
Calculus 2, Sample Test 2

1. Let f (x, y) =
x3 - y2

x2 + y2
if (x, y) ≠ (0, 0)

0 if (x, y) = (0, 0)
a) Where is f  continuous?
b) Calculate the partial derivatives of f  where they exist.
c) Where is f  differentiable?

2. Let f (x, y) = 2 x2 + y2  and 

a) Where does the gradient of f  exist?
b) Find the equation f the tangent line of f  at the point P(2, 1).
b) Find the directional derivative of f  at P(2, 1) in the direction v = (3, 4).
c) Find the directional derivative of f  at P(2, 1) with the maximal value.

3. Determine the Taylor polynomial of order 2 of the function f (x, y) = (1 + ey) cos x - y ex at the point 
P(0, 1).

4.  Let f : 2⟶2, f (x, y) = 2 x3 y - x y + x y2, x ln(3 x - y) - 3 y2. Plug in (x, y) = (1, 2) to obtain 

f (1, 2) = (6, -12). Show that in a small neighbourhood of (6, -12) the inverse function f -1 exists and 
determine the derivative f -1 ' (6, -12).

5. Determine the local minima and maxima of the function f (x, y) = x +
y2

4 x
+

1

y

6. Determine the maximum and minimum of the function f (x, y) = x + y under the constraint 
x4 + y4 = 2.

Additional exercises

7. Determine the maximum and minimum of the function f (x, y, z) = x3 + y2 + z under the constraint 
x2 + y2 + z2 = 1

8. Let α > 1 and consider the function  f (x, y) =
x2 + y2

α

2 ·sin
1

x2 + y2
β

2

if (x, y) ≠ (0, 0)

0 if (x, y) = (0, 0)
a) Calculate the first-order partial derivatives of f  where they exist.
b) Prove that f  is continuously differentiable on the set 2\{(0, 0)}.
c) Are the partial derivatives continuous at the origin?
d) Using the definition of differentiability, decide whether f  is differentiable at the origin.



Solutions

1. Let f (x, y) =
x3 - y2

x2 + y2
if (x, y) ≠ (0, 0)

0 if (x, y) = (0, 0)
a) Where is f  continuous?
b) Calculate the partial derivatives of f  where they exist. (At the origin use the definition.)
c) Where is f  differentiable?

Solution. 
a) Outside of the origin f  is continuous, since it is the ratio of two continuous functions, 
and the denominator is not zero.

b) At the origin we calculate the limit on the straight lines y =mx:

lim
x0

f (x,mx) = lim
x0

x3 -m2 x2

x2 +m2 x2
= -

m2

1 +m2
. It depends on m

⟹ lim
(x,y)(0,0)

f (x, y) doesn’t exist  ⟹  f  is not continuous at the origin.

c) If (x, y) ≠ (0, 0) then 

f 'x (x, y) =
3 x2x2 + y2 - x3 - y2 ·2 x

x2 + y2
2

,      f 'y (x, y) =
-2 yx2 + y2 - x3 - y2 ·2 y

x2 + y2
2

If (x, y) = (0, 0) then

f 'x (0, 0) = lim
h0

f (h, 0) - f (0, 0)

h
= lim
h0

h3

h2

h
= 1,    

f 'y (0, 0) = lim
h0

f (0, h) - f (0, 0)

h
= lim
h0

-
h2

h2

h
= lim
h0

-1

h
, which doesn’t exist.

d) Outside of the origin the partial derivatives are continuous, so f  is differentiable on this open set.
At the origin f  is not differentiable, since it is not continuous.
Or: f  is not differentiable at the origin, since f 'y (0, 0) doesn’t exist.

2. Let f (x, y) = 2 x2 + y2  and 

a) Where does the gradient of f  exist?
b) Find the equation f the tangent line of f  at the point P(2, 1).
b) Find the directional derivative of f  at P(2, 1) in the direction v = (3, 4).
c) Find the directional derivative of f  at P(2, 1) with the maximal value.

Solution. 

a) The partial derivatives are: f 'x (x, y) =
2 x

2 x2 + y2
,  f 'y (x, y) =

y

2 x2 + y2

The gradient of f  exist outside of the origin, since then the partial derivatives exist and are 
continuous. If (x, y) ≠ (0, 0) then grad f (x, y) = f 'x (x, y), f 'y (x, y).
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b) The equation of the tangent plane is  z = f (a, b) + f 'x (a, b) (x - a) + f 'y (a, b) (y - b).

Here (a, b) = (2, 1)  ⟹ f (2, 1) = 3,   f 'x (2, 1) =
4

3
,   f 'y (2, 1) =

1

3

⟹  the equation of the tangent plane is   z = 3 +
4

3
(x - 2) +

1

3
(y - 1).

c) Since || v || = 32 + 42 = 5 then the unit vector parallel to v is e =
1

|| v ||
·v =

3

5
,

4

5
.

The gradient vector of f  at P(2, 1) is grad f (2, 1) =
4

3
,

1

3
.

The directional derivative of f  at P(2, 1) in the direction v = (3, 4) is

e ·grad f (2, 1) = <
3

5
,

4

5
,

4

3
,

1

3
> =

3

5
·

4

3
+

4

5
·

1

3
=

16

15

d) The directional derivative of f  is maximal in the direction 
grad f (2, 1)

|| grad f (2, 1) ||
 and the

value of the maximum is || grad f (2, 1) || =
4

3

2

+
1

3

2

=
17

3
.

3. Determine the Taylor polynomial of order 2 of the function f (x, y) = (1 + ey) cos x - y ex at the 
point P(0, 1).

Solution. Calculate the first-order and second order partial derivatives of f  and evaluate them at the 
given point:

f (x, y) = (1 + ey) cos x - y ex ⟹  f (0, 1) = (1 + e) ·1 - 1 ·1 = e
f 'x (x, y) = -(1 + ey) sin x - y ex ⟹  f 'x (0, 1) = -(1 + e) ·0 - 1 ·1 = -1
f 'y (x, y) = ey cos x - ex ⟹  f 'y (0, 1) = e ·1 - 1 = e - 1

f ''xx (x, y) = -(1 + ey) cos x - y ex ⟹  f ''xx (0, 1) = -(1 + e) ·1 - 1 ·1 = -e - 2
f ''xy (x, y) = -ey sin x - ex ⟹  f ''xy (0, 1) = -e ·0 - 1 = -1

f ''yx (x, y) = -ey sin x - ex ⟹  f ''yx (x, y) = -1

f ''yy (x, y) = ey cos x ⟹  f ''yy (0, 1) = e ·1 = e

The Taylor polynomial of order 2 at a point (a, b) is
T2(x, y) = f (a, b) + f 'x (a, b) (x - a) + f 'y (a, b) (y - b) +

+
1

2
f ''xx (a, b) (x - a)2 + 2 f ''xy (a, b) (x - a) (x - b) + f ''yy (a, b) (y - b)2

Substituting (a, b) = (0, 1):

f (x, y) ≈ T2(x, y) = e + (-1) (x - 0) + (e - 1) (y - 1) +
1

2
(-e - 2) (x - 0)2 + 2 (-1) (x - 0) (y - 1) + e(y - 1)2

4.  Let f : 2⟶2, f (x, y) = 2 x3 y - x y + x y2, x ln(3 x - y) - 3 y2. Plug in (x, y) = (1, 2) to obtain 

f (1, 2) = (6, -12). Show that in a small neighbourhood of (6, -12) the inverse function f -1 exists and 
determine the derivative f -1 ' (6, -12).
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Solution. f (1, 2) = (2 ·1 ·2 - 1 ·2 + 1 ·4, 1 · ln (1) - 3 ·4) = (6, -12).
Calculating the Jacobian matrix of f :

f ' (x, y) =

∂ f1(x, y)

∂x

∂ f1(x, y)

∂y
∂ f2(x, y)

∂x

∂ f2(x, y)

∂y

=

6 x2 y - y + y2 2 x3 - x + 2 x y

ln(3 x - y) +
3 x

3 x - y

-x

3 x - y
- 6 y

Substituting (x, y) = (1, 2) into the Jacobian:

f ' (1, 2) =
14 5
3 -13

Calculating the determinant of the Jacobian:

det f ' (1, 2) = det
14 5
3 -13

= -14 ·13 - 15 ≠ 0 

Since the above determinant is not zero then by the inverse function theorem, 
the inverse function f -1 exists in a small neighbourhood if the point f (1, 2) = (6, -12).

The derivative of f -1 at (6, -12) is the inverse of f ' (1, 2). Using that 

the inverse of  A =
a b
c d

 is A-1 =
1

a d - b c

d -b
-c a

, then

f -1 ' (6, -12) = (f ' (1, 2))-1 =
1

-14 ·13 - 15

-13 -5
-3 14

=
1

197

13 5
3 -14

.

5. Determine the local minima and maxima of the function f (x, y) = x +
y2

4 x
+

1

y

Solution. Here x ≠ 0, y ≠ 0. The first-order partial derivatives of f  are:

(1) f 'x (x, y) = 1 -
y2

4 x2
= 0 ⟹ 4 x2 = y2 ⟹ 2 x = ±y

(2) f 'y (x, y) =
y

2 x
-

1

y2
= 0 ⟹ y3 = 2 x

Case 1. If  2 x = y then y3 = y ⟹ y3 - y = y(y - 1) (y + 1) = 0

     Since y ≠ 0 then y1 = 1, y2 = -1 ⟹  x1 =
1

2
, x2 = -

1

2
Case 2. If  2 x = -y then y3 = -y  ⟹  yy2 + 1 = 0.

     This cannot be the case, since y ≠ 0 and y2 + 1 > 0.

The stationary points are: P1
1

2
, 1  and P1 -

1

2
, -1 .

The Hesse-matrix of f  is H(x, y) =
f ''xx (x, y) f ''xy (x, y)
f ''yx (x, y) f ''yy (x, y)

=

y2

2 x3 -
y

2 x2

-
y

2 x2
1

2 x
+

2
y3

Evaluating the Hesse-matrix at the given points:
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At P1
1

2
, 1 :    H(P1) =

4 -2
-2 3

. Since detH(P1) = 12 - 4 = 8 > 0 and f ''xx (P1) = 4 > 0 then

f  has a local minimum at P1
1

2
, 1  with f

1

2
, 1 = 2.

At P2 -
1

2
, -1 :     H(P2) =

-4 2
2 -3

. Since detH(P2) = 12 - 4 = 8 > 0 and f ''xx (P2) = -4 < 0 then

f  has a local maximum at P2 -
1

2
, -1  with f -

1

2
, -1 = -2.

Remark. We can avoid calculating the Hesse matrix with the following observation:
a) f (-x, -y) = -f (x, y), therefore, if f  has a local minimum at (x0, y0) then f  has a local maximum at 
(-x0, -y0).
b) If x > 0, y > 0, then f (x, y) > 0, and thus f  is bounded below.
c) The limit of f (x, y) is infinity if

 x⟶∞, y is fixed, or
 y⟶∞, x is fixed, or
 x⟶0, y is fixed, or
 y⟶0, x is fixed.

Therefore, f  can only have a local minimum on the region x > 0, y > 0.
So f  has a local minimum at P1 and a local maximum at P2.

6. Determine the maximum and minimum of the function f (x, y) = x + y under the constraint 
x4 + y4 = 2.

Solution. The constraint is given by the function g(x, y) = x4 + y4 - 2. Applying the Lagrange multi-
plier method,
consider the function L(x, y) = f (x, y) + λ g(x, y) = x + y + λx4 + y4 - 2

The first-order partial derivatives of L are:

L 'x = 1 + 4 x3 ·λ = 0 ⟹ x3 = -
1

4 λ

L 'y = 1 + 4 y3 ·λ = 0 ⟹ y3 = -
1

4 λ

g(x, y) = x4 + y4 - 2 = 0 ⟹ -
1

4 λ

3
4

+ -
1

4 λ

3
4

= 2 -
1

4 λ

3
4

= 2

⟹ -
1

4 λ

3 = ±1 ⟹ -
1

4 λ
= ±1   ⟹  λ = ±

1

4

If λ =
1

4
 then x = y = -1 ⟹  P1(-1, -1)

and if λ = -
1

4
 then x = y = 1 ⟹  P2(1, 1)

The second order partial derivatives of L are:
L ''xx = 12 x2 ·λ, L ''xy = 0, L ''yy = 12 y2 ·λ

The Hesse-matrix of L is H(x, y) =
L ''xx (x, y) L ''xy (x, y)
L ''yx (x, y) L ''yy (x, y)

=
12 x2 ·λ 0

0 12 y2 ·λ
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 If λ =
1

4
then  H(-1, -1) =

3 0
0 3

. 

Since detH(-1, -1) = 9 > 0 and f ''xx (-1, -1) = 3 > 0 then f  has a local minimum at P1(-1, -1).

 If λ = -
1

4
then  H(1, 1) =

-3 0
0 -3

. 

Since detH(1, 1) = 9 > 0 and f ''xx (1, 1) = -3 < 0 then f  has a local maximum at P1(1, 1).

Remark. Since the constraint defines the surface of a sphere then by Weierstrass’s min-max
theorem f  has a minimum and a maximum with this constraint. Substituting the coordinates of
the stationary points, we obtain that f (1, 1) = 2 is the maximum and f (-1, -1) = -2 is the minimum.

7. Determine the maximum and minimum of the function f (x, y, z) = x3 + y2 + z under the con-
straint x2 + y2 + z2 = 1

Solution. Substituting y2 = 1 - x2 - z2 into f (x, y, z), we obtain the function
g(x, z) = x3 - x2 - z2 + z + 1

The first-order partial derivatives of g are:

(1) g 'x (x, z) = 3 x2 - 2 x = x(3 x - 2) = 0 ⟹ x1 = 0, x2 =
2

3

(2) g 'z (x, z) = -2 z + 1 = 0 ⟹  z =
1

2

The stationary points are: P1 0,
1

2
 and P1

2

3
,

1

2
.

The Hesse-matrix of g is H(x, y) =
g ''xx (x, y) g ''xy (x, y)

g ''yx (x, y) g ''yy (x, y)
=

6 x - 2 0
0 -2

Evaluating the Hesse-matrix at the given points:

At P1 0,
1

2
:    H(P1) =

-2 0
0 -2

. Since detH(P1) = 4 > 0 and f ''xx (P1) = -2 < 0 then

f  has a local maximum at P1 0,
1

2
.

At P2
2

3
,

1

2
:     H(P2) =

2 0
0 -2

. Since detH(P2) = -4 < 0 then P2 is a saddle point.

At (x, z) = 0,
1

2
, from the condition x2 + y2 + z2 = 1 we obtain y = ±

3

2
.

Therefore, f  has a local maximum at the points 0,
3

2
,

1

2
 and 0, -

3

2
,

1

2
 and the value of the

maximum is 
5

4
.

8. Let α > 1 and consider the function  f (x, y) =
x2 + y2

α

2 ·sin
1

x2 + y2
β

2

if (x, y) ≠ (0, 0)

0 if (x, y) = (0, 0)
a) Calculate the first-order partial derivatives of f  where they exist.
b) Prove that f  is continuously differentiable on the set 2\{(0, 0)}.
c) Are the partial derivatives continuous at the origin?
d) Using the definition of differentiability, decide whether f  is differentiable at the origin.
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Solution. If (x, y) ≠ (0, 0) then 

f 'x (x, y) = α xx2 + y2
α

2
-1
·sin

1

x2 + y2
β

2

- β xx2 + y2
α

2
-
β

2
-1
·cos

1

x2 + y2
β

2

·

At the origin using the definition: 

f 'x (0, 0) = lim
h0

( h )α ·sin 1
h β

h
= 0.

f 'y (x, y) and f 'y (x, y) can be obtained from these by the changing the variables.

b) The partial derivatives are continuous on 2\{(0, 0)}, since they are compositions of continuous
functions, therefore f  is continuously differentiable on this open set.
c) Since f  is symmetric in the variables then it is enough to investigate the partial derivative f 'x.
It is continuous in the origin if and only if lim

(x,y)(0,0)
f 'x (x, y) = f 'x (0, 0).

We calculate the limit using polar coordinates: x = r cosφ, y = r sinφ:

lim
(x,y)(0,0)

f 'x (x, y) = lim
r0+

α r cosφr2
α

2
-1
·sin

1

r
- β r cosφr2

α

2
-
β

2
-1
·cos

1

rβ
=

= lim
r0+

α cosφ ·rα-1 ·sin
1

r
- β cosφ ·rα-β-1 ·cos

1

rβ

= 0 - β cosφ · lim
r0+

rα-β-1 ·cos
1

rβ
=

0 if α > β + 1
doesn' t exist if α ≤ β + 1

Therefore, the partial derivatives are continuous if and only if α > β + 1.
d) If f  is differentiable at the origin then its derivative can only be the mapping A = ( 0 0 ).

Since lim
(x,y)(0,0)

f (x, y) - f (0, 0) - A(x, y)

|| (x, y) ||
= lim
r0+

rα sin
1

rβ

r
= 0,

then f  is differentiable at the origin.
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