right)^{\prime}(-1,9)$.

Solution. Calculating the Jacobian matrix of f :
$f^{\prime}(x, y)=\left(\begin{array}{cc}\frac{\partial f_{1}(x, y)}{\partial x} & \frac{\partial f_{1}(x, y)}{\partial y} \\ \frac{\partial f_{2}(x, y)}{\partial x} & \frac{\partial f_{2}(x, y)}{\partial y}\end{array}\right)=\left(\begin{array}{cc}y e^{x+2 y} & e^{x+2 y}+2 y e^{x+2 y} \\ \frac{3 x}{\sqrt{x^{2}+5 y^{2}}} & \frac{15 y}{\sqrt{x^{2}+5 y^{2}}}\end{array}\right)$

Substituting $(x, y)=(2,-1)$ into the Jacobian:
$f^{\prime}(2,-1)=\left(\begin{array}{cc}-1 & -1 \\ 2 & -5\end{array}\right) \quad$ (2p)

Calculating the determinant of the Jacobian:
$\operatorname{det} f^{\prime}(2,-1)=\operatorname{det}\left(\begin{array}{cc}-1 & -1 \\ 2 & -5\end{array}\right)=5+2=7 \neq 0$

Since the above determinant is not zero then by the inverse function theorem, the inverse function f^{-1} exists in a small neighbourhood if the point $f(2,-1)=(-1,9)$.

The derivative of f^{-1} at $(-1,9)$ is the inverse of $f^{\prime}(2,-1)$.
$\left(f^{-1}\right)^{\prime}(-1,9)=\left(f^{\prime}(2,-1)\right)^{-1}=\frac{1}{7}\left(\begin{array}{cc}-5 & 1 \\ -2 & -1\end{array}\right)$.
5. (18 points) Determine the local minima and maxima of the function $f(x, y)=2 x^{2} y+2 x y-3 y^{2}$

Solution. The first-order partial derivatives of f are:
(1) $f^{\prime}{ }_{x}(x, y)=4 x y+2 y=2 y(2 x+1)=0 \quad \Rightarrow y=0$ or $x=-\frac{1}{2}$
(2) $f^{\prime} y(x, y)=2 x^{2}+2 x-6 y=0$

Case 1. If $y=0$ then $2 x^{2}+2 x=2 x(x+1)=0 \Rightarrow x=0$ or $x=-1$
Case 2. If $x=-\frac{1}{2}$ then $y=\frac{2 x^{2}+2 x}{6}=-\frac{1}{12}$
The stationary points are: $P_{1}(0,0), P_{2}(-1,0), P_{3}\left(-\frac{1}{2},-\frac{1}{12}\right)$.

The Hesse-matrix of f is $H(x, y)=\left(\begin{array}{cc}f^{\prime \prime}{ }_{x x}(x, y) & f^{\prime \prime}{ }_{x y}(x, y) \\ f^{\prime \prime}{ }_{\mathrm{yx}}(x, y) & f^{\prime \prime}{ }^{\prime}(x y \\ (x, y)\end{array}\right)=\left(\begin{array}{cc}4 y & 4 x+2 \\ 4 x+2 & -6\end{array}\right) \quad$ (3p)
Evaluating the Hesse-matrix at the given points:
At $P_{1}(0,0): \quad H(0,0)=\left(\begin{array}{cc}0 & 2 \\ 2 & -6\end{array}\right)$. Since $\operatorname{det} H\left(P_{1}\right)=-4<0$ then P_{1} is a saddle point.
At $P_{2}(-1,0): \quad H(-1,0)=\left(\begin{array}{cc}0 & -2 \\ -2 & -6\end{array}\right)$. Since $\operatorname{det} H\left(P_{2}\right)=-4<0$ then P_{1} is a saddle point. (2p)
At $P_{3}\left(-\frac{1}{2},-\frac{1}{12}\right): H\left(-\frac{1}{2},-\frac{1}{12}\right)=\left(\begin{array}{cc}-\frac{1}{3} & 0 \\ 0 & -6\end{array}\right)$. Since $\operatorname{det} H\left(P_{3}\right)=2>0$ and $f^{\prime \prime}{ }_{x x}\left(-\frac{1}{2},-\frac{1}{12}\right)=-\frac{1}{3}<0$
then f has a local maximum at P_{3}. (3p)
6. (16 points) Determine the maximum and minimum of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ under the constraint $z^{2}=x^{2} y+4$

Solution. Substituting $z^{2}=x^{2} y+4$ into $f(x, y, z)$, we obtain the function $g(x, y)=x^{2}+y^{2}+x^{2} y+4$.

The first-order partial derivatives of g are:
(1) $g_{x}^{\prime}(x, y)=2 x+2 x y=2 x(1+y)=0 \quad \Longrightarrow \quad x=0$ or $y=-1$
(2) $g^{\prime}{ }_{y}(x, y)=2 y+x^{2}=0$

If $x=0$ then $y=0$.
If $y=-1$ then $x^{2}=2 \Longrightarrow x= \pm \sqrt{2}$.
The stationary points are: $P_{1}(0,0)$ and $P_{1}(\sqrt{2},-1), P_{3}(-\sqrt{2},-1)$.

The Hesse-matrix of g is $H(x, y)=\left(\begin{array}{cc}g^{\prime \prime}{ }_{\mathrm{xx}}(x, y) & g^{\prime \prime}{ }_{\mathrm{xy}}(x, y) \\ g^{\prime \prime}(x, y) & g^{\prime \prime}(x, y)\end{array}\right)=\left(\begin{array}{cc}2+2 y & 2 x \\ 2 x & 2\end{array}\right) \quad$ (3p)
Evaluating the Hesse-matrix at the given points:
At $P_{1}(0,0): \quad H\left(P_{1}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$. Since $\operatorname{det} H\left(P_{1}\right)=4>0$ and $f^{\prime \prime}{ }_{\mathrm{xx}}\left(P_{1}\right)=2>0$ then
f has a local minimum at $P_{1}(0,0)$ and $z= \pm 2$.
(3p)

At P_{2} and $P_{3}: \quad H(\pm \sqrt{2},-1)=\left(\begin{array}{cc}0 & \pm 2 \sqrt{2} \\ \pm 2 \sqrt{2} & 2\end{array}\right)$. Since $\operatorname{det} H(\pm \sqrt{2},-1)=-8<0$ then
P_{2} and P_{3} are saddle points. (3p)
Therefore, f has a local minimum at the points $(0,0,2)$ and ($0,0,-2$) and the value of the minimum is 4. (1p)

7.* (10 points - BONUS)

Let $f(x, y)= \begin{cases}\frac{x^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
Using the definition, show that f is not differentiable at the origin.
Solution. The partial derivatives at the origin are:
$f^{\prime}{ }_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{h^{3}}{h^{2}+0}-0\right)=1$
$f^{\prime}{ }_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{1}{h}(0-0)=0$
If grad $f(0,0)$ exists then its can only be $(1,0)$.
Calculate the following limit: $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-\langle(1,0),(x, y)\rangle}{\|(x, y)\|}=$
$=\lim _{(x, y) \rightarrow(0,0)} \frac{\frac{x^{3}}{x^{2}+y^{2}}-0-x}{\sqrt{x^{2}+y^{2}}}=\lim _{(x, y) \rightarrow(0,0)} \frac{-x y^{2}}{x^{2}+y^{2}} \cdot \frac{1}{\sqrt{x^{2}+y^{2}}}=$
$=\lim _{r \rightarrow 0} \frac{-r^{3} \cos \varphi \sin ^{2} \varphi}{r^{3}} \cdot \frac{1}{\sqrt{x^{2}+y^{2}}}=-\cos \varphi \sin ^{2} \varphi$, this depends on φ.
Since $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-<(1,0),(x, y)>}{\|(x, y)\|} \neq 0$ then $\operatorname{grad} f(0,0)$ doesn't exist.

