Some two-variable functions and their graphs

1. Planes

- $a x+b y+c z=d$ is the equation of a plane with normal vector (a, b, c)

Some examples:

- $z=0$ is the equation of the $x y$-plane (normal vector: $(0,0,1)$)

The graph of the constant function $f(x, y)=0$ is the same.

- $x=0$ is the equation of the $y z$-plane (normal vector: $(1,0,0)$)
- $y=0$ is the equation of the $x z$-plane (normal vector: $(0,1,0)$)

- $z=c$ is the equation of a horizontal plane, that is, parallel to the $x y$-plane, intersecting the z axis at $z=c$
(normal vector: $(0,0,1)$). The graph of the constant function $f(x, y)=c$ is the same.
$\bullet x+y+z=1 \Longrightarrow z=1-x-y$ or $f(x, y)=1-x-y$ is a plane with normal vector $(1,1,1)$, intersecting the axes at $(1,0,0),(0,1,0),(0,0,1)$

2. Paraboloid: $z=x^{2}+y^{2}$ or $f(x, y)=x^{2}+y^{2}$

Let us intersect the graph of f with horizontal and vertical planes. For example:

- The intersection of $z=x^{2}+y^{2}$ and $\left\{\begin{array}{l}z=1 \\ z=4\end{array}\right.$ is a horizontal circle at height $\left\{\begin{array}{l}z=1 \\ z=4\end{array}\right.$ with radius $\left\{\begin{array}{l}r=1 \\ r=2\end{array}\right.$
- The intersection of $z=x^{2}+y^{2}$ and $\left\{\begin{array}{l}x=0 \\ y=0\end{array}\right.$ is $\left\{\begin{array}{l}z=y^{2} \\ z=x^{2}\end{array}\right.$, this is a parabola in the $\left\{\begin{array}{l}y z-\text { plane } \\ x z-\text { plane }\end{array}\right.$

3. Cone: $z=\sqrt{x^{2}+y^{2}}$ or $f(x, y)=\sqrt{x^{2}+y^{2}}$

Let us intersect the graph of f with horizontal and vertical planes. For example:

- The intersection of $z=\sqrt{x^{2}+y^{2}}$ and $\left\{\begin{array}{l}z=1 \\ z=2\end{array}\right.$ is a horizontal circle at height $\left\{\begin{array}{l}z=1 \\ z=2\end{array}\right.$ with radius $\left\{\begin{array}{l}r=1 \\ r=2\end{array}\right.$
- The intersection of $z=\sqrt{x^{2}+y^{2}}$ and $\left\{\begin{array}{l}x=0 \\ y=0\end{array}\right.$ is $\left\{\begin{array}{l}z=|y| \\ z=|x|\end{array}\right.$, this is an absolute value function in the $\left\{\begin{array}{l}y z-\text { plane } \\ x z \text { - plane }\end{array}\right.$

4. Saddle surfaces

a) $z=x^{2}-y^{2}$ or $f(x, y)=x^{2}-y^{2}$

Let us intersect the graph of f with the $x z$-plane $(y=0)$ and with the $y z$-plane $(x=0)$.

- The intersection of $z=x^{2}-y^{2}$ and $\left\{\begin{array}{l}x=0 \\ y=0\end{array}\right.$ is $\left\{\begin{array}{l}z=-y^{2} \\ z=x^{2}\end{array}\right.$, this is a(n)
$\left\{\begin{array}{l}\text { downward parabola in the } y z \text { - plane } \\ \text { upward parabola in the } x z \text { - plane }\end{array}\right.$

b) $z=x y$ or $f(x, y)=x y$

Let us intersect the graph of f with vertical planes that intersect the $x y$-plane in the straight lines $y=x$ and $y=-x$.

- The intersection of $z=x y$ and the vertical plane $\left\{\begin{array}{l}y=x \\ y=-x\end{array}\right.$ is $\left\{\begin{array}{l}z=x^{2} \\ z=-x^{2}\end{array}\right.$, this is a(n) $\left\{\begin{array}{l}\text { upward parabola } \\ \text { downward parabola }\end{array}\right.$

5. $z=x^{2}$ and $z=y^{2}$

Intersecting the surface $z=x^{2}$ with planes parallel to the $x z$-plane ($y=0$), the intersection curves are parabolas.

$$
z=x^{2}
$$

Contour lines

The surfaces can also be represented in two dimensions with contour lines. The surface is intersected with horizontal planes and the intersection curves are projected perpendicularly to the $x y$-plane. The contour lines are the projections of the intersection curves, that is, they denote the points of the same height, similarly to the contour lines on a map.

