
Improper integrals

Case 1: The interval is not bounded

Definition. Let a ∈  and assume that f  is Riemann integrable on [a, b] for all b ≥ a.

    If the limit lim
b∞


a

b
f (x)dx ∈  exists then we say that f  is improperly integrable

    or f  has an improper integral on [a, ∞) and the value of the integral is
    

    
a

∞

f (x)dx = lim
b∞


a

b
f (x)dx.

    
   In this case we also say that the improper integral converges.

   If the limit lim
b∞


a

b
f (x)dx doesn’t exist or if lim

b∞

a

b
f (x)dx =∞ or -∞ then we 

   say that f  is not improperly integrable on [a, ∞) or the improper integral diverges.

Definition. Similarly, let b ∈  and assume that f  is Riemann integrable on [a, b] for all a ≤ b.
    Then     

    
-∞

b
f (x)dx = lim

a -∞

a

b
f (x)dx.

    
   If the limit exists and is finite then the improper integral converges.
   If the limit doesn’t exist or exists but is ∞ or -∞ then the improper integral diverges.

Examples

Exercise 1. Calculate the following integrals:

a) 
0

∞ 1

(1 + x)2
dx b) 

1

∞ 1

x
dx c) 

0

∞ 1

1 + x2
dx 

d) 
0

∞

cos t dt e) 
0

π 1

1 + sin x
dx f) 

-∞

a
ex dx

Results:

a) 1      b) ∞ (diverges) c) 
π

2
d) doesn’t exist (diverges) e) 2 f) ea

Exercise 2. I = 
2

∞ 6

x2 + x - 2
dx = ?

Solution. Using partial fraction decomposition:
6

x2 + x - 2
=

6

(x - 1) (x + 2)
=

A

x - 1
+

B

x + 2
  ⟹  6 = A(x + 2) + B(x - 1)

If x = -2:  B = -2
If x = 1:     A = 2

I = lim
b∞


2

b 6

x2 + x - 2
dx = lim

b∞


2

b 2

x - 1
-

2

x + 2
dx =



= 2 lim
b∞

[ln(x - 1) - ln(x + 2)]2
b = 2 lim

b∞
(ln(b - 1) - ln(b + 2) - (ln 1 - ln 4)) =

= 2 lim
b∞

ln
b - 1

b + 2
+ ln 4 = 2 · (0 + ln 4) = 2 ln 4

(the improper integral converges)

Exercise 3. I = 
-∞

-1 1

(x - 2) ln(2 - x)
dx = ?

Solution. We use that f ' fα =
fα+1

α + 1
+c, α ≠ -1:

I = lim
a -∞


a

-1 -1

2 - x
(ln(2 - x))-

1
2 dx =        

= lim
a -∞


(ln(2 - x))

1

2

1
2


a

-1
= 2 lim

a -∞
 ln 3 - ln(2 - a)  = -∞

(the improper integral diverges)

Important remark

Definition. Let a, b ∈ . The improper integral I = 
a

b
f (x)dx is said to be convergent if for all c ∈ (a, b)

   the improper integrals
   

   I1 = 
a

c
f (x)dx  and  I2 = 

c

b
f (x)dx

   
   are both convergent. 
   The improper integral I is divergent if at least one of I1 and I2 is divergent.   

Definition. 
-∞

∞

f (x)dx = lim
a -∞

lim
b∞


a

b
f (x)dx if the double limit exists and is finite.     

Remark. Because of the previous definition 
-∞

∞

f (x)dx ≠ lim
a∞


-a

a
f (x)dx.

          For example, 
-∞

∞

x dx is divergent, since 
-∞

0
x dx = -∞ and 

0

∞

x dx =∞.

          However, lim
a∞


-a

a
x dx = lim

a∞

x2

2

-a

a
= lim
a∞

a2

2
-
a2

2
= 0.

Exercise 4. I = 
-∞

∞ 1

1 + x2
dx = ?

Result:  I =π
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Case 2: The function is not bounded

Definition. Assume that f  is not bounded at a but f  is Riemann integrable on [A, b]
   for all a < A ≤ b.
   Then     

    
a

b
f (x)dx = lim

δ+0

a+δ

b
f (x)dx   or   

a

b
f (x)dx = lim

Aa+0

A

b
f (x)dx

Definition. Assume that f  is not bounded at b but f  is Riemann integrable on [a, B]
   for all a ≤ B < b.
   Then     

    
a

b
f (x)dx = lim

δ+0

a

b-δ
f (x)dx   or   

a

b
f (x)dx = lim

Bb-0

a

B
f (x)dx

Definition. If f  is not bounded at c ∈ (a, b) then 

    
a

b
f (x)dx = 

a

c
f (x)dx + 

c

b
f (x)dx = lim

δ1+0

a

c-δ1

f (x)dx + lim
δ2+0


c+δ2

b
f (x)dx

Examples

Exercise 5. Calculate the following integrals:

a) 
0

1 1

1 - t
dt b) 

0

π /2
1 + sin x dx c) 

0

1
ln x dx d) 

0

1 1

1 - x2
dx

Results:
a) 2      b) 2 c) -1 d) ∞ (diverges)

Exercise 6. I = 
5

7 1

(x - 5)23
dx = ?

Solution. I = lim
δ+0


5+δ

7
(x - 5)-

2
3 dx = lim

δ+0

(x - 5)

1

3

1
3


5+δ

7
= 3 lim

δ+0
 2

3
- δ

3
 = 3 2

3
.

Exercise 7. I = 
0

1 arcsin x

1 - x2
dx = ?

Solution. We use that f ' fα =
fα+1

α + 1
+c, α ≠ -1:

I = lim
δ+0


0

1-δ 1

1 - x2
(arcsin x)

1
2 dx = lim

δ+0

(arcsin x)

3

2

3
2


0

1-δ
=

2

3
lim
δ+0

(arcsin (1-δ))
3

2 - 0 =
2

3

π

2

3

2
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Improper integrals of f (x) = 1
xα

Statement. The improper integral 
1

∞ 1

xα
dx is convergent if α > 1 and divergent if α ≤ 1.

Proof.

If α = 1, then 
1

∞ 1

xα
dx = lim

A∞


1

A 1

x
dx = lim

A∞
[ln x]1

A = lim
A∞

(ln A - ln 1) =∞

If α ≠ 1, then 
1

∞ 1

xα
dx = lim

A∞


1

A
x-α dx = lim

A∞

x-α+1

-α + 1


1

A
= lim
A∞

A-α+1

-α + 1
-

1

-α + 1
=

0 -
1

-α + 1
=

1

α - 1
, if α > 1

∞, if α < 1

Statement. The improper integral 
0

1 1

xα
dx is convergent if α < 1 and divergent if α ≥ 1.

Proof.

If α = 1, then 
0

1 1

xα
dx = lim

ε0+0


0+ε

1 1

x
dx = lim

ε 0+0
[ln x]ε

1 = lim
ε 0+0

(ln 1 - ln ε) = 0 - (-∞) =∞

If α ≠ 1, then 
0

1 1

xα
dx = lim

ε0+0


0+ε

1
x-α dx = lim

ε0+0

x-α+1

-α + 1

ε

1
= lim

ε0+0

1

-α + 1
-

ε-α+1

-α + 1
=

=

∞, if α > 1
1

-α + 1
- 0 =

1

1 - α
, if α < 1

∫1
∞ 1

x
dx=∞

∫1
∞ 1

x2
dx=1

∫1
∞ 1

x
dx=∞

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
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1.0

1.5

2.0

2.5
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∫0
1 1

x
dx=∞

∫0
1 1

x2
dx=∞

∫0
1 1

x
dx=2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Convergence of improper integrals

Theorem (Cauchy criterion for improper integrals).
Assume that f  is integrable on closed, bounded subintervals of [a, β).
(Here β can be ∞.)

Then the improper integral 
a

β

f (x)dx is convergent if and only if

for all ε > 0 there exists b ∈ [a, β) such that 
b1

b2

f (x)dx < ε  if b < b1 < b2 < β.
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Remark. Assume that f  is integrable on closed, bounded subintervals of [a, β).

If f ≥ 0 on [a, β) then g(ω) = 
a

ω

f (x)dx is monotonically increasing

⟹  lim
ωβ-0


a

ω

f (x)dx exists (it is either finite or ∞)

⟹  
a

β

f (x) dx always exists if f  is integrable on closed, bounded subintervals of [a, β).

Definition. The improper integral 
a

β

f (x)dx is absolutely convergent, if 

    f  is integrable on closed, bounded subintervals of [a, β) and 

    
a

β

f (x) dx  is convergent.

Theorem. If the improper integral 
a

β

f (x)dx is absolutely convergent then 

  the improper integral 
a

β

f (x)dx is convergent.

Proof. 
b1

b2

f (x)dx ≤ 
b1

b2

f (x) dx  for all a ≤ b1 < b2 < β

     and we use the Cauchy criterion.

Remark. The converse of the statement is not necessarily true, for example 

         
1

∞ sin x

x
dx is convergent, but not absolutely convergent (see later).

Comparison test for improper integrals

Theorem. Assume that
  f  and g are integrable on closed, bounded subintervals of [a, β)
  ∃ b0 ∈ [a, β) such that f (x) ≤ g(x)  ∀ x ∈ (b0, β)
 Then

 1. if 
a

β

g(x)dx converges then 
a

β

f (x)dx  also converges.

 2. if g(x) ≥ f (x)   ∀ x ∈ (b0, β) and 
a

β

f (x)dx diverges then 
a

β

g(x)dx also diverges.

Proof. 1.  
a

β

g(x)dx converges  
Cauchy

  ∀ ε > 0  ∃ b < β such that 
b1

b2

g(x)dx < ε for all b < b1 < b2 < β.  

 f (x) ≤ g(x)  ∀ x ∈ (b0, β)

     ⟹  
b1

b2

f (x)dx ≤ 
b1

b2

f (x) dx ≤ 
b1

b2

g(x)dx < ε  for all  max {b, b0} < b1 < b2 < β

     
Cauchy


a

β

f (x)dx  converges.

     2.  By part 1, if 
a

β

g(x)dx is convergent then 
a

β

f (x)dx is convergent, which is a contradiction.
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Remark. 1. If x ≥ 1  then   
1

x
≤

1

x
. Since 

1

∞ 1

x
dx diverges then 

1

∞ 1

x
dx also diverges.

         2. If 0 < x ≤ 1 then 
1

x
≤

1

x2
. Since 

0

1 1

x
dx diverges then 

0

1 1

x2
dx also diverges.

Examples

Exercise 8. Decide whether the following integrals converge or diverge:

a) 
1

∞ sin x

x2
dx        b) 

0

∞ 1 + sin x

1 + x2
dx c) 

1

∞ 2 + cos x

x
dx

d) 
0

1 sin x

x2
dx        e) 

1

∞ sin x

x
dx f) 

1

∞ sin x

x
dx

Results: 
a) conv.  b) conv.   c) div. d) div.     e) conv.     f) div.

Integral test
Theorem. Assume that f : [1, ∞)⟶ be a positive valued, monotonically decreasing function 

 and let f (k) = ak > 0.

1. If 
1

∞

f (x)dx is convergent  ⟹   
k=1

∞

ak is convergent

2. If 
1

∞

f (x)dx is divergent  ⟹   
k=1

∞

ak is divergent

Remark. The equivalence is also true, that is, the integral 
1

∞

f (x)dx and the series 
k=1

∞

ak are 

both convergent or both divergent.

Proof. 1. Consider Figure a). Since the sum of the areas of the inscribed rectangles is less than or 
         equal to the area under the graph of f  then  

         a2 + a3 + ... + an ≤ 
1

n
f (x)dx ≤ lim

n∞


1

n
f (x)dx = 

1

∞

f (x)dx ∈ .

        Since ak > 0 and 
k=2

n

ak is bounded   ⟹   
k=2

∞

ak is convergent   ⟹   
k=1

∞

ak is convergent.

6     calculus2-01.nb



1 2 3 n-1 n

a2

a3

a)

y=f(x)

1 2 3 n-1 n

a1

a2

b)

y=f(x)

      2. Consider Figure b). Since the sum of the areas of the circumscribed rectangles is 
 greater than or equal to the area under the graph of f  then  


1

n
f (x)dx ≤ a1 + a2 + ... + an-1 = sn-1

Since lim
n∞


1

n
f (x)dx =∞  ⟹   lim

n∞
sn-1 =∞   ⟹  

k=1

∞

ak is divergent.

Error estimation

Theorem: Let f : [1, ∞)⟶ be a positive valued, monotonically decreasing function, let 

f (k) = ak > 0 and suppose that  
1

∞

f (x)dx is convergent. Let sn =

k=1

n

ak and s =

k=1

∞

ak.

Then the error for the approximation s ≈ sn is      

0 < E = s - sn = 

k=n+1

∞

ak ≤ 
n

∞

f (x)dx.

Proof: Since an+1 + an+2 + ... + am ≤ 
n

m
f (x)dx then

    0 < E = s - sn = lim
m∞



k=n+1

m

ak ≤ lim
m∞


n

m
f (x)dx =

n

∞

f (x)dx.

The convergence of the series 
n=1

∞ 1

nα

Theorem: 
n=1

∞ 1

nα
 is convergent if α > 1 and divergent otherwise.

Proof: If α < 0 then lim
n∞

1

nα
= lim
n∞

n-α = lim
n∞

n α =∞   and

    if α = 0 then lim
n∞

1

nα
= 1, so in these cases the series is divergent by the nth term test.

    If α > 0 then let f (x) =
1

xα
, x ≥ 1. This function is positive valued, monotonic decreasing 
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    and f (n) =
1

nα
= an > 0. 

    Thus, we can apply the integral test to investigate the convergence of 
n=1

∞

an.

    We already proved that 
1

∞ 1

xα
dx is convergent if α > 1, therefore the series

    
n=1

∞ 1

nα
 is also convergent if α > 1. 

    The improper integral is divergent if 0 < α ≤ 1, so in this case the series is also divergent.

Examples

Exercise. Decide whether the following series are convergent or divergent.

a) 
n=3

∞ 1

n ln n10
         b) 

n=3

∞ 1

n ln n 
2

If a series is convergent then estimate the error for the approximation s ≈ s1000

Solution. 

a) Let f (x) =
1

x ln x10
=

1

10

1

x ln x
, x > 3

     Then f  is positive valued and monotonically decreasing on the interval [3, ∞)

     and an = f (n) > 0       ⟹  the integral test can be applied:

     
3

∞ 1

10

1

x ln x
dx =

1

10
lim
A∞


3

A
1
x

ln x
dx =

1

10
lim
A∞

[ln(ln x)]3
A =

1

10
lim
A∞

(ln(ln A) - ln(ln 3)) =∞

     Since the improper integral is divergent then the series 
n=3

∞ 1

n ln n10
 is also divergent

     by the integral test.    
     

b) Let f (x) =
1

x ln x 
2
=

1
1
4

·
1

x (ln x)2
, x > 3

     Then f  is positive valued and monotonically decreasing on the interval [3, ∞)

     and an = f (n) > 0       ⟹  the integral test can be applied:

     
3

∞

4 ·
1

x (ln x)2
dx = 4 lim

A∞


3

A 1

x
(ln x)-2 dx = 4 lim

A∞
-

1

ln x


3

A
= 4 lim

A∞
-

1

ln A
+

1

ln 3
= 4 0 +

1

ln 3
=

4

ln 3

     Since the improper integral is convergent then the series 
n=3

∞ 1

n ln n 
2

 is also convergent

     by the integral test.    
     Error estimation for the approximation s ≈ s1000:

     0 < E = s - s1000 ≤ 
1000

∞

f (x)dx = 
1000

∞

4 ·
1

x
· (ln x)-2 dx = 4 lim

A∞
-

1

ln x


1000

A
=

     = 4 lim
A∞

-
1

ln A
+

1

ln 1000
=

4

ln 1000
.
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