
24th and 25th lectures

Definite integral

The Riemann integral

Definition. A partition of an interval [a, b] is a finite set P = {x0, x1, ... xn} such that
        a = x0 < x1 < ... < xn-1 < xn = b. 

Definition. Assume that f : [a, b]⟶ is bounded and P = {x0, x1, ... xn} is a partition of [a, b]. Let  
       mk := inf {f (x) : x ∈ [xk-1, xk]}
       Mk := sup {f (x) : x ∈ [xk-1, xk]}

       The lower Darboux sum of f  with respect to P is sP =
k=1

n

mk(xk - xk-1).

       The upper Darboux sum of f  with respect to P is SP =
k=1

n

Mk(xk - xk-1).

       The Riemann sum of f  with respect to P is  σP =
k=1

n

f (ck) (xk - xk-1), where

       ck ∈ [xk-1, xk] is arbitrary. The points ck are called the evaluation points.
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Statement.  sP ≤ σP ≤ SP  for all partitions P.

Proof. It follows from the fact that mk ≤ f (ck) ≤Mk  on each subinterval [xk-1, xk].   

Definition. Let P1 and P2 be partitions of [a, b]. If P2 contains all points of P1 
       and some additional points then P2 is a refinement of P1.



Theorem. If P2 is a refinement of P1 then sP1 ≤ sP2 and SP1 ≤ SP2,
 that is, by refining a partition, the lower Darboux sum cannot 
 decrease and the upper Darboux sum cannot increase.

Proof. Let P2 be the partition that is obtained from P1 = {x0, x1, ..., xn} by adding 
    the point xk-1 < y < xk. We prove sP1 ≤ sP2.
    Let  A = inf {f (x) : x ∈ [xk-1, y]}  and  B = inf {f (x) : x ∈ [y, xk]}.
    Then mk(xk - xk-1) =mk(y - xk-1) +mk(xk - y) ≤ A(y - xk-1) + B(xk - y)
    ⟹ sP2 - sP1 = A(y - xk-1) + B(xk - y) -mk(xk - xk-1) ≥ 0.

    

x0 xk-1 xk xny

  

x0 xk-1 xk xny

Theorem. sP1 ≤ SP2 for any partitions P1 and P2 of [a, b],  that is, 
 any lower Darboux sum is less than or equal to any upper Darboux sum.

Proof. Let P3 = P1 ⋃ P2  ⟹  P3 is a refinement of P1 and P2  ⟹  sP1 ≤ sP3 ≤ SP3 ≤ SP2

Definition. Assume that f : [a, b]⟶ is bounded.

       The lower Darboux integral of f  is 
a

b
f = sup {sP : P is a partition of [a, b]}.

       The upper Darboux integral of f  is 
a

b
f = inf {SP : P is a partition of [a, b]}.

Consequence: 
a

b
f ≤ 

a

b
f

Definition. If f : [a, b]⟶ is bounded and I = 
a

b
f = 

a

b
f  then f  is Riemann integrable on [a, b].

    In this case the Riemann integral of f  on [a, b] is denoted as

    I = 
a

b
f (x)dx  or  I = 

a

b
f .       (f  is called the integrand.)

Notation. R[a, b] denotes the set of those functions that are Riemann integrable on [a, b]

Remark. If f : [a, b]⟶ is not bounded on [a, b] or bounded but 
a

b
f < 

a

b
f  then f  is not

         Riemann integrable on [a, b].          

Example: Let f (x) = c ∈ , 
a

b
cdx = ?

sP =
k=1

n

mk(xk - xk-1) =
k=1

n

c(xk - xk-1) = c(b - a),
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SP =
k=1

n

Mk(xk - xk-1) =
k=1

n

c(xk - xk-1) = c(b - a)  for all partitions P.


a

b
f = sup {sP} = c(b - a) = inf {SP} = 

a

b
f    ⟹  

a

b
cdx = c(b - a)

Example: The Dirichlet function f (x) =
1 if x ∈ [0, 1]⋂
0 if x ∈ [0, 1] \

  is bounded, and for all 

            partitions P of [0, 1],  sP = 0 and SP = 1  

            ⟹  
a

b
f = 0 and 

a

b
f = 1  

            ⟹  f  is not integrable on [0, 1].

Necessary and sufficient conditions for Riemann integrability

Definition. The mesh or norm of a partition is the maximal distance between
          adjacent points in the partition:   ΔP = max

k ∈ {1,...,n}
(xk - xk-1).

Statement. Assume that f : [a, b]⟶ is bounded and (Pn) is a sequence of partitions of [a, b]. 

             If lim
n∞

ΔPn = 0  then lim
n∞

sPn = 
a

b
f  and lim

n∞
SPn = 

a

b
f

Statement. a) If  ∃ 
a

b
f (x)dx  ⟹  for all partition sequences (Pn) for which lim

n∞
ΔPn = 0: 

          lim
n∞

sPn = lim
n∞

SPn = 
a

b
f (x)dx.

               b) If (Pn) is a partition sequence for which lim
n∞

ΔPn = 0  and lim
n∞

sPn = lim
n∞

SPn = I

                     ⟹ ∃ 
a

b
f (x)dx = I.

Definition. Assume that f : [a, b]⟶ is bounded and P = {x0, x1, ... xn} is a partition of [a, b]. 
             Then the oscillation sum of f  related to the partition P is

             OP =
k=1

n

(Mk -mk) (xk - xk-1) = SP - sP.

  

Theorem (Riemann’s criterion for integrability). Assume that f : [a, b]⟶ is bounded. 
     f  is integrable on [a, b]  ⟺  for all ε > 0 there exists a partition P such that OP = SP - sP < ε.

Proof. ⟹ : Assume that f  is integrable and ε > 0. Then there exist partitions P1 and P2 such that

   0 ≤ SP2 - 
a

b
f <

ε

2
  and 0 ≤ 

a

b
f - sP1 <

ε

2
.
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   Let P = P1 ⋃ P2  (P is a common refinement of P1 and P2).  Then sP1 ≤ sP ≤ SP ≤ SP2, so

   0 ≤OP = SP - sP ≤ SP2 - sP1 = SP2 - 
a

b
+ 

a

b
f - sP1 <

ε

2
+
ε

2
= ε

  ⟸ : For any partition P,   sP ≤ 
a

b
f ≤ 

a

b
f ≤ SP, so

   0 ≤ 
a

b
f - 

a

b
f ≤ SP - sP =OP < ε  for all ε > 0  ⟹  

a

b
f = 

a

b
f , that is, f  is integrable.

Remark. Recall that the Riemann sum of f  with respect to the partition P is  

         σP =
k=1

n

f (ck) (xk - xk-1), where the evaluation points ck ∈ [xk-1, xk]  are arbitrary and

         sP ≤ σP ≤ SP for all partitions P.

Theorem. Assume that f : [a, b]⟶ is bounded. Then

 1. ∃ 
a

b
f (x)dx = I  ⟹  for all partition sequences (Pn) for which lim

n∞
ΔPn = 0:

 lim
n∞

σPn = 
a

b
f (x)dx = I (independent of the choice of the evaluation points).

 2. ∃ 
a

b
f (x)dx = I  ⟸  there exists a partition sequence (Pn) for which lim

n∞
ΔPn = 0 

 and ∃ lim
n∞

σPn = I (independent of the choice of the evaluation points).

Remark. The proof of part 1. is obvious, since sPn ≤ σPn ≤ SPn   and  lim
n∞

sPn = lim
n∞

SPn = I.

Remark. It is important that the limit exists independent of the choice of ck ∈ [xk-1, xk] in the
          Riemann sum. For example, assume that f  is the Dirichlet function on [a, b] and
          (Pn) is a sequence of partitions for which lim

n∞
ΔPn = 0.

          If ck is rational: σPn =
k=1

n

1 · (xk - xk-1) = 1 · (b - a)⟶b - a

          If ck is irrational: σPn =
k=1

n

0 · (xk - xk-1) = 0⟶0

          ⟹ the Dirichlet function is not integrable on any interval.

Sufficient conditions for Riemann integrability

Theorem. If f  is monotonic and bounded on [a, b] then f  is Riemann integrable on [a, b].

Proof. Assume that f  is monotonically increasing.
    1) If f (a) = f (b) then f  is constant, so f ∈ R[a, b].
    2) If f (a) < f (b) then we show that for all ε > 0 there exists a partition P such that 
         the oscillation sum OP = SP - sP < ε.
    3) Let P = {x0, x1, ..., xn} be a partition with mesh  

         ΔP = max
k ∈ {1,...,n}

(xk - xk-1) < δ =
ε

f (b) - f (a)
> 0.

    4) Then for the oscillation sum we get that 
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        OP = SP - sP =
k=1

n

(Mk -mk) (xk - xk-1) =
k=1

n

(f (xk) - f (xk-1)) (xk - xk-1) <

        < δ
k=1

n

(f (xk) - f (xk-1)) = δ(f (b) - f (a)) = ε.

Theorem. If f : [a, b]⟶ is continuous then f  is Riemann integrable on [a, b].

Proof. 1) We prove that for all ε > 0 there exists a partition P such that 
          the oscillation sum OP = SP - sP < ε.
    2) f  is continuous on [a, b]  ⟹ f  is bounded and also uniformly continuous on [a, b].

    ⟹  for 
ε

b - a
> 0 there exists δ > 0 such that ∀ x, y ∈ [a, b],

          x - y < δ  ⟹  f (x) - f (y) <
ε

b - a
.

    3) Let P = {x0, x1, ..., xn} be a partition with mesh  ΔP = max
k ∈ {1,...,n}

(xk - xk-1) < δ.

    4) f  is continuous on [xk-1, xk]  ⟹  by the extreme value theorem f  has a 
        minimum for some ck ∈ [xk-1, xk] and a maximum for some dk ∈ [xk-1, xk], 
        let f (ck) =mk,  f (dk) =Mk.
    5) Then obviously dk - ck < δ,  so for the oscillation sum we get that 

         OP = SP - sP =
k=1

n

(Mk -mk) (xk - xk-1) =
k=1

n

(f (dk) - f (ck)) (xk - xk-1) =

         =
k=1

n

f (dk) - f (ck) (xk - xk-1) <
k=1

n ε

b - a
(xk - xk-1) =

         =
ε

b - a


k=1

n

(xk - xk-1) =
ε

b - a
(b - a) = ε.

Theorem. If f : [a, b]⟶ is bounded and continuous except finitely many points then
 f  is Riemann integrable on [a, b].

Proof. 1) We prove it in the case of one point. Let c ∈ [a, b] and assume that f  is continuous on
         [a, b] \ {c}. Let K > 0 be such that f (x) ≤ K for all x ∈ [a, b]. We show that for all ε > 0
         there exists a partition P such that OP < ε.

    2) If c -
ε

8K
> a then let c1 = c -

ε

8K
 and let P1 be a partition of [a, c1] such that OP1 <

ε

4
.

         Such a partition exists since f  is continuous on [a, c1].

         If c -
ε

8K
≤ a then let c1 = a and P1 = {a}.

    3) If c +
ε

8K
< b then let c2 = c +

ε

8K
 and let P2 be a partition of [c2, b] such that OP2 <

ε

4
.

         Such a partition exists since f  is continuous on [c2, b].

         If c +
ε

8K
≥ b then let c2 = b and P2 = {b}.

    4) Then P = P1 ⋃ P2 is a suitable choice.

Remark. If f , g : [a, b]⟶, f  is Riemann integrable and f (x) = g(x) except finitely many points

         in [a, b] then g is Riemann integrable and 
a

b
f = 

a

b
g.
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Newton-Leibniz formula

Theorem (First fundamental theorem of calculus, Newton-Leibniz formula).
If f : [a, b]⟶ is Riemann integrable and F : [a, b]⟶ is an antiderivative of f ,
that is, F ' (x) = f (x) for all x ∈ [a, b], then


a

b
f (x)dx = F(b) - F(a) = [F(x)]a

b

Proof. Let (Pn) be a partition sequence of [a, b] such that lim
n∞

ΔPn = 0.   

    For all k ∈ {1, 2, ..., n}, F is continuous on [xk-1, xk] and differentiable on (xk-1, xk), so 
    by Lagrange’s mean value theorem there exists xk-1 < ck < xk such that

    
F(xk) - F(xk-1)

xk - xk-1
= F ' (ck) = f (ck)  ⟹  F(xk) - F(xk-1) = f (ck) (xk - xk-1)

    ⟹ F(b) - F(a) = (F(x1) - F(x0)) + (F(x2) - F(x1)) + ... + (F(xn) - F(xn-1)) =

        =
k=1

n

(F(xk) - F(xk-1)) =
k=1

n

f (ck) (xk - xk-1) = σPn

    ⟹ F(b) - F(a) = σPn
    Taking the limits of both sides: lim

n∞
(F(b) - F(a)) = lim

n∞
σPn

    The left-hand side is independent of n and since f  is integrable then the limit of the
    right-hand side is the integral of f , so     

    F(b) - F(a) = 
a

b
f (x)dx.

Remark. The geometrical meaning of 
a

b
f  is the signed area under the graph of f  on [a, b].

Remark. Both conditions of the theorem are important as the following examples show.

Examples

Example 1. Let F(x) =
x2 sin

1

x2
if x ≠ 0

0 if x = 0
, then F ' (x) = f (x) =

2 x sin
1

x2
-

2

x
cos

1

x2
if x ≠ 0

0 if x = 0
.

    f  has an antiderivative, however,  
0

1
f (x)dx doesn’t exist, since f  is not bounded.

Example 1. 
0

5
sign x2 - 5 x + 6dx exists, since f  is continuous except 2 points. However, 

     by Darboux’s theorem, f  doesn’t have an antiderivative, since f  has jump discontinuities.

Properties of Riemann integrable functions

Definition. If f ∈ R[a, b]  
b

a
f (x)dx := -

a

b
f (x)dx,   

a

a
f (x)dx := 0

Theorem. Let f , g ∈ R[a, b] and λ ∈ . Then

 (1) λ f , f + g, f - g ∈ R[a, b]  and  
a

b
λ f = λ 

a

b
f ,  

a

b
(f ± g) = 

a

b
f ± 

a

b
g

 (2) [α, β]⊂ [a, b] ⟹ f ∈ R[α, β]
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 (3) a < c < b  ⟹  
a

b
f = 

a

c
f + 

c

b
f

 (4) f (x) ≤ g(x) ∀ x ∈ [a, b]   ⟹   
a

b
f (x)dx ≤ 

a

b
g(x)dx

 (5) f ∈ R[a, b]   ⟹   
a

b
f (x)dx ≤ 

a

b
f (x) dx

 (6) inf
a,b

f ≤
1

b - a

a

b
f ≤ sup

a,b
f

Integration by parts

Theorem. If f  and g are continuously differentiable on [a, b] then  
a

b
f ' g = [f g]a

b - 
a

b
f g '

Integration by substitution

Theorem. If  g is continuously differentiable, strictly monotonic,  [a, b]⊂ Dg and 

 f  is continuous on [a, b]  then  
a

b
f (x)dx = 

g-1(a)

g-1(b)
f (g(t)) g ' (t)dt.

Example. I = 
0

ln2
ex - 1 dx = ?

Solution. Substitution:    t = ex - 1   ⟹  x = x(t) = lnt2 + 1

                                                   x ' (t) =
dx

dt
=

1

t2 + 1
·2 t  ⟹  dx =

2 t

t2 + 1
dt

The bounds will change: x1 = 0  ⟹  t1 = e0 - 1 = 0

                                                    x2 = ln 2  ⟹  t2 = eln2 - 1 = 2 - 1 = 1                                                              
                                                              

 I = ∫0
ln2 ex - 1 dx = ∫

t1

t2
t ·

2 t

t2 + 1
dt = ∫

0

1 2 t2

t2 + 1
dt = ∫

0

1 2 t2 + 1 - 2

t2 + 1
dt = ∫

0

1
2 -

2

t2 + 1
dt =      

 = [2 t - 2 arctg t]0
1 = (2 ·1 - 2 arctg1) - (0 - 0) = 2 -

π

2
                                                                      

Lebesgue’s theorem

Definition. We say that the set A⊂ has Lebesgue measure 0 if for all ε > 0 there exist

   sequences (xn) and (yn) such that xn ≤ yn,  A⊂
n=1

∞

[xn, yn]  and  
n=1

∞

(yn - xn) < ε.

   (That is, A can be covered with countably many intervals such that their total
   length is less than ε.)

Examples. 1) Any countable set of  has Lebesgue measure 0, for example ,  or .

   2) The Cantor set is defined in the following way. Let C0 = [0, 1].
             C1 is obtained from C0 by deleting the open middle third from C0, that is, 
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             C1 = 0,
1

3
 ⋃ 

2

3
, 1.

             C2 is obtained from C1 by deleting the open middle thirds from C1, that is, 

             C2 =0,
1

9
 ⋃ 

2

9
,

1

3
 ⋃ 

2

3
,

7

9
 ⋃ 

8

9
, 1

             Continuing this process, Cn+1 is obtained from Cn by deleting the open middle thirds 
             of each of these intervals. The Cantor set is C = 

n ∈

Cn.

             It can proved that the Cantor set is uncountable but has Lebesgue measure 0.
             

Theorem (Lebesgue). The function f : [a, b]⟶ is Riemann integrable if and only if it is bounded
and the set of discontinuities of f  has Lebesgue measure 0.

Remark. If f : [a, b]⟶ is monotonic then f  has at most countably many discontinuities (and they are
         jump discontinuities),  so by Lebesgue’s theorem f  is Riemann integrable.
         

Example*. The Riemann function is defined as 

f : ⟶, f (x) =
0 if x ∈  \
1

q
if x =

p

q
where p ∈, andq ∈+ are coprimes

Prove that
a) lim

xa
f (x) = 0  ∀ a ∈ ;

a) f  is continuous at all irrational numbers;
b) f  is discontinuous at all rational numbers.

Solution. If q ∈+ is fixed then the set  ·
1

q
= 

k

q
: k ∈ does not have any real limit points.

Therefore a finite union of such sets, An = 
p

q
: p ∈, q ∈ {1, 2, ..., n} does not have any 

limit points either. If x ∈  \ An the f (x) <
1

n
, so for all x0 ∈ , lim

xx0

f (x) = 0.

⟹  f  is continuous at all irrational points and has a removable discontinuity
at all rational points.
The Riemann function is bounded and the set of discontinuities is countable, so it has 

Lebesgue measure 0 ⟹  f  is Riemann integrable and ∫a
bf (x)dx = 0.

The integral function

Definition. Assume that f  is Riemann integrable on [a, b]. Then the function 

   F(x) = 
a

x
f (t)dt,  x ∈ [a, b]   

   
   is called the integral function of f .    
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Theorem (Second fundamental theorem of calculus).

Assume that f  is Riemann integrable on [a, b] and F(x) = 
a

x
f (t)dt,  x ∈ [a, b]. Then

1. F is Lipschitz continuous on [a, b].
2. If f  is continuous at x0 ∈ [a, b] then F is differentiable at x0 and F ' (x0) = f (x0).

Proof. 1. Let K = sup
a,b

f (x) . If K = 0  then f = 0 so F = 0 is Lipschitz continuous. 

         If K ≠ 0 then 0 < K ∈ . Let ε > 0 and δ(ε) =
ε

K
. If x, y ∈ [a, b] such that x - y < δ then

         F(x) - F(y) = 
a

x
f (t)dt - 

a

y
f (t)dt = 

y

x
f (t)dt ≤ 

y

x
f (t) dt ≤ 

y

x
K dt ≤

         ≤ K x - y < K δ = ε   ⟹    F is Lipschitz continuous.
     

     2.  F ' (x0) = lim
xx0

F(x) - F(x0)

x - x0
= f (x0)  if for all ε > 0 there exists δ > 0 such that 

     
F(x) - F(x0)

x - x0
- f (x0) < ε  if  0 < x - x0 < δ.

     Let ε > 0. Since f  is continuous at x0 then ∃ δ > 0 such that f (x) - f (x0) < ε if x - x0 < δ.
     Then with this δ

     
F(x) - F(x0)

x - x0
- f (x0) =

F(x) - F(x0) - f (x0) (x - x0)

x - x0
=


x0

x
f (t)dt - 

x0

x
f (x0)dt

x - x0
=

     =

x0

x
(f (t) - f (x0))dt

x - x0
≤


x0

x
f (t) - f (x0) dt

x - x0
≤


x0

x
ε dt

x - x0
=

ε(x - x0)

x - x0
= ε.

Consequence. 

1. If f  is continuous on [a, b] and F(x) = 
a

x
f (t)dt, x ∈ [a, b] then F ' (x) = f (x)  ∀ x ∈ [a, b].

2. Every continuous function has an antiderivative. 

Examples

Example 1. Calculate the derivatives of the following functions: 

   a) F(x) = 
0

x
sin t2 dt, x ≠ 0 b) G(x) = 

0

x3

sin t2 dt c) H(x) = 
x2

x3

sin t2 dt

Solution. a) F ' (x) = sin x2, since f (t) = sint2 is continuous.

           b) G(x) = Fx3   ⟹  G ' (x) = F ' x3 ·3 x2 = sinx3
2
 ·3 x2 = sinx6 ·3 x2

           c) H(x) = 
0

x3

sin t2 dt - 
0

x2

sin t2 dt = Fx3 - Fx2  ⟹  H ' (x) = sinx6 ·3 x2 - sinx4 ·2 x

Example 2.  lim
x0

∫0
xarctan t2 dt

x2
= ?

Solution.  The limit has the form 0
0

 and the numerator is differentiable since 

  f (t) = arctan t2 is continuous
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  ⟹  lim
x0

∫0
xarctan t2 dt

x2
=
L'H lim

x0

arctan x2

2 x
=
L'H lim

x0

1
1+x4 ·2 x

2
= 0

Improper integrals

Case 1: The interval is not bounded

Definition. Let a ∈  and assume that f  is Riemann integrable on [a, b] for all b ≥ a.

    If the limit lim
b∞


a

b
f (x)dx ∈  exists then we say that f  is improperly integrable

    or f  has an improper integral on [a, ∞) and the value of the integral is
    

    
a

∞

f (x)dx = lim
b∞


a

b
f (x)dx.

    
   In this case we also say that the improper integral converges.

   If the limit lim
b∞


a

b
f (x)dx doesn’t exist or if lim

b∞

a

b
f (x)dx =∞ or -∞ then we 

   say that f  is not improperly integrable on [a, ∞) or the improper integral diverges.

Definition. Similarly, let b ∈  and assume that f  is Riemann integrable on [a, b] for all a ≤ b.
    Then     

    
-∞

b
f (x)dx = lim

a -∞

a

b
f (x)dx.

    
   If the limit exists and is finite then the improper integral converges.
   If the limit doesn’t exist or exists but is ∞ or -∞ then the improper integral diverges.

Examples

Exercise 1. I = 
2

∞ 6

x2 + x - 2
dx = ?

Solution. Using partial fraction decomposition:
6

x2 + x - 2
=

6

(x - 1) (x + 2)
=

A

x - 1
+

B

x + 2
  ⟹  6 = A(x + 2) + B(x - 1)

If x = -2:  B = -2
If x = 1:     A = 2

I = lim
b∞


2

b 6

x2 + x - 2
dx = lim

b∞


2

b 2

x - 1
-

2

x + 2
dx =

= 2 lim
b∞

[ln(x - 1) - ln(x + 2)]2
b = 2 lim

b∞
(ln(b - 1) - ln(b + 2) - (ln 1 - ln 4)) =

= 2 lim
b∞

ln
b - 1

b + 2
+ ln 4 = 2 · (0 + ln 4) = 2 ln 4

(the improper integral converges)
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Exercise 2. I = 
-∞

-1 1

(x - 2) ln(2 - x)
dx = ?

Solution. We use that f ' fα =
fα+1

α + 1
+c, α ≠ -1:

I = lim
a -∞


a

-1 -1

2 - x
(ln(2 - x))-

1
2 dx =        

= lim
a -∞


(ln(2 - x))

1

2

1
2


a

-1
= 2 lim

a -∞
 ln 3 - ln(2 - a)  = -∞

(the improper integral diverges)

Important remark

Definition. Let a, b ∈ . The improper integral I = 
a

b
f (x)dx is said to be convergent if for all c ∈ (a, b)

   the improper integrals
   

   I1 = 
a

c
f (x)dx  and  I2 = 

c

b
f (x)dx

   
   are both convergent. 
   The improper integral I is divergent if at least one of I1 and I2 is divergent.   

Definition. 
-∞

∞

f (x)dx = lim
a -∞

lim
b∞


a

b
f (x)dx if the double limit exists and is finite.     

Remark. Because of the previous definition 
-∞

∞

f (x)dx ≠ lim
a∞


-a

a
f (x)dx.

          For example, 
-∞

∞

x dx is divergent, since 
-∞

0
x dx = -∞ and 

0

∞

x dx =∞.

          However, lim
a∞


-a

a
x dx = lim

a∞

x2

2

-a

a
= lim
a∞

a2

2
-
a2

2
= 0.

Case 2: The function is not bounded

Definition. Assume that f  is not bounded at a but f  is Riemann integrable on [A, b]
   for all a < A ≤ b.
   Then     

    
a

b
f (x)dx = lim

δ+0

a+δ

b
f (x)dx   or   

a

b
f (x)dx = lim

Aa+0

A

b
f (x)dx

Definition. Assume that f  is not bounded at b but f  is Riemann integrable on [a, B]
   for all a ≤ B < b.
   Then     

    
a

b
f (x)dx = lim

δ+0

a

b-δ
f (x)dx   or   

a

b
f (x)dx = lim

Bb-0

a

B
f (x)dx
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Definition. If f  is not bounded at c ∈ (a, b) then 

    
a

b
f (x)dx = 

a

c
f (x)dx + 

c

b
f (x)dx = lim

δ1+0

a

c-δ1

f (x)dx + lim
δ2+0


c+δ2

b
f (x)dx

Examples

Exercise 1. I = 
5

7 1

(x - 5)23
dx = ?

Solution. I = lim
δ+0


5+δ

7
(x - 5)-

2
3 dx = lim

δ+0

(x - 5)

1

3

1
3


5+δ

7
= 3 lim

δ+0
 2

3
- δ

3
 = 3 2

3
.

Exercise 2. I = 
0

1 arcsin x

1 - x2
dx = ?

Solution. We use that f ' fα =
fα+1

α + 1
+c, α ≠ -1:

I = lim
δ+0


0

1-δ 1

1 - x2
(arcsin x)

1
2 dx = lim

δ+0

(arcsin x)

3

2

3
2


0

1-δ
=

2

3
lim
δ+0

(arcsin (1-δ))
3

2 - 0 =
2

3

π

2

3

2

Improper integrals of f (x) = 1
xα

Statement. The improper integral 
1

∞ 1

xα
dx is convergent if α > 1 and divergent if α ≤ 1.

Proof.

If α = 1, then 
1

∞ 1

xα
 x = lim

A∞


1

A 1

x
 x = lim

A∞
[ln x]1

A = lim
A∞

(ln A - ln 1) =∞

If α ≠ 1, then 


1

∞ 1

xα
 x = lim

A∞


1

A
x-α  x = lim

A∞

x-α+1

-α + 1


1

A
= lim
A∞

A-α+1

-α + 1
-

1

-α + 1
=

0 -
1

-α + 1
=

1

α - 1
, if α > 1

∞, if α < 1

Statement. The improper integral 
0

1 1

xα
dx is convergent if α < 1 and divergent if α ≥ 1.

Proof.

If α = 1, then 
0

1 1

xα
 x = lim

ε0+0


0+ε

1 1

x
 x = lim

ε 0+0
[ln x]ε

1 = lim
ε 0+0

(ln 1 - ln ε) = 0 - (-∞) =∞

If α ≠ 1, then 
0

1 1

xα
 x = lim

ε0+0


0+ε

1
x-α  x = lim

ε0+0

x-α+1

-α + 1

ε

1
= lim
ε0+0

1

-α + 1
-
ε-α+1

-α + 1
=

=

∞, if α > 1
1

-α + 1
- 0 =

1

1 - α
, if α < 1
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∫1
∞ 1

x
dx=∞

∫1
∞ 1

x2
dx=1

∫1
∞ 1

x
dx=∞

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

    

∫0
1 1

x
dx=∞

∫0
1 1

x2
dx=∞

∫0
1 1

x
dx=2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Comparison test for improper integrals

Theorem. Assume that 0 ≤ g(x) ≤ f (x) for all x ∈ [a, ∞).

1. If 
a

∞

f (x)dx converges then 
a

∞

g(x)dx  also converges.

1. If 
a

∞

g(x)dx diverges then 
a

∞

f (x)dx  also diverges.

Remark. Similar statements can be stated for improper integrals defined on intervals (-∞, b] 
         and [a, b].

Remark. 1. If x ≥ 1  then   
1

x
≤

1

x
. Since 

1

∞ 1

x
dx diverges then 

1

∞ 1

x
dx also diverges.

         2. If 0 < x ≤ 1 then 
1

x
≤

1

x2
. Since 

0

1 1

x
dx diverges then 

0

1 1

x2
dx also diverges.

Applications

Area

Example. Calculate the area of the unit circle.

Solution. The equation of the circle with radius r = 1 centered at the origin is

x2 + y2 = 1  ⟹  y2 = 1 - x2     ⟹  y = ± 1 - x2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1 - x2

- 1 - x2

The area of the unit circle is     A = 2 
-1

1
1 - x2 dx
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Substitution:  x = x(t) = sin t  ⟹  t = arcsin x

                                   x ' (t) =
dx

dt
= cos t  ⟹  dx = cos t dt

The bounds will change: x1 = -1  ⟹  t1 = arcsin(-1) = -
π

2

x2 = 1  ⟹  t2 = arcsin 1 =
π

2

⟹ A = 2 
-1

1
1 - x2 dx = 

-π /2

π /2
2 1 - (sin t)2 cos t dt = 2 

-π /2

π /2
cos t ·cos t dt

          = 
-π /2

π /2
2 cos2 t dt = 

-π /2

π /2
(1 + cos 2 t) dt = t +

sin 2 t

2

-π /2

π /2

          =
π

2
+

sinπ

2
- -

π

2
+

sin (-π)

2
=
π

2
+ 0 - -

π

2
+ 0 =π                     

Arc length

Theorem. Assume that f : [a, b]⟶ is continuously differentiable. Then the arc length of the 

 graph of f  is  L = 
a

b
1 + (f ' (x))2 dx.

Remark. Let a = x0 < x1 < x2 < ... < xn = b be a partition. If f  is differentiable then by Lagrange’s 
mean value theorem there exists ck ∈ (xk-1, xk) such that m = f ' (ck), where m is the slope of 
the secant line connecting the points (xk-1, f (xk-1)) and  (xk, f (xk)).

So the arc length can be approximated by the sum 
k=1

n

1 + (f ' (ck))2 (xk - xk-1), which is

the Riemann sum of the function 1 + (f ' (x))2 . 

If f  is continuously differentiable then the arc length of the graph of f  is 

L = 
a

b
1 + (f ' (x))2 dx.

a xk-1 xk b

f(x)

 

xk-xk-1

m(xk-xk-1)

1+m2 (xk-xk-1)

Example. Calculate the arc length of the unit circle.

Solution. Let f (x) = 1 - x2  if x ∈ [-1, 1].

f ' (x) =
1

2
1 - x2

-
1
2 (-2 x) =

x

1 - x2
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⟹  1 + (f ' (x))2 = 1 +
x2

1 - x2
=

1

1 - x2
=

1

1 - x2

The arc length of the unit circle is

L = 2 
-1

1
1 + (f ' (x))2 dx = 2 

-1

1 1

1 - x2
dx = 2 lim

a-1+
lim
b1-


a

b 1

1 - x2
dx =

= 2 lim
a-1+

lim
b1-

[arcsin x]a
b = 2 lim

a-1+
lim
b1-

(arcsin b - arcsina) =

= 2 (arcsin 1 - arcsin (-1)) = 2
π

2
- -

π

2
= 2π

Volume of solids of revolutions

Theorem. Assume that f : [a, b]⟶ is continuous and nonnegative and the graph of f  is rotated 

 about the x axis. Then the volume of this solid of revolution is  V = π 
a

b
f 2(x)dx.

Remark. If a = x0 < x1 < x2 < ... < xn = b is a partition then the volume can be approximated by the 

          sum 
k=1

n

(xk - xk-1)π f 2(ck) where ck ∈ [xk-1, xk] is arbitrary. 

         (Geometrically it means that the volume can be approximated by the sum of volumes of 
         cylinders.)
         This is the Riemann sum of the function π f 2(x), so if f  is continuous then the volume is 

         V = π 
a

b
f 2(x)dx.

x0=a b=xnx1 x2c2

f(x)

Surface area of solids of revolutions

Theorem. Assume that f : [a, b]⟶ is continuously differentiable and nonnegative and the graph 
           of f  is rotated about the x axis. Then the surface area of this solid of revolution is  

           A = 2π 
a

b
f (x) 1 + (f ' (x))2 dx.

Remark. If a = x0 < x1 < x2 < ... < xn = b is a partition then the surface area of the solid of revolution 
         can be approximated by the sum
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k=1

n

π(f (xk-1) + f (xk)) 1 + (f ' (ck))2 (xk - xk-1)

         where ck ∈ [xk-1, xk] exists by the Lagrange intermediate value theorem if f  is differentiable. 
         (Geometrically it means that the surface area can be approximated by the sum of lateral 
         surfaces of truncated cones.)

         If f  is continuously differentiable then f (xk-1) + f (xk) ≈ 2 f (ck), so the above sum will be the 

         Riemann sum of the function 2π f (x) 1 + (f ' (x))2 . Therefore if f  is continuously 

         differentiable then the surface area is A = 2π 
a

b
f (x) 1 + (f ' (x))2 dx.

x0=a x1 x2 b=xn

f(x)

Exercise

Let f (x) = r2 - x2 , -r ≤ x ≤ r. Rotating the graph of f  about the x axis, we get a sphere 
with radius r. Calculate the volume and surface area of the sphere. 

Solution: 1. The volume can be calculated as  V = π 
a

b
f 2(x)dx

The integrand is   (f (x))2 = r2 - x2

The volume is  V =π ∫-r
r
r2 - x2  x =πr2 x -

x3

3

-r

r
=

=π r3 -
r3

3
- -r3 +

r3

3
=

4 r3 π

3

2. The surface are can be calculated as A = 2π 
a

b
f (x) 1 + (f ' (x))2 dx

The derivative of f  is   f ' (x) = r2 - x2
1
2  ' =

1

2
r2 - x2

-
1
2 · (-2 x) = -

x

r2 - x2

⟹  1 + (f ' (x))2 = 1 +
x2

r2 - x2
=
r2 - x2 + x2

r2 - x2
=

r2

r2 - x2

The integrand is   f (x) 1 + (f ' (x))2 = r2 - x2 ·
r2

r2 - x2
= r

The surface area is   A = 2π 
-r

r
r  x = 2π · [r x]-r

r = 2πr2 - -r2 = 4 r2 π
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Integral test
Theorem. Assume that f : [1, ∞)⟶ be a positive valued, monotonically decreasing function 

 and let f (k) = ak > 0.

1. If 
1

∞

f (x)dx is convergent  ⟹   
k=1

∞

ak is convergent

2. If 
1

∞

f (x)dx is divergent  ⟹   
k=1

∞

ak is divergent

Remark. The equivalence is also true, that is, the integral 
1

∞

f (x)dx and the series 
k=1

∞

ak are 

both convergent or both divergent.

Proof. 1. Consider Figure a). Since the sum of the areas of the inscribed rectangles is less than or 
         equal to the area under the graph of f  then  

         a2 + a3 + ... + an ≤ 
1

n
f (x)dx ≤ lim

n∞


1

n
f (x)dx = 

1

∞

f (x)dx ∈ .

        Since ak > 0 and 
k=2

n

ak is bounded   ⟹   
k=2

∞

ak is convergent   ⟹   
k=1

∞

ak is convergent.

1 2 3 n-1 n

a2

a3

a)

y=f(x)

1 2 3 n-1 n

a1

a2

b)

y=f(x)

      2. Consider Figure b). Since the sum of the areas of the circumscribed rectangles is 
 greater than or equal to the area under the graph of f  then  


1

n
f (x)dx ≤ a1 + a2 + ... + an-1 = sn-1

Since lim
n∞


1

n
f (x)dx =∞  ⟹   lim

n∞
sn-1 =∞   ⟹  

k=1

∞

ak is divergent.
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Error estimation

Theorem: Let f : [1, ∞)⟶ be a positive valued, monotonically decreasing function, let f (k) = ak > 0 

and suppose that  
1

∞

f (x)dx is convergent. Let sn =
k=1

n

ak and s =
k=1

∞

ak.

Then the error for the approximation s ≈ sn is      

0 < E = s - sn = 

k=n+1

∞

ak ≤ 
n

∞

f (x)dx.

Proof: Since an+1 + an+2 + ... + am ≤ 
n

m
f (x)dx then

    0 < E = s - sn = lim
m∞



k=n+1

m

ak ≤ lim
m∞


n

m
f (x)dx =

n

∞

f (x)dx.

The convergence of the series 
n=1

∞ 1

nα

Theorem: 
n=1

∞ 1

nα
 is convergent if α > 1 and divergent otherwise.

Proof: If α < 0 then lim
n∞

1

nα
= lim
n∞

n-α = lim
n∞

n α =∞   and

    if α = 0 then lim
n∞

1

nα
= 1, so in these cases the series is divergent by the nth term test.

    If α > 0 then let f (x) =
1

xα
, x ≥ 1. This function is positive valued, monotonic decreasing 

    and f (n) =
1

nα
= an > 0. 

    Thus, we can apply the integral test to investigate the convergence of 
n=1

∞

an.

    We already proved that 
1

∞ 1

xα
dx is convergent if α > 1, therefore the series

    
n=1

∞ 1

nα
 is also convergent if α > 1. 

    The improper integral is divergent if 0 < α ≤ 1, so in this case the series is also divergent.

Examples

Exercise. Decide whether the following series are convergent or divergent.

a) 
n=3

∞ 1

n ln n
         b) 

n=3

∞ 1

n (ln n)2

Solution. 

a) Let f (x) =
1

x ln x
, x > 3

     Then f  is positive valued and monotonically decreasing on the interval [3, ∞)
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     and f (n) =
1

n ln n
> 0       ⟹  the integral test can be applied:

     
3

∞ 1

x ln x
dx = lim

A∞


3

A
1
x

ln x
dx = lim

A∞
[ln(ln x)]3

A = lim
A∞

(ln(ln A) - ln(ln 3)) =∞

     Since the improper integral is divergent then the series 
n=3

∞ 1

n ln n
 is also divergent

     by the integral test.    
     

b) Let f (x) =
1

x (ln x)2
, x > 3

     Then f  is positive valued and monotonically decreasing on the interval [3, ∞)

     and f (n) =
1

n (ln n)2
> 0       ⟹  the integral test can be applied:

     
3

∞ 1

x (ln x)2
dx = lim

A∞


3

A 1

x
(ln x)-2 dx = lim

A∞
-

1

ln x


3

A
= lim
A∞

-
1

ln A
+

1

ln 3
= 0 +

1

ln 3
=

1

ln 3

     Since the improper integral is convergent then the series 
n=3

∞ 1

n (ln n)2
 is also convergent

     by the integral test.    
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