Practice exercises 2.

1. Prove that
a) $\|x-y\| \geq \mid\|x\|-\|y\| \|$ for all $x, y \in \mathbb{R}^{p}$;
b) $\|x-y\|^{2}+\|x+y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$ for all $x, y \in \mathbb{R}^{p}$;
c) if $\|x\|=\|y\|=1$ and $x \perp y$ (i.e. $\langle x, y\rangle=0$), then $\|x-y\|=\sqrt{2}$;
d) $(x-y) \perp(x+y)$ if and only if $\|x\|=\|y\|$.
2. Sketch the following subsets of \mathbb{R}^{2}, find the set of interior points, boundary points, limit points and isolated points and the closure of the sets.
a) $\left\{(x, y) \in \mathbb{R}^{2}: x>0, y>0, x+y<1\right\}$
b) $\left\{(x, 0) \in \mathbb{R}^{2}: 0<x<1\right\}$
c) $\left\{(x, y) \in \mathbb{R}^{2}: x=\frac{1}{n}(n=1,2, \ldots), 0<y<1\right\}$
d) $\left.\left.\left\{\left(-\frac{1}{n},-\frac{1}{n}\right) \in \mathbb{R}^{2}: n \in \mathbb{N}^{+}\right\} \cup\right] 3,4\right] \times\{0\}$
e) $\left\{(x, y) \in \mathbb{R}^{2}: 0<x, 0<y<x^{2}\right\}$
f) $\left\{(x, y) \in \mathbb{R}^{2}: 0<x \leq 1,0 \leq y \leq \sqrt{x}\right\} \cap[-1,0[\times\{0\}$
g) $\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1, y=\sin \left(\frac{1}{x}\right)\right\}$
h) $\left\{(x, y) \in \mathbb{R}^{2}: 0<x, y<\sin \left(\frac{1}{x}\right)\right\}$
3. Consider $\mathbb{Q} \subset \mathbb{R}$. Find $\operatorname{int}(\mathbb{Q}), \partial \mathbb{Q}, \operatorname{ext}(\mathbb{Q})$.
4. Prove that if $A \neq \varnothing, \mathbb{R}^{p}$, then A cannot be open and closed at the same time.
5. Is there a set $A \subset \mathbb{R}^{2}$ such that $\partial A=\left\{\left(\frac{1}{n}, 0\right): n=1,2, \ldots\right\}$?
6. a) Is the set] $1,2[$ open in \mathbb{R} ?
b) Is the set $] 1,2\left[\times\{0\}\right.$ open in \mathbb{R}^{2} ?
c) Is the set $[1, \infty[$ closed in \mathbb{R} ?
d) Is the set $\left[1, \infty\left[\times\{0\}\right.\right.$ closed in \mathbb{R}^{2} ?

Homework: see also the Quiz questions about Basic topological concepts in Calculus 1.

