Calculus 2, Sample Test 1

1. a) Calculate the value of the following integral: $\int_{0}^{\infty} x e^{-x} d x$
b) Decide whether the following integral converges or diverges: $\int_{0}^{1} \frac{\sin \left(x^{2}+1\right)}{(1+x) \sqrt{x}} \mathrm{dx}$
2. Let $f_{n}(x)=\frac{e^{n x}-1}{e^{2 n x}+1}$. Determine the pointwise limit of $f_{n}(x)$ on the real line \mathbb{R} and decide whether the convergence is uniform or not.
3. a) Show that the series $S(x)=\sum_{n=1}^{\infty} \frac{\arctan \left(\frac{x}{n}\right)}{n^{2}}$ is convergent for all $x \in \mathbb{R}$.
b) Show that $S^{\prime}(x)=\sum_{n=1}^{\infty} \frac{1}{n^{3}+n x^{2}}$ for all $x \in \mathbb{R}$.
4. Estimate the value of $\sqrt[3]{1.2}$ by the Taylor polynomial of order 2 of $f(x)=\sqrt[3]{1+x}$ at center 0 . Give an upper bound for the error of the approximation.
5. Find the Taylor series of the following functions at $x_{0}=1$ and determine the radius of convergence.
a) $f(x)=\frac{1}{x+3}$
b) $g(x)=\frac{1}{(x+3)^{2}}$
6. Find the Taylor series of the function $f(x)=\frac{2 x^{3}}{\sqrt[5]{32-2 x^{2}}}$ at $x_{0}=0$ and determine the radius of convergence. Calculate $f^{(102)}(0)$ and $f^{(103)}(0)$.
7. Let $A=\left\{(x, y) \in \mathbb{R}^{2}: x \leq 0, x^{2}+y^{2}<1\right\} \cup\left\{(x, 0) \in \mathbb{R}^{2}:-1 \leq x \leq 1\right\}$.

Find the set of interior points, the set of limit points and the closure of A.
8. Calculate the following limits if they exist.
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{\alpha x^{2} y+\beta y^{2}}{x^{4}+y^{2}}$
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2 \beta} y+\sin \left(x^{2}+y^{2}\right)^{\alpha}}{\left(x^{2}+y^{2}\right)^{\beta}}$

Calculus 2, Sample Test 1, solutions

1. a) Calculate the value of the following integral: $\int_{0}^{\infty} x e^{-x} d x$
b) Decide whether the following integral converges or diverges: $\int_{0}^{1} \frac{\sin \left(x^{2}+1\right)}{(1+x) \sqrt{x}} d x$

Solution. a) First we calculate the indefinite integral using the integration by parts method:
$\int x e^{-x} d x=-x e^{-x}-\int-e^{-x} d x=-x e^{-x}-e^{-x}+c$.

The improper integral: $\int_{0}^{\infty} x e^{-x} \mathrm{dx}=\lim _{A \rightarrow \infty} \int_{0}^{A} x e^{-x} \mathrm{dx}=\lim _{A \rightarrow \infty}\left[-x e^{-x}-e^{-x}\right]_{0}^{A}=$ $\lim _{A \rightarrow \infty}\left(\left(-A e^{-A}-e^{-A}\right)-\left(0-e^{0}\right)\right)=(0-0)-\left(0-e^{0}\right)=1$

Here we use that $\lim _{A \rightarrow \infty} e^{-A}=0$ and $\lim _{A \rightarrow \infty}\left(A e^{-A}\right)=\lim _{A \rightarrow \infty} \frac{A}{e^{A}} \stackrel{\infty}{\infty}, L^{\prime} H \quad \lim _{A \rightarrow \infty} \frac{1}{e^{A}}=\frac{1}{\infty}=0$.
b) If $x \in[0,1]$ then $0 \leq f(x)=\frac{\sin \left(x^{2}+1\right)}{(1+x) \sqrt{x}} \leq \frac{1}{(1+0) \sqrt{x}}=\frac{1}{\sqrt{x}}=g(x)$
and the improper integral of g is convergent on $[0,1]$,
since $\int_{0}^{1} g(x) \mathrm{dx}=\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1} x^{-\frac{1}{2}} \mathrm{dx}=\lim _{\varepsilon \rightarrow 0}[2 \sqrt{x}]_{\varepsilon}^{1}=\lim _{\varepsilon \rightarrow 0}(2-2 \sqrt{\varepsilon})=2$, so the improper integral $\int_{0}^{1} \frac{\sin \left(x^{2}+1\right)}{(1+x) \sqrt{x}} \mathrm{dx}$ converges.
2. Let $f_{n}(x)=\frac{e^{n x}-1}{e^{2 n x}+1}$. Determine the pointwise limit of $f_{n}(x)$ on the real line \mathbb{R} and decide whether the convergence is uniform or not.

Solution. If $x>0$, then $\lim _{n \rightarrow \infty} e^{n x}=\infty$, so $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{1-\frac{1}{e^{n x}}}{e^{n x}+\frac{1}{e^{n x}}}=\lim _{n \rightarrow \infty} \frac{1-0}{\infty+0}=0$.
If $x=0$, then $e^{n x}=1$, so $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{1-1}{1+1}=0$.
If $x<0$, then $\lim _{n \rightarrow \infty} e^{n x}=0$, so $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{0-1}{0+1}=-1$.
Therefore, the limit function is $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\left\{\begin{array}{ll}0, & \text { if } x \geq 0 \\ -1, & \text { if } x<0\end{array}\right.$.
The convergence of $\left(f_{n}\right)$ to f on \mathbb{R} is not uniform, since f has a discontinuity at $x=0$, but f_{n} is continuous on \mathbb{R} for all $n \in \mathbb{N}$.

Or: We can use that if there exists a sequence $\left(x_{n}\right) \subset H$ such that
$\lim _{n \rightarrow \infty}\left|r_{n}\left(x_{n}\right)\right|=\lim _{n \rightarrow \infty}\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right| \neq 0$, then $\left(f_{n}\right)$ does not converge uniformly to f on H.

Here let $x_{n}=\frac{1}{n}$, then $\lim _{n \rightarrow \infty}\left|r_{n}\left(x_{n}\right)\right|=\lim _{n \rightarrow \infty}\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|=\lim _{n \rightarrow \infty}\left|\frac{e^{n \cdot \frac{1}{n}}-1}{e^{2 n \cdot \frac{1}{n}}+1}-0\right|=\frac{e-1}{e^{2}+1} \neq 0$ $\Longrightarrow\left(f_{n}\right)$ does not converge uniformly to f on \mathbb{R}.
3. a) Show that the series $S(x)=\sum_{n=1}^{\infty} \frac{\arctan \left(\frac{x}{n}\right)}{n^{2}}$ is convergent for all $x \in \mathbb{R}$.
b) Show that $S^{\prime}(x)=\sum_{n=1}^{\infty} \frac{1}{n^{3}+n x^{2}}$ for all $x \in \mathbb{R}$.

Solution.

a) Since $\left|f_{n}(x)\right|=\left|\frac{\arctan \left(\frac{x}{n}\right)}{n^{2}}\right|<\frac{\pi}{2} \cdot \frac{1}{n^{2}}$ or all $x \in \mathbb{R}$ and $\sum_{n=1}^{\infty} \frac{\pi}{2} \cdot \frac{1}{n^{2}}$ is convergent (p-series with $p=2$), then by Weierstrass's criterion the function series $\sum_{n=1}^{\infty} \frac{\arctan \left(\frac{x}{n}\right)}{n^{2}}$ is uniformly convergent on \mathbb{R}.
b) The function series $\sum_{n=1}^{\infty} f_{n}{ }^{\prime}(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cdot \frac{1}{1+\left(\frac{x}{n}\right)^{2}} \cdot \frac{1}{n}=\sum_{n=1}^{\infty} \frac{1}{n^{3}+n x^{2}}$ is also uniformly convergent on \mathbb{R} by the Weierstrass criterion, since $\left|f_{n}^{\prime}(x)\right|=\left|\frac{1}{n^{3}+n x^{2}}\right|<\frac{1}{n^{3}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is convergent, so $S^{\prime}(x)=\frac{d}{d x}\left(\sum_{n=1}^{\infty} \frac{\arctan \left(\frac{x}{n}\right)}{n^{2}}\right)=\sum_{n=1}^{\infty} \frac{d}{d x} \frac{\arctan \left(\frac{x}{n}\right)}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{3}+n x^{2}}$ for all $x \in \mathbb{R}$.
4. Estimate the value of $\sqrt[3]{1.2}$ by the Taylor polynomial of order 2 of $f(x)=\sqrt[3]{1+x}$ at center 0 .

Give an upper bound for the error of the approximation.

Solution.

$$
\begin{array}{ll}
f(x)=\sqrt[3]{1+x} & f(0)=1 \\
f^{\prime}(x)=\frac{1}{3(1+x)^{2 / 3}} & f^{\prime}(0)=\frac{1}{3} \\
f^{\prime \prime}(x)=-\frac{2}{9(1+x)^{5 / 3}} & f^{\prime \prime}(0)=-\frac{2}{9} \\
f^{\prime \prime \prime}(x)=\frac{10}{27(1+x)^{8 / 3}} &
\end{array}
$$

The Taylor polynomial of order 2:

$$
\begin{aligned}
& T_{2}(x)=f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2}=1+\frac{1}{3} x-\frac{2}{9 \cdot 2!} x^{2} \\
& \text { If } x=0.2 \text { then } \sqrt[3]{1.2} \approx T_{2}(0.2)=1+\frac{1}{2} \cdot 0.2-\frac{2}{9 \cdot 2!} 0.2^{2} \approx 1.06222
\end{aligned}
$$

Lagrange remainder term: $R_{2}(x)=\frac{f^{(3)}(\xi)}{3!}\left(x-x_{0}\right)^{3}$, where $x_{0}=0, x=0.2,0<\xi<0.2$
The error estimation:

$$
|E|=\left|R_{2}(x)\right|=\left|\frac{10}{27(1+\xi)^{8 / 3}} \cdot \frac{1}{3!}(0.2-0)^{3}\right|=
$$

$=\frac{10}{27(1+\xi)^{8 / 3}} \frac{1}{3!} 0.2^{3}<\frac{10}{27(1+0)^{8 / 3}} \frac{1}{3!} 0.2^{3} \approx 0.000493827$
5. Find the Taylor series of the following functions at $x_{0}=1$ and determine the radius of convergence.
a) $f(x)=\frac{1}{x+3}$
b) $g(x)=\frac{1}{(x+3)^{2}}$

Solution.
a) $f(x)=\frac{1}{(x-1)+4}=\frac{1}{4} \cdot \frac{1}{1-\left(-\frac{x-1}{4}\right)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}}(x-1)^{n}$, where
$|r|=\left|-\frac{x-1}{4}\right|<1 \Longrightarrow|x-1|<4 \Longrightarrow R_{1}=4$.
b) $g(x)=-f^{\prime}(x)=-\frac{d}{d x}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}}(x-1)^{n}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}} \frac{d}{d x}(x-1)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot n}{4^{n+1}}(x-1)^{n-1}$
because of uniform convergence if $|x-1|<4$, so the radius of convergence of the series is $R_{2}=4$.
6. Find the Taylor series of the function $f(x)=\frac{2 x^{3}}{\sqrt[5]{32-2 x^{2}}}$ at $x_{0}=0$ and determine the radius of convergence. Calculate $f^{(102)}(0)$ and $f^{(103)}(0)$.

Solution. Let $g(x)=\frac{1}{\sqrt[5]{32-2 x^{2}}}$. First we determine the Taylor series of g at $x_{0}=0$ using that $(1+u)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} u^{k}$, where $|u|<1=R$.
$\Longrightarrow g(x)=\frac{1}{\sqrt[5]{32}} \cdot \frac{1}{\left(1+\left(-\frac{x^{2}}{16}\right)\right)^{1 / 5}}=\frac{1}{2}\left(1+\left(-\frac{x^{2}}{16}\right)\right)^{-\frac{1}{5}}=\frac{1}{2} \sum_{k=0}^{\infty}\binom{-\frac{1}{5}}{k}\left(-\frac{x^{2}}{16}\right)^{k}=\sum_{k=0}^{\infty} \frac{1}{2}\binom{-\frac{1}{5}}{k} \frac{(-1)^{k}}{16^{k}} x^{2 k}$
The radius of convergence: $|u|=\left|-\frac{x^{2}}{16}\right|<1 \Longrightarrow|x|<4 \Longrightarrow R=4$

Using this, the Taylor series of f is
$f(x)=2 x^{3} \cdot g(x)=2 x^{3} \cdot \sum_{k=0}^{\infty} \frac{1}{2}\binom{-\frac{1}{5}}{k} \frac{(-1)^{k}}{16^{k}} x^{2 k}=\sum_{k=0}^{\infty}\binom{-\frac{1}{5}}{k} \frac{(-1)^{k}}{16^{k}} x^{2 k+3}$, where $R=4$ (the same).

To find the values of the derivatives we use that
$g(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} x^{n} \Longrightarrow g^{(n)}(0)=n!\cdot a_{n}$, where a_{n} is the coefficient of x^{n}.

- To find the coefficient of x^{102} we have to solve $2 k+3=102$, where $k \in \mathbb{N}$.

This equation doesn't have an integer solution, so $a_{102}=0$
(the term x^{102} is not included in the series)
$\Longrightarrow g^{(102)}(0)=102!\cdot a_{102}=0$.

- The coefficient of $x^{102}: 2 k+3=103$, where $k \in \mathbb{N} \Longrightarrow k=50$
$\Longrightarrow g^{(103)}(0)=103!\cdot a_{103}=103!\cdot\binom{-\frac{1}{5}}{50} \frac{(-1)^{50}}{16^{50}}$.

7. Let $A=\left\{(x, y) \in \mathbb{R}^{2}: x \leq 0, x^{2}+y^{2}<1\right\} \cup\left\{(x, 0) \in \mathbb{R}^{2}:-1 \leq x \leq 1\right\}$.

Find the set of interior points, the set of limit points and the closure of A.

Solution.

The set of interior points of A : int $A=A=\left\{(x, y) \in \mathbb{R}^{2}: x<0, x^{2}+y^{2}<1\right\}$
The set of limit points of A : $A^{\prime}=\left\{(x, y) \in \mathbb{R}^{2}: x \leq 0, x^{2}+y^{2} \leq 1\right\} \cup\left\{(x, 0) \in \mathbb{R}^{2}:-1 \leq x \leq 1\right\}$
The closure of $A: \mathrm{cl}^{\prime}=A^{\prime}$.
8. Calculate the following limits if they exist.
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{\alpha x^{2} y+\beta y^{2}}{x^{4}+y^{2}}$
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2 \beta} y+\sin \left(x^{2}+y^{2}\right)^{\alpha}}{\left(x^{2}+y^{2}\right)^{\beta}}$

Solution.

a) The limit at the origin along the parabolas $y=c x^{2}$ is $\lim _{x \rightarrow 0} \frac{\alpha c x^{4}+\beta c^{2} x^{4}}{x^{4}+c^{2} x^{4}}=\frac{\alpha c+\beta c^{2}}{1+c^{2}}$, which depends on c, that is, the limit depends on the route, therefore the limit at the origin doesn't exist.
b) Using polar coordinates, $x=r \cos \varphi, y=r \sin \varphi$, where $r \longrightarrow 0$ and φ is arbitrary, the limit at the origin is $\lim _{r \rightarrow 0} \frac{r^{2 \beta+1}(\sin \varphi)(\cos \varphi)^{2 \beta}+\sin \left(r^{2 \alpha}\right)}{r^{2 \beta}}=\lim _{r \rightarrow 0} r \cdot(\sin \varphi)(\cos \varphi)^{2 \beta}+\lim _{r \rightarrow 0} \frac{\sin \left(r^{2 \alpha}\right)}{r^{2 \beta}}=$ $=0+\lim _{r \rightarrow 0} \frac{\sin \left(r^{2 \alpha}\right)}{r^{2 \beta}}= \begin{cases}0, & \text { if } \alpha>\beta \\ 1, & \text { if } \alpha=\beta . \\ \infty, & \text { if } \alpha<\beta\end{cases}$

