Calculus 2, Sample Test 2

1. Let $f(x, y)= \begin{cases}\frac{x^{3}-y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
a) Where is f continuous?
b) Calculate the partial derivatives of f where they exist.
c) Where is f differentiable?
2. Let $f(x, y)=\sqrt{2 x^{2}+y^{2}}$ and
a) Where does the gradient of f exist?
b) Find the equation f the tangent line of f at the point $P(2,1)$.
b) Find the directional derivative of f at $P(2,1)$ in the direction $\boldsymbol{v}=(3,4)$.
c) Find the directional derivative of f at $P(2,1)$ with the maximal value.
3. Determine the Taylor polynomial of order 2 of the function $f(x, y)=\left(1+e^{y}\right) \cos x-y e^{x}$ at the point $P(0,1)$.
4. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f(x, y)=\left(2 x^{3} y-x y+x y^{2}, x \ln (3 x-y)-3 y^{2}\right)$. Plug in $(x, y)=(1,2)$ to obtain $f(1,2)=(6,-12)$. Show that in a small neighbourhood of $(6,-12)$ the inverse function f^{-1} exists and determine the derivative $\left(f^{-1}\right)^{\prime}(6,-12)$.
5. Determine the local minima and maxima of the function $f(x, y)=x+\frac{y^{2}}{4 x}+\frac{1}{y}$
6. Determine the maximum and minimum of the function $f(x, y)=x+y$ under the constraint $x^{4}+y^{4}=2$.

Additional exercises

7. Determine the maximum and minimum of the function $f(x, y, z)=x^{3}+y^{2}+z$ under the constraint $x^{2}+y^{2}+z^{2}=1$
8. Let $\alpha>1$ and consider the function $f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right)^{\frac{\alpha}{2}} \cdot \sin \frac{1}{\left(x^{2}+y^{2}\right)^{\frac{\beta}{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
a) Calculate the first-order partial derivatives of f where they exist.
b) Prove that f is continuously differentiable on the set $\mathbb{R}^{2} \backslash\{(0,0)\}$.
c) Are the partial derivatives continuous at the origin?
d) Using the definition of differentiability, decide whether f is differentiable at the origin.

Solutions

1. Let $f(x, y)= \begin{cases}\frac{x^{3}-y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
a) Where is f continuous?
b) Calculate the partial derivatives of f where they exist. (At the origin use the definition.)
c) Where is f differentiable?

Solution.

a) Outside of the origin f is continuous, since it is the ratio of two continuous functions, and the denominator is not zero.
b) At the origin we calculate the limit on the straight lines $y=m x$:
$\lim _{x \rightarrow 0} f(x, m x)=\lim _{x \rightarrow 0} \frac{x^{3}-m^{2} x^{2}}{x^{2}+m^{2} x^{2}}=-\frac{m^{2}}{1+m^{2}}$. It depends on m
$\Longrightarrow \lim _{(x, y) \rightarrow(0,0)} f(x, y)$ doesn't exist $\Longrightarrow f$ is not continuous at the origin.
c) If $(x, y) \neq(0,0)$ then
$f^{\prime}{ }_{x}(x, y)=\frac{3 x^{2}\left(x^{2}+y^{2}\right)-\left(x^{3}-y^{2}\right) \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}}, \quad f^{\prime}{ }_{y}(x, y)=\frac{-2 y\left(x^{2}+y^{2}\right)-\left(x^{3}-y^{2}\right) \cdot 2 y}{\left(x^{2}+y^{2}\right)^{2}}$
If $(x, y)=(0,0)$ then
$f^{\prime}{ }_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{h^{3}}{h^{2}}}{h}=1$,
$f^{\prime} y(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{-\frac{h^{2}}{h^{2}}}{h}=\lim _{h \rightarrow 0} \frac{-1}{h}$, which doesn't exist.
d) Outside of the origin the partial derivatives are continuous, so f is differentiable on this open set.

At the origin f is not differentiable, since it is not continuous.
Or: f is not differentiable at the origin, since $f^{\prime} y(0,0)$ doesn't exist.
2. Let $f(x, y)=\sqrt{2 x^{2}+y^{2}}$ and
a) Where does the gradient of f exist?
b) Find the equation f the tangent line of f at the point $P(2,1)$.
b) Find the directional derivative of f at $P(2,1)$ in the direction $\boldsymbol{v}=(3,4)$.
c) Find the directional derivative of f at $P(2,1)$ with the maximal value.

Solution.

a) The partial derivatives are: $f_{x}^{\prime}(x, y)=\frac{2 x}{\sqrt{2 x^{2}+y^{2}}}, f^{\prime} y^{\prime}(x, y)=\frac{y}{\sqrt{2 x^{2}+y^{2}}}$

The gradient of f exist outside of the origin, since then the partial derivatives exist and are continuous. If $(x, y) \neq(0,0)$ then $\operatorname{grad} f(x, y)=\left(f^{\prime}{ }_{x}(x, y), f^{\prime} y(x, y)\right)$.
b) The equation of the tangent plane is $z=f(a, b)+f^{\prime}{ }_{x}(a, b)(x-a)+f^{\prime}{ }_{y}(a, b)(y-b)$.

Here $(a, b)=(2,1) \Longrightarrow f(2,1)=3, f^{\prime}{ }_{x}(2,1)=\frac{4}{3}, f^{\prime}{ }_{y}(2,1)=\frac{1}{3}$
\Rightarrow the equation of the tangent plane is $z=3+\frac{4}{3}(x-2)+\frac{1}{3}(y-1)$.
c) Since $\|\boldsymbol{v}\|=\sqrt{3^{2}+4^{2}}=5$ then the unit vector parallel to \boldsymbol{v} is $\boldsymbol{e}=\frac{1}{\|\boldsymbol{v}\|} \cdot \boldsymbol{v}=\left(\frac{3}{\frac{3}{5}}, \frac{4}{5}\right)$.

The gradient vector of f at $P(2,1)$ is $\operatorname{grad} f(2,1)=\left(\begin{array}{ll}4 & \frac{1}{3} \\ 3\end{array}\right)$.
The directional derivative of f at $P(2,1)$ in the direction $\boldsymbol{v}=(3,4)$ is $\boldsymbol{e} \cdot \operatorname{grad} f(2,1)=\left\langle\left(\frac{3}{5}, \frac{4}{5}\right),\left(\frac{4}{3}, \frac{1}{3}\right)\right\rangle=\frac{3}{5} \cdot \frac{4}{3}+\frac{4}{5} \cdot \frac{1}{3}=\frac{16}{15}$
d) The directional derivative of f is maximal in the direction $\frac{\operatorname{grad} f(2,1)}{\|\operatorname{grad} f(2,1)\|}$ and the value of the maximum is $\|\operatorname{grad} f(2,1)\|=\sqrt{\left(\frac{4}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2}}=\frac{\sqrt{17}}{3}$.
3. Determine the Taylor polynomial of order 2 of the function $f(x, y)=\left(1+e^{y}\right) \cos x-y e^{x}$ at the point $P(0,1)$.

Solution. Calculate the first-order and second order partial derivatives of f and evaluate them at the given point:

$$
\begin{array}{ll}
f(x, y)=\left(1+e^{y}\right) \cos x-y e^{x} & \Longrightarrow f(0,1)=(1+e) \cdot 1-1 \cdot 1=e \\
f^{\prime}{ }_{x}(x, y)=-\left(1+e^{y}\right) \sin x-y e^{x} & \Longrightarrow f^{\prime}{ }_{x}(0,1)=-(1+e) \cdot 0-1 \cdot 1=-1 \\
f^{\prime}{ }_{y}(x, y)=e^{y} \cos x-e^{x} & \Longrightarrow f^{\prime}{ }_{y}(0,1)=e \cdot 1-1=e-1 \\
f^{\prime \prime}{ }_{x x}(x, y)=-\left(1+e^{y}\right) \cos x-y e^{x} & \Longrightarrow f^{\prime \prime}{ }_{x x}(0,1)=-(1+e) \cdot 1-1 \cdot 1=-e-2 \\
f^{\prime \prime}{ }_{x y}(x, y)=-e^{y} \sin x-e^{x} & \Longrightarrow f^{\prime \prime}{ }_{x y}(0,1)=-e \cdot 0-1=-1 \\
f^{\prime \prime}{ }_{y x}(x, y)=-e^{y} \sin x-e^{x} & \Longrightarrow f^{\prime \prime}{ }_{y x}(x, y)=-1 \\
f^{\prime \prime}{ }_{y y}(x, y)=e^{y} \cos x & \Longrightarrow f^{\prime \prime}{ }_{y y}(0,1)=e \cdot 1=e
\end{array}
$$

The Taylor polynomial of order 2 at a point (a, b) is
$T_{2}(x, y)=f(a, b)+f^{\prime}{ }_{x}(a, b)(x-a)+f^{\prime}{ }_{y}(a, b)(y-b)+$

$$
+\frac{1}{2}\left(f^{\prime \prime}{ }_{\mathrm{xx}}(a, b)(x-a)^{2}+2 f^{\prime \prime}{ }_{\mathrm{xy}}(a, b)(x-a)(x-b)+f^{\prime \prime}{ }_{\mathrm{yy}}(a, b)(y-b)^{2}\right)
$$

Substituting $(a, b)=(0,1)$:
$f(x, y) \approx T_{2}(x, y)=e+(-1)(x-0)+(e-1)(y-1)+\frac{1}{2}\left((-e-2)(x-0)^{2}+2(-1)(x-0)(y-1)+e(y-1)^{2}\right)$
4. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, f(x, y)=\left(2 x^{3} y-x y+x y^{2}, x \ln (3 x-y)-3 y^{2}\right)$. Plug in $(x, y)=(1,2)$ to obtain $f(1,2)=(6,-12)$. Show that in a small neighbourhood of $(6,-12)$ the inverse function f^{-1} exists and determine the derivative $\left(f^{-1}\right)^{\prime}(6,-12)$.

Solution. $f(1,2)=(2 \cdot 1 \cdot 2-1 \cdot 2+1 \cdot 4,1 \cdot \ln (1)-3 \cdot 4)=(6,-12)$.
Calculating the Jacobian matrix of f :
$f^{\prime}(x, y)=\left(\begin{array}{cc}\frac{\partial f_{1}(x, y)}{\partial x} & \frac{\partial f_{1}(x, y)}{\partial y} \\ \frac{\partial f_{2}(x, y)}{\partial x} & \frac{\partial f_{2}(x, y)}{\partial y}\end{array}\right)=\left(\begin{array}{cc}6 x^{2} y-y+y^{2} & 2 x^{3}-x+2 x y \\ \ln (3 x-y)+\frac{3 x}{3 x-y} & \frac{-x}{3 x-y}-6 y\end{array}\right)$

Substituting $(x, y)=(1,2)$ into the Jacobian:
$f^{\prime}(1,2)=\left(\begin{array}{cc}14 & 5 \\ 3 & -13\end{array}\right)$

Calculating the determinant of the Jacobian:
$\operatorname{det} f^{\prime}(1,2)=\operatorname{det}\left(\begin{array}{cc}14 & 5 \\ 3 & -13\end{array}\right)=-14 \cdot 13-15 \neq 0$

Since the above determinant is not zero then by the inverse function theorem, the inverse function f^{-1} exists in a small neighbourhood if the point $f(1,2)=(6,-12)$.

The derivative of f^{-1} at $(6,-12)$ is the inverse of $f^{\prime}(1,2)$. Using that the inverse of $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$, then
$\left(f^{-1}\right)^{\prime}(6,-12)=\left(f^{\prime}(1,2)\right)^{-1}=\frac{1}{-14 \cdot 13-15}\left(\begin{array}{cc}-13 & -5 \\ -3 & 14\end{array}\right)=\frac{1}{197}\left(\begin{array}{cc}13 & 5 \\ 3 & -14\end{array}\right)$.
5. Determine the local minima and maxima of the function $f(x, y)=x+\frac{y^{2}}{4 x}+\frac{1}{y}$

Solution. Here $x \neq 0, y \neq 0$. The first-order partial derivatives of f are:
(1) $f^{\prime}{ }_{x}(x, y)=1-\frac{y^{2}}{4 x^{2}}=0 \quad \Rightarrow 4 x^{2}=y^{2} \quad \Rightarrow 2 x= \pm y$
(2) $f^{\prime}{ }_{y}(x, y)=\frac{y}{2 x}-\frac{1}{y^{2}}=0 \quad \Longrightarrow y^{3}=2 x$

Case 1. If $2 x=y$ then $y^{3}=y \quad \Longrightarrow \quad y^{3}-y=y(y-1)(y+1)=0$
Since $y \neq 0$ then $y_{1}=1, y_{2}=-1 \quad \Longrightarrow x_{1}=\frac{1}{2}, x_{2}=-\frac{1}{2}$
Case 2. If $2 x=-y$ then $y^{3}=-y \Longrightarrow y\left(y^{2}+1\right)=0$.
This cannot be the case, since $y \neq 0$ and $y^{2}+1>0$.

The stationary points are: $P_{1}\left(\frac{1}{2}, 1\right)$ and $P_{1}\left(-\frac{1}{2},-1\right)$.
The Hesse-matrix of f is $H(x, y)=\left(\begin{array}{ll}f^{\prime \prime}{ }_{x x}(x, y) & f^{\prime \prime}{ }^{\prime}{ }_{x y}(x, y) \\ f^{\prime \prime}{ }_{y x}(x, y) & f^{\prime \prime}{ }^{\prime} y(x, y)\end{array}\right)=\left(\begin{array}{cc}\frac{y^{2}}{2 x^{3}} & -\frac{y}{2 x^{2}} \\ -\frac{y}{2 x^{2}} & \frac{1}{2 x}+\frac{2}{y^{3}}\end{array}\right)$
Evaluating the Hesse-matrix at the given points:

At $P_{1}\left(\frac{1}{2}, 1\right): \quad H\left(P_{1}\right)=\left(\begin{array}{cc}4 & -2 \\ -2 & 3\end{array}\right)$. Since $\operatorname{det} H\left(P_{1}\right)=12-4=8>0$ and $f^{\prime \prime}{ }_{x x}\left(P_{1}\right)=4>0$ then f has a local minimum at $P_{1}\left(\frac{1}{2}, 1\right)$ with $f\left(\frac{1}{2}, 1\right)=2$.
At $P_{2}\left(-\frac{1}{2},-1\right): \quad H\left(P_{2}\right)=\left(\begin{array}{cc}-4 & 2 \\ 2 & -3\end{array}\right)$. Since $\operatorname{det} H\left(P_{2}\right)=12-4=8>0$ and $f^{\prime \prime}{ }_{x x}\left(P_{2}\right)=-4<0$ then f has a local maximum at $P_{2}\left(-\frac{1}{2},-1\right)$ with $f\left(-\frac{1}{2},-1\right)=-2$.

Remark. We can avoid calculating the Hesse matrix with the following observation:
a) $f(-x,-y)=-f(x, y)$, therefore, if f has a local minimum at $\left(x_{0}, y_{0}\right)$ then f has a local maximum at ($-x_{0},-y_{0}$).
b) If $x>0, y>0$, then $f(x, y)>0$, and thus f is bounded below.
c) The limit of $f(x, y)$ is infinity if

- $x \rightarrow \infty, y$ is fixed, or
- $y \longrightarrow \infty, x$ is fixed, or
- $x \longrightarrow 0, y$ is fixed, or
$-y \longrightarrow 0, x$ is fixed.
Therefore, f can only have a local minimum on the region $x>0, y>0$.
So f has a local minimum at P_{1} and a local maximum at P_{2}.

6. Determine the maximum and minimum of the function $f(x, y)=x+y$ under the constraint $x^{4}+y^{4}=2$.

Solution. The constraint is given by the function $g(x, y)=x^{4}+y^{4}-2$. Applying the Lagrange multiplier method,
consider the function $L(x, y)=f(x, y)+\lambda g(x, y)=x+y+\lambda\left(x^{4}+y^{4}-2\right)$
The first-order partial derivatives of L are:

$$
\begin{array}{ll}
L^{\prime}{ }_{x}=1+4 x^{3} \cdot \lambda=0 & \Longrightarrow x^{3}=-\frac{1}{4 \lambda} \\
\begin{array}{ll}
L_{y}^{\prime}=1+4 y^{3} \cdot \lambda=0 & \Longrightarrow y^{3}=-\frac{1}{4 \lambda} \\
g(x, y)=x^{4}+y^{4}-2=0 & \Longrightarrow\left(\sqrt[3]{-\frac{1}{4 \lambda}}\right)^{4}+\left(\sqrt[3]{-\frac{1}{4 \lambda}}\right)^{4}=2\left(\sqrt[3]{-\frac{1}{4 \lambda}}\right)^{4}=2 \\
& \Longrightarrow \sqrt[3]{-\frac{1}{4 \lambda}}= \pm 1 \Rightarrow-\frac{1}{4 \lambda}= \pm 1 \Longrightarrow \lambda= \pm \frac{1}{4} \\
\text { If } \lambda=\frac{1}{4} \text { then } x=y=-1 \Longrightarrow P_{1}(-1,-1) \\
\text { and if } \lambda=-\frac{1}{4} \text { then } x=y=1 \Longrightarrow P_{2}(1,1)
\end{array}
\end{array}
$$

The second order partial derivatives of L are:
$L^{\prime \prime}{ }_{x x}=12 x^{2} \cdot \lambda, L^{\prime \prime}{ }_{x y}=0, L^{\prime \prime}{ }_{y y}=12 y^{2} \cdot \lambda$
The Hesse-matrix of L is $H(x, y)=\left(\begin{array}{cc}L^{\prime \prime}{ }_{x x}(x, y) & L^{\prime}{ }^{\prime}{ }_{x y}(x, y) \\ L^{\prime \prime}{ }_{y x}(x, y) & L^{\prime \prime}{ }^{\prime} y y(x, y)\end{array}\right)=\left(\begin{array}{cc}12 x^{2} \cdot \lambda & 0 \\ 0 & 12 y^{2} \cdot \lambda\end{array}\right)$

- If $\lambda=\frac{1}{4}$ then $H(-1,-1)=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$.

Since $\operatorname{det} H(-1,-1)=9>0$ and $f^{\prime \prime}{ }_{x x}(-1,-1)=3>0$ then f has a local minimum at $P_{1}(-1,-1)$.

- If $\lambda=-\frac{1}{4}$ then $H(1,1)=\left(\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right)$.

Since $\operatorname{det} H(1,1)=9>0$ and $f^{\prime \prime}{ }_{x x}(1,1)=-3<0$ then f has a local maximum at $P_{1}(1,1)$.

Remark. Since the constraint defines the surface of a sphere then by Weierstrass's min-max theorem f has a minimum and a maximum with this constraint. Substituting the coordinates of the stationary points, we obtain that $f(1,1)=2$ is the maximum and $f(-1,-1)=-2$ is the minimum.
7. Determine the maximum and minimum of the function $f(x, y, z)=x^{3}+y^{2}+z$ under the constraint $x^{2}+y^{2}+z^{2}=1$

Solution. Substituting $y^{2}=1-x^{2}-z^{2}$ into $f(x, y, z)$, we obtain the function $g(x, z)=x^{3}-x^{2}-z^{2}+z+1$

The first-order partial derivatives of g are:
(1) $g_{x}^{\prime}(x, z)=3 x^{2}-2 x=x(3 x-2)=0 \quad \Longrightarrow \quad x_{1}=0, x_{2}=\frac{2}{3}$
(2) $g_{z}^{\prime}(x, z)=-2 z+1=0 \quad \Longrightarrow z=\frac{1}{2}$

The stationary points are: $P_{1}\left(0, \frac{1}{2}\right)$ and $P_{1}\left(\frac{2}{3}, \frac{1}{2}\right)$.
The Hesse-matrix of g is $H(x, y)=\left(\begin{array}{ll}g^{\prime \prime}{ }_{x x}(x, y) & g^{\prime \prime}{ }_{x y}(x, y) \\ g^{\prime \prime}{ }_{y x}(x, y) & g^{\prime \prime}{ }_{y y}(x, y)\end{array}\right)=\left(\begin{array}{cc}6 x-2 & 0 \\ 0 & -2\end{array}\right)$
Evaluating the Hesse-matrix at the given points:
At $P_{1}\left(0, \frac{1}{2}\right): \quad H\left(P_{1}\right)=\left(\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right)$. Since $\operatorname{det} H\left(P_{1}\right)=4>0$ and $f^{\prime}{ }_{x x}\left(P_{1}\right)=-2<0$ then f has a local maximum at $P_{1}\left(0, \frac{1}{2}\right)$.
At $P_{2}\left(\frac{2}{3}, \frac{1}{2}\right): \quad H\left(P_{2}\right)=\left(\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right)$. Since $\operatorname{det} H\left(P_{2}\right)=-4<0$ then P_{2} is a saddle point.
At $(x, z)=\left(0, \frac{1}{2}\right)$, from the condition $x^{2}+y^{2}+z^{2}=1$ we obtain $y= \pm \frac{\sqrt{3}}{2}$.
Therefore, f has a local maximum at the points $\left(0, \frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and $\left(0,-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and the value of the maximum is $\frac{5}{4}$.
8. Let $\alpha>1$ and consider the function $f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right)^{\frac{\alpha}{2}} \cdot \sin \frac{1}{\left(x^{2}+y^{2}\right)^{\frac{\beta}{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}$
a) Calculate the first-order partial derivatives of f where they exist.
b) Prove that f is continuously differentiable on the set $\mathbb{R}^{2} \backslash\{(0,0)\}$.
c) Are the partial derivatives continuous at the origin?
d) Using the definition of differentiability, decide whether f is differentiable at the origin.

Solution. If $(x, y) \neq(0,0)$ then
$f^{\prime}{ }_{x}(x, y)=\alpha x\left(x^{2}+y^{2}\right)^{\frac{\alpha}{2}-1} \cdot \sin \frac{1}{\left(x^{2}+y^{2}\right)^{\frac{\beta}{2}}}-\beta x\left(x^{2}+y^{2}\right)^{\frac{\alpha}{2}-\frac{\beta}{2}-1} \cdot \cos \frac{1}{\left(x^{2}+y^{2}\right)^{\frac{\beta}{2}}}$.
At the origin using the definition:
$f_{x}^{\prime}(0,0)=\lim _{h \rightarrow 0} \frac{(|h|)^{\alpha} \cdot \sin \frac{1}{|h|^{\beta}}}{h}=0$.
$f_{y}^{\prime}(x, y)$ and $f^{\prime}{ }_{y}(x, y)$ can be obtained from these by the changing the variables.
b) The partial derivatives are continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$, since they are compositions of continuous functions, therefore f is continuously differentiable on this open set.
c) Since f is symmetric in the variables then it is enough to investigate the partial derivative $f^{\prime}{ }_{x}$.

It is continuous in the origin if and only if $\lim _{(x, y) \rightarrow(0,0)} f^{\prime}(x, y)=f^{\prime}{ }_{x}(0,0)$.
We calculate the limit using polar coordinates: $x=r \cos \varphi, y=r \sin \varphi$:

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} f^{\prime} x(x, y) & =\lim _{r \rightarrow 0+}\left(\alpha r \cos \varphi\left(r^{2}\right)^{\frac{\alpha}{2}-1} \cdot \sin \frac{1}{r}-\beta r \cos \varphi\left(r^{2}\right)^{\frac{\alpha}{2}-\frac{\beta}{2}-1} \cdot \cos \frac{1}{r^{\beta}}\right)= \\
& =\lim _{r \rightarrow 0+}\left(\alpha \cos \varphi \cdot r^{\alpha-1} \cdot \sin \frac{1}{r}-\beta \cos \varphi \cdot r^{\alpha-\beta-1} \cdot \cos \frac{1}{r^{\beta}}\right) \\
& =0-\beta \cos \varphi \cdot \lim _{r \rightarrow 0+} r^{\alpha-\beta-1} \cdot \cos \frac{1}{r^{\beta}}= \begin{cases}0 & \text { if } \alpha>\beta+1 \\
\text { doesn'texist } & \text { if } \alpha \leq \beta+1\end{cases}
\end{aligned}
$$

Therefore, the partial derivatives are continuous if and only if $\alpha>\beta+1$.
d) If f is differentiable at the origin then its derivative can only be the mapping $A=\left(\begin{array}{ll}0 & 0\end{array}\right)$.

Since $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-A(x, y)}{\|(x, y)\|}=\lim _{r \rightarrow 0+} \frac{r^{\alpha} \sin \frac{1}{r^{\beta}}}{r}=0$,
then f is differentiable at the origin.

