Calculus 2, Sample Test 2

1. Let
$$f(x, y) = \begin{cases} \frac{x^3 - y^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

a) Where is *f* continuous?

b) Calculate the partial derivatives of *f* where they exist.

c) Where is *f* differentiable?

2. Let $f(x, y) = \sqrt{2x^2 + y^2}$ and

a) Where does the gradient of *f* exist?

b) Find the equation f the tangent line of f at the point P(2, 1).

b) Find the directional derivative of f at P(2, 1) in the direction v = (3, 4).

c) Find the directional derivative of f at P(2, 1) with the maximal value.

3. Determine the Taylor polynomial of order 2 of the function $f(x, y) = (1 + e^y) \cos x - y e^x$ at the point P(0, 1).

4. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $f(x, y) = (2x^3y - xy + xy^2, x \ln(3x - y) - 3y^2)$. Plug in (x, y) = (1, 2) to obtain f(1, 2) = (6, -12). Show that in a small neighbourhood of (6, -12) the inverse function f^{-1} exists and determine the derivative $(f^{-1})'(6, -12)$.

5. Determine the local minima and maxima of the function $f(x, y) = x + \frac{y^2}{4x} + \frac{1}{y}$

6. Determine the maximum and minimum of the function f(x, y) = x + y under the constraint $x^4 + y^4 = 2$.

Additional exercises

7. Determine the maximum and minimum of the function $f(x, y, z) = x^3 + y^2 + z$ under the constraint $x^2 + y^2 + z^2 = 1$

8. Let $\alpha > 1$ and consider the function $f(x, y) = \begin{cases} (x^2 + y^2)^{\frac{\alpha}{2}} \cdot \sin \frac{1}{(x^2 + y^2)^{\frac{\beta}{2}}} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$

a) Calculate the first-order partial derivatives of *f* where they exist.

b) Prove that f is continuously differentiable on the set $\mathbb{R}^2 \setminus \{(0, 0)\}$.

c) Are the partial derivatives continuous at the origin?

d) Using the definition of differentiability, decide whether *f* is differentiable at the origin.

Solutions

1. Let
$$f(x, y) = \begin{cases} \frac{x^3 - y^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$$

a) Where is *f* continuous?

b) Calculate the partial derivatives of *f* where they exist. (At the origin use the definition.)

c) Where is *f* differentiable?

Solution.

a) Outside of the origin *f* is continuous, since it is the ratio of two continuous functions, and the denominator is not zero.

b) At the origin we calculate the limit on the straight lines y = mx:

 $\lim_{x \to 0} f(x, mx) = \lim_{x \to 0} \frac{x^3 - m^2 x^2}{x^2 + m^2 x^2} = -\frac{m^2}{1 + m^2}.$ It depends on m $\implies \lim_{(x,y) \to (0,0)} f(x, y) \text{ doesn't exist } \implies f \text{ is not continuous at the origin.}$

c) If
$$(x, y) \neq (0, 0)$$
 then

$$f'_{x}(x, y) = \frac{3x^{2}(x^{2} + y^{2}) - (x^{3} - y^{2}) \cdot 2x}{(x^{2} + y^{2})^{2}}, \quad f'_{y}(x, y) = \frac{-2y(x^{2} + y^{2}) - (x^{3} - y^{2}) \cdot 2y}{(x^{2} + y^{2})^{2}}$$

If (x, y) = (0, 0) then

$$f'_{x}(0, 0) = \lim_{h \to 0} \frac{f(h, 0) - f(0, 0)}{h} = \lim_{h \to 0} \frac{\frac{h}{h^{2}}}{h} = 1,$$

$$f'_{y}(0, 0) = \lim_{h \to 0} \frac{f(0, h) - f(0, 0)}{h} = \lim_{h \to 0} \frac{-\frac{h^{2}}{h^{2}}}{h} = \lim_{h \to 0} \frac{-1}{h}, \text{ which doesn't exist.}$$

1.3

d) Outside of the origin the partial derivatives are continuous, so *f* is differentiable on this open set. At the origin *f* is not differentiable, since it is not continuous.

Or: f is not differentiable at the origin, since $f'_{y}(0, 0)$ doesn't exist.

2. Let $f(x, y) = \sqrt{2x^2 + y^2}$ and

a) Where does the gradient of *f* exist?

- b) Find the equation f the tangent line of f at the point P(2, 1).
- b) Find the directional derivative of f at P(2, 1) in the direction v = (3, 4).
- c) Find the directional derivative of f at P(2, 1) with the maximal value.

Solution.

a) The partial derivatives are:
$$f'_{x}(x, y) = \frac{2x}{\sqrt{2x^{2} + y^{2}}}, f'_{y}(x, y) = \frac{y}{\sqrt{2x^{2} + y^{2}}}$$

The gradient of *f* exist outside of the origin, since then the partial derivatives exist and are continuous. If $(x, y) \neq (0, 0)$ then grad $f(x, y) = (f'_x(x, y), f'_y(x, y))$.

b) The equation of the tangent plane is $z = f(a, b) + f'_x(a, b)(x - a) + f'_y(a, b)(y - b)$. Here $(a, b) = (2, 1) \implies f(2, 1) = 3$, $f'_x(2, 1) = \frac{4}{3}$, $f'_y(2, 1) = \frac{1}{3}$ \implies the equation of the tangent plane is $z = 3 + \frac{4}{3}(x - 2) + \frac{1}{3}(y - 1)$.

c) Since $||\mathbf{v}|| = \sqrt{3^2 + 4^2} = 5$ then the unit vector parallel to \mathbf{v} is $\mathbf{e} = \frac{1}{||\mathbf{v}||} \cdot \mathbf{v} = \left(\frac{3}{5}, \frac{4}{5}\right)$. The gradient vector of f at P(2, 1) is grad $f(2, 1) = \left(\frac{4}{3}, \frac{1}{3}\right)$. The directional derivative of f at P(2, 1) in the direction $\mathbf{v} = (3, 4)$ is $\mathbf{e} \cdot \operatorname{grad} f(2, 1) = \langle \left(\frac{3}{5}, \frac{4}{5}\right), \left(\frac{4}{3}, \frac{1}{3}\right) \rangle = \frac{3}{5} \cdot \frac{4}{3} + \frac{4}{5} \cdot \frac{1}{3} = \frac{16}{15}$

d) The directional derivative of *f* is maximal in the direction $\frac{\operatorname{grad} f(2, 1)}{|| \operatorname{grad} f(2, 1) ||}$ and the value of the maximum is $|| \operatorname{grad} f(2, 1) || = \sqrt{\left(\frac{4}{3}\right)^2 + \left(\frac{1}{3}\right)^2} = \frac{\sqrt{17}}{3}$.

3. Determine the Taylor polynomial of order 2 of the function $f(x, y) = (1 + e^y) \cos x - y e^x$ at the point P(0, 1).

Solution. Calculate the first-order and second order partial derivatives of *f* and evaluate them at the given point:

$$\begin{aligned} f(x, y) &= (1 + e^{y}) \cos x - y e^{x} & \implies f(0, 1) = (1 + e) \cdot 1 - 1 \cdot 1 = e \\ &\Rightarrow f'_{x}(x, y) = -(1 + e^{y}) \sin x - y e^{x} & \implies f'_{x}(0, 1) = -(1 + e) \cdot 0 - 1 \cdot 1 = -1 \\ f'_{y}(x, y) &= e^{y} \cos x - e^{x} & \implies f'_{y}(0, 1) = e \cdot 1 - 1 = e - 1 \\ \end{aligned}$$

$$\begin{aligned} f''_{xx}(x, y) &= -(1 + e^{y}) \cos x - y e^{x} & \implies f''_{xx}(0, 1) = -(1 + e) \cdot 1 - 1 \cdot 1 = -e - 2 \\ f''_{xy}(x, y) &= -e^{y} \sin x - e^{x} & \implies f''_{xy}(0, 1) = -e \cdot 0 - 1 = -1 \\ f''_{yx}(x, y) &= -e^{y} \sin x - e^{x} & \implies f''_{yx}(x, y) = -1 \\ f''_{yy}(x, y) &= e^{y} \cos x & \implies f''_{yy}(0, 1) = e \cdot 1 = e \end{aligned}$$

The Taylor polynomial of order 2 at a point (*a*, *b*) is $T_2(x, y) = f(a, b) + f'_x(a, b) (x - a) + f'_y(a, b) (y - b) + \frac{1}{2} (f''_{xx}(a, b) (x - a)^2 + 2f''_{xy}(a, b) (x - a) (x - b) + f''_{yy}(a, b) (y - b)^2)$

Substituting (a, b) = (0, 1): $f(x, y) \approx T_2(x, y) = e + (-1)(x - 0) + (e - 1)(y - 1) + \frac{1}{2}((-e - 2)(x - 0)^2 + 2(-1)(x - 0)(y - 1) + e(y - 1)^2)$

4. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $f(x, y) = (2x^3y - xy + xy^2, x \ln(3x - y) - 3y^2)$. Plug in (x, y) = (1, 2) to obtain f(1, 2) = (6, -12). Show that in a small neighbourhood of (6, -12) the inverse function f^{-1} exists and determine the derivative $(f^{-1})'(6, -12)$.

Solution. $f(1, 2) = (2 \cdot 1 \cdot 2 - 1 \cdot 2 + 1 \cdot 4, 1 \cdot \ln(1) - 3 \cdot 4) = (6, -12).$ Calculating the Jacobian matrix of f:

$$f'(x, y) = \begin{pmatrix} \frac{\partial f_1(x, y)}{\partial x} & \frac{\partial f_1(x, y)}{\partial y} \\ \frac{\partial f_2(x, y)}{\partial x} & \frac{\partial f_2(x, y)}{\partial y} \end{pmatrix} = \begin{pmatrix} 6x^2y - y + y^2 & 2x^3 - x + 2xy \\ \ln(3x - y) + \frac{3x}{3x - y} & \frac{-x}{3x - y} - 6y \end{pmatrix}$$

Substituting (x, y) = (1, 2) into the Jacobian:

$$f'(1, 2) = \begin{pmatrix} 14 & 5\\ 3 & -13 \end{pmatrix}$$

Calculating the determinant of the Jacobian:

det f'(1, 2) = det
$$\begin{pmatrix} 14 & 5 \\ 3 & -13 \end{pmatrix}$$
 = -14 · 13 - 15 \neq 0

Since the above determinant is not zero then by the inverse function theorem, the inverse function f^{-1} exists in a small neighbourhood if the point f(1, 2) = (6, -12).

The derivative of
$$f^{-1}$$
 at (6, -12) is the inverse of $f'(1, 2)$. Using that
the inverse of $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $A^{-1} = \frac{1}{a d - b c} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, then
 $(f^{-1})'(6, -12) = (f'(1, 2))^{-1} = \frac{1}{-14 \cdot 13 - 15} \begin{pmatrix} -13 & -5 \\ -3 & 14 \end{pmatrix} = \frac{1}{197} \begin{pmatrix} 13 & 5 \\ 3 & -14 \end{pmatrix}$.

5. Determine the local minima and maxima of the function $f(x, y) = x + \frac{y^2}{4x} + \frac{1}{y}$

Solution. Here $x \neq 0$, $y \neq 0$. The first-order partial derivatives of f are:

(1)
$$f'_{x}(x, y) = 1 - \frac{y^{2}}{4x^{2}} = 0 \implies 4x^{2} = y^{2} \implies 2x = \pm y$$

(2) $f'_{y}(x, y) = \frac{y}{2x} - \frac{1}{y^{2}} = 0 \implies y^{3} = 2x$
Case 1. If $2x = y$ then $y^{3} = y \implies y^{3} - y = y(y - 1)(y + 1) = 0$
Since $y \neq 0$ then $y_{1} = 1$, $y_{2} = -1 \implies x_{1} = \frac{1}{2}$, $x_{2} = -\frac{1}{2}$
Case 2. If $2x = -y$ then $y^{3} = -y \implies y(y^{2} + 1) = 0$.

This cannot be the case, since $y \neq 0$ and $y^2 + 1 > 0$.

The stationary points are: $P_1\left(\frac{1}{2}, 1\right)$ and $P_1\left(-\frac{1}{2}, -1\right)$.

The Hesse-matrix of f is $H(x, y) = \begin{pmatrix} f''_{xx}(x, y) & f''_{xy}(x, y) \\ f''_{yx}(x, y) & f''_{yy}(x, y) \end{pmatrix} = \begin{pmatrix} \frac{y^2}{2x^3} & -\frac{y}{2x^2} \\ -\frac{y}{2x^2} & \frac{1}{2x} + \frac{2}{y^3} \end{pmatrix}$

Evaluating the Hesse-matrix at the given points:

At
$$P_1\left(\frac{1}{2}, 1\right)$$
: $H(P_1) = \begin{pmatrix} 4 & -2 \\ -2 & 3 \end{pmatrix}$. Since det $H(P_1) = 12 - 4 = 8 > 0$ and $f''_{xx}(P_1) = 4 > 0$ then
 f has a local minimum at $P_1\left(\frac{1}{2}, 1\right)$ with $f\left(\frac{1}{2}, 1\right) = 2$.
At $P_2\left(-\frac{1}{2}, -1\right)$: $H(P_2) = \begin{pmatrix} -4 & 2 \\ 2 & -3 \end{pmatrix}$. Since det $H(P_2) = 12 - 4 = 8 > 0$ and $f''_{xx}(P_2) = -4 < 0$ then
 f has a local maximum at $P_2\left(-\frac{1}{2}, -1\right)$ with $f\left(-\frac{1}{2}, -1\right) = -2$.

Remark. We can avoid calculating the Hesse matrix with the following observation: a) f(-x, -y) = -f(x, y), therefore, if f has a local minimum at (x_0, y_0) then f has a local maximum at $(-x_0, -y_0)$.

b) If x > 0, y > 0, then f(x, y) > 0, and thus f is bounded below.

- c) The limit of f(x, y) is infinity if
 - $x \rightarrow \infty$, y is fixed, or
 - $y \rightarrow \infty$, x is fixed, or
 - $x \rightarrow 0$, y is fixed, or
 - $y \rightarrow 0$, x is fixed.

Therefore, *f* can only have a local minimum on the region x > 0, y > 0.

So *f* has a local minimum at P_1 and a local maximum at P_2 .

6. Determine the maximum and minimum of the function f(x, y) = x + y under the constraint $x^4 + y^4 = 2$.

Solution. The constraint is given by the function $g(x, y) = x^4 + y^4 - 2$. Applying the Lagrange multiplier method,

consider the function $L(x, y) = f(x, y) + \lambda g(x, y) = x + y + \lambda (x^4 + y^4 - 2)$ The first-order partial derivatives of *L* are:

$$L'_{x} = 1 + 4x^{3} \cdot \lambda = 0 \implies x^{3} = -\frac{1}{4\lambda}$$

$$L'_{y} = 1 + 4y^{3} \cdot \lambda = 0 \implies y^{3} = -\frac{1}{4\lambda}$$

$$g(x, y) = x^{4} + y^{4} - 2 = 0 \implies \left(\sqrt[3]{-\frac{1}{4\lambda}}\right)^{4} + \left(\sqrt[3]{-\frac{1}{4\lambda}}\right)^{4} = 2\left(\sqrt[3]{-\frac{1}{4\lambda}}\right)^{4} = 2$$

$$\implies \sqrt[3]{-\frac{1}{4\lambda}} = \pm 1 \implies -\frac{1}{4\lambda} = \pm 1 \implies \lambda = \pm \frac{1}{4}$$
If $\lambda = \frac{1}{4}$ then $x = y = -1 \implies P_{1}(-1, -1)$
and if $\lambda = -\frac{1}{4}$ then $x = y = 1 \implies P_{2}(1, 1)$

The second order partial derivatives of *L* are: $L''_{xx} = 12 x^2 \cdot \lambda, L''_{xy} = 0, L''_{yy} = 12 y^2 \cdot \lambda$ The Hesse-matrix of *L* is $H(x, y) = \begin{pmatrix} L''_{xx}(x, y) & L''_{xy}(x, y) \\ L''_{yx}(x, y) & L''_{yy}(x, y) \end{pmatrix} = \begin{pmatrix} 12 x^2 \cdot \lambda & 0 \\ 0 & 12 y^2 \cdot \lambda \end{pmatrix}$ • If $\lambda = \frac{1}{4}$ then $H(-1, -1) = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$. Since det H(-1, -1) = 9 > 0 and $f''_{xx}(-1, -1) = 3 > 0$ then f has a local minimum at $P_1(-1, -1)$. • If $\lambda = -\frac{1}{4}$ then $H(1, 1) = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}$.

Since det H(1, 1) = 9 > 0 and $f''_{xx}(1, 1) = -3 < 0$ then *f* has a local maximum at $P_1(1, 1)$.

Remark. Since the constraint defines the surface of a sphere then by Weierstrass's min-max theorem f has a minimum and a maximum with this constraint. Substituting the coordinates of the stationary points, we obtain that f(1, 1) = 2 is the maximum and f(-1, -1) = -2 is the minimum.

7. Determine the maximum and minimum of the function $f(x, y, z) = x^3 + y^2 + z$ under the constraint $x^2 + y^2 + z^2 = 1$

Solution. Substituting $y^2 = 1 - x^2 - z^2$ into f(x, y, z), we obtain the function $g(x, z) = x^3 - x^2 - z^2 + z + 1$

The first-order partial derivatives of g are:

(1)
$$g'_x(x, z) = 3x^2 - 2x = x(3x - 2) = 0 \implies x_1 = 0, x_2 = \frac{2}{3}$$

(2) $g'_z(x, z) = -2z + 1 = 0 \implies z = \frac{1}{2}$
The stationary points are: $P_1\left(0, \frac{1}{2}\right)$ and $P_1\left(\frac{2}{3}, \frac{1}{2}\right)$.
The Hesse-matrix of g is $H(x, y) = \begin{pmatrix} g''_{xx}(x, y) & g''_{xy}(x, y) \\ g''_{yx}(x, y) & g''_{yy}(x, y) \end{pmatrix} = \begin{pmatrix} 6x - 2 & 0 \\ 0 & -2 \end{pmatrix}$
Evaluating the Hesse-matrix at the given points:
At $P_1\left(0, \frac{1}{2}\right)$: $H(P_1) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$. Since det $H(P_1) = 4 > 0$ and $f''_{xx}(P_1) = -2 < 0$ then
 f has a local maximum at $P_1\left(0, \frac{1}{2}\right)$.
At $P_2\left(\frac{2}{3}, \frac{1}{2}\right)$: $H(P_2) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$. Since det $H(P_2) = -4 < 0$ then P_2 is a saddle point.
At $(x, z) = \begin{pmatrix} 0, \frac{1}{2} \end{pmatrix}$, from the condition $x^2 + y^2 + z^2 = 1$ we obtain $y = \pm \frac{\sqrt{3}}{2}$.
Therefore, f has a local maximum at the points $\left(0, \frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and $\left(0, -\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and the value of the
maximum is $\frac{5}{4}$.

8. Let
$$\alpha > 1$$
 and consider the function $f(x, y) = \begin{cases} (x^2 + y^2)^{\frac{\alpha}{2}} \cdot \sin \frac{1}{(x^2 + y^2)^{\frac{\beta}{2}}} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$

a) Calculate the first-order partial derivatives of f where they exist.

b) Prove that f is continuously differentiable on the set $\mathbb{R}^2 \setminus \{(0, 0)\}$.

c) Are the partial derivatives continuous at the origin?

d) Using the definition of differentiability, decide whether *f* is differentiable at the origin.

Solution. If $(x, y) \neq (0, 0)$ then

$$f'_{x}(x, y) = \alpha x (x^{2} + y^{2})^{\frac{\alpha}{2} - 1} \cdot \sin \frac{1}{(x^{2} + y^{2})^{\frac{\beta}{2}}} - \beta x (x^{2} + y^{2})^{\frac{\alpha}{2} - \frac{\beta}{2} - 1} \cdot \cos \frac{1}{(x^{2} + y^{2})^{\frac{\beta}{2}}}$$

At the origin using the definition:

$$f'_{x}(0, 0) = \lim_{h \to 0} \frac{(|h|)^{\alpha} \cdot \sin \frac{1}{|h|^{\beta}}}{h} = 0.$$

 $f'_{v}(x, y)$ and $f'_{v}(x, y)$ can be obtained from these by the changing the variables.

b) The partial derivatives are continuous on $\mathbb{R}^2 \setminus \{(0, 0)\}$, since they are compositions of continuous functions, therefore *f* is continuously differentiable on this open set.

c) Since f is symmetric in the variables then it is enough to investigate the partial derivative f'_x . It is continuous in the origin if and only if $\lim_{(x,y)\to(0,0)} f'_x(x, y) = f'_x(0, 0)$.

We calculate the limit using polar coordinates: $x = r \cos \varphi$, $y = r \sin \varphi$:

$$\lim_{(x,y')\to(0,0)} f'_x(x,y) = \lim_{r\to 0+} \left(\alpha r \cos \varphi (r^2)^{\frac{\alpha}{2}-1} \cdot \sin \frac{1}{r} - \beta r \cos \varphi (r^2)^{\frac{\alpha}{2}-\frac{\beta}{2}-1} \cdot \cos \frac{1}{r^{\beta}} \right) =$$
$$= \lim_{r\to 0+} \left(\alpha \cos \varphi \cdot r^{\alpha-1} \cdot \sin \frac{1}{r} - \beta \cos \varphi \cdot r^{\alpha-\beta-1} \cdot \cos \frac{1}{r^{\beta}} \right)$$
$$= 0 - \beta \cos \varphi \cdot \lim_{r\to 0+} r^{\alpha-\beta-1} \cdot \cos \frac{1}{r^{\beta}} = \begin{cases} 0 & \text{if } \alpha > \beta + 1 \\ \text{doesn't exist} & \text{if } \alpha \le \beta + 1 \end{cases}$$

Therefore, the partial derivatives are continuous if and only if $\alpha > \beta + 1$. d) If f is differentiable at the origin then its derivative can only be the mapping $A = (0 \ 0)$.

Since $\lim_{(x,y)\to(0,0)} \frac{f(x,y) - f(0,0) - A(x,y)}{||(x,y)||} = \lim_{r\to 0+} \frac{r^{\alpha} \sin \frac{1}{r^{\beta}}}{r} = 0,$ then *f* is differentiable and