Practice exercises 4.

1. Calculate the partial derivatives of the following functions:
a) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f(x, y, z)=\frac{x^{2}+\cos y}{1+e^{z}}+y^{2} z$
b) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)= \begin{cases}\exp \left(-\frac{1}{x^{2}+y^{2}}\right), & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}$
2. Show that the following function is not continuous at the origin, however, the partial derivatives exist at the origin:
$f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}$
3. Calculate the partial derivatives of the following functions. Where are these functions differentiable?
a) $f(x, y)=\sqrt{5(x-1)^{4}+4 y^{2}}$
b) $f(x, y)= \begin{cases}\frac{(x-2) y^{2}}{x^{2}+y^{2}}+6 x+3 y, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}$
c) $f(x, y)= \begin{cases}\frac{\sin \left(y^{2}+2 x^{2}\right)}{\sqrt{y^{2}+2 x^{2}}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}$
4. Find the equation of the tangent plane at the point P_{0}, and give the directional derivative of f at P_{0} in the direction of \boldsymbol{v}.
a) $f(x, y)=3 y+e^{x y^{2}}-2 y \arctan \frac{x}{y}, \quad P_{0}(0,1), \quad v=(2,1)$
b) $f(x, y)=\left\{\begin{array}{ll}\frac{x^{2}-3 y^{2}}{2 x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ -3, & \text { if }(x, y)=(0,0)\end{array}, \quad P_{0}(-1,1), \quad v=(-5,1)\right.$
c) $f(x, y)=\frac{y^{3}}{e^{2 x+1}}, P_{0}\left(-\frac{1}{2}, 1\right)$. Find the directional derivative of f at P_{0} with the maximal and minimal value and also the corresponding direction.
5. Consider the surface given by the equation $x y z=1$. Find the tangent plane parallel to the plane with equation $x+y+z=3$.
6. Consider the surface given by the equation $x y z=a^{3} \quad(a>0)$. Prove that the tangent planes of the surface form tetrahedra with constant volume with the coordinate planes.
