Calculus 1, Sample Midterm Test 1

1. Let $a_{0}=6$ and $a_{n+1}=7-\frac{10}{a_{n}}$. Prove by induction that $a_{n} \geq 5$ for every n, and that the sequence a_{n} is monotonically decreasing. (8 points)
2. Let $a_{n}=\frac{n \sqrt[3]{n}-2}{n^{3}}$. Find the limit of a_{n} and provide a threshold index N for $\varepsilon=0.01$ (you don't need to find the smallest possible threshold index, just find any). (7 points)
3. Find the limit of the following sequences: $(7+7+7+7$ points $)$
$a_{n}=\sqrt[3]{1-n^{3}}+\sqrt[3]{n^{3}+2 n}$.
$b_{n}=\sqrt[n]{\frac{5^{n}+3 n+n^{2}}{n+2}}$
$c_{n}=\left(\frac{n^{2}+5 n-6}{n^{2}-2 n-2}\right)^{3 n+2}$
$d_{n}=\frac{\sin (n!)}{10^{n}+n^{10}}$
4. Decide whether the following series converge or not: $(7+7+7$ points $)$
a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+\sqrt[n]{n}}$
b) $\sum_{n=1}^{\infty} \frac{10^{n} n^{2}}{n!}$
c) $\sum_{n=1}^{\infty} \frac{n!(2 n)!}{(3 n)!}$
5. For what values of $x \in \mathbb{R}$ does the following series converge: (9 points) $\sum_{n=1}^{\infty} \frac{4^{n+1}}{n+3}(x+2)^{n}$
6. Decide whether the following set is open, closed or neither: (6 points) $\mathbb{Q} \backslash(0,1)$
7. Let $f(x)=\frac{\sin \left(x^{2}+x+a\right)}{x+3}$ if $x \neq-3$, and $f(-3)=b$. Choose the parameters a and b so that the function f be continuous at $x_{0}=-3$. (7 points)
8. Differentiate the following functions: ($7+7$ points)
a; $f(x)=\operatorname{tg}\left(3 x^{2}+1\right) \sin (1 / \sqrt[3]{x})$
b; $g(x)=\cos \left(\frac{x^{2}+3 x}{\sqrt{x^{4}+4}}\right)$
