Practice exercises 2.

1. Prove that

a) $||x - y|| \ge ||x|| - ||y|| |$ for all $x, y \in \mathbb{R}^p$;

- b) $||x y||^2 + ||x + y||^2 = 2 ||x||^2 + 2 ||y||^2$ for all $x, y \in \mathbb{R}^p$;
- c) if ||x|| = ||y|| = 1 and $x \perp y$ (i.e. $\langle x, y \rangle = 0$), then $||x y|| = \sqrt{2}$;
- d) $(x y) \perp (x + y)$ if and only if ||x|| = ||y||.

2. Sketch the following subsets of \mathbb{R}^2 , find the set of interior points, boundary points, limit points and isolated points and the closure of the sets.

a)
$$\{(x, y) \in \mathbb{R}^2 : x > 0, y > 0, x + y < 1\}$$

b) $\{(x, 0) \in \mathbb{R}^2 : 0 < x < 1\}$
c) $\{(x, y) \in \mathbb{R}^2 : x = \frac{1}{n} (n = 1, 2, ...), 0 < y < 1\}$
d) $\{\left(-\frac{1}{n}, -\frac{1}{n}\right) \in \mathbb{R}^2 : n \in \mathbb{N}^+ \} \cup]3, 4] \times \{0\}$
e) $\{(x, y) \in \mathbb{R}^2 : 0 < x, 0 < y < x^2\}$
f) $\{(x, y) \in \mathbb{R}^2 : 0 < x \le 1, 0 \le y \le \sqrt{x} \} \cap [-1, 0[\times \{0\}$
g) $\{(x, y) \in \mathbb{R}^2 : 0 < x < 1, y = \sin\left(\frac{1}{x}\right)\}$
h) $\{(x, y) \in \mathbb{R}^2 : 0 < x, y < \sin\left(\frac{1}{x}\right)\}$

- 3. Consider $\mathbb{Q} \subset \mathbb{R}$. Find $int(\mathbb{Q}), \partial \mathbb{Q}, ext(\mathbb{Q})$.
- 4. Prove that if $A \neq \emptyset$, \mathbb{R}^p , then A cannot be open and closed at the same time.

5. Is there a set
$$A \subset \mathbb{R}^2$$
 such that $\partial A = \left\{ \left(\frac{1}{n}, 0\right) : n = 1, 2, \ldots \right\}$?

6. a) Is the set] 1, 2[open in ℝ?
b) Is the set] 1, 2[×{0} open in ℝ²?
c) Is the set [1, ∞[closed in ℝ?
d) Is the set [1, ∞[×{0} closed in ℝ²?

Homework: see also the Quiz questions about Basic topological concepts in Calculus 1.