Practice exercises 5.

1. The equation $z=x^{2} y+x y^{2}+x+3 y-1$ defines a landscape, and at the point $(4,1,26)$ of this landscape there is a spring. In which direction will the water flow from the spring?
2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}^{3}, f(t)=\left(t^{2}-t, \frac{1}{1+t^{2}}, e^{t}\right)$ and $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}, g(x, y, z)=x^{2} y-z$.
a) Calculate the derivative of $g \circ f$ at $t_{0}=1$ using the chain rule.
b) Calculate the derivative of $f \circ g$ at $a_{0}=(2,3,11)$ using the chain rule.
3. Show that the following functions satisfy the the given differential equations:
a) $z(x, y)=e^{-a y} \cos a x, \quad \frac{\partial^{2} z}{\partial x^{2}}=a \frac{\partial z}{\partial y}$
b) $u(x, t)=\sin (x-a t)+\ln (x+a t), \quad u_{\mathrm{tt}}=a^{2} u_{\mathrm{xx}}$
c) $u(x, y)=\sin x \cosh y+\cos x \sinh y, \quad u_{x x}+u_{y y}=0$
4. Show that for the function $f(x, y)=\left\{\begin{array}{ll}\frac{x^{4}+x y^{3}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{array}\right.$ we obtain $f_{x y} \neq f_{y x}$.
5. Give the nth order Taylor polynomial $T_{n}(x, y)$ of the following functions at the point $P_{0}\left(x_{0}, y_{0}\right)$:
a) $f(x, y)=2 x^{2}-x y-y^{2}-6 x-3 y+5, P_{0}(1,-2), T_{2}(x, y)=$?
b) $f(x, y, z)=x^{3}+y^{3}+z^{3}, P_{0}(1,2,3), T_{2}(x, y)=$?
c) $f(x, y)=\sin (x+2 y), P_{0}\left(\frac{\pi}{4}, \frac{\pi}{6}\right), T_{2}(x, y)=$?
d) $f(x, y)=\frac{x}{y}, P_{0}(1,1), T_{3}(x, y)=?$
