24th and 25th lectures

Definite integral

The Riemann integral

Definition. A partition of an interval [a, b] is a finite set P = {xq, X1, ... X,} such that
A=Xg<X1<..<Xp1<Xp=b.
Definition. Assume that f : [0, b]—R is bounded and P ={xy, X1, ... X5} is a partition of [, b]. Let
my = inf{f(x) : x € [x4_1, X[}
My :=sup {f(x) : x € [X¢_1, xu]}

n
The lower Darboux sum of f with respectto Pis sp = ka(xk - X_1)-
k=1

n
The upper Darboux sum of f with respectto Pis Sp = ZMk(xk - Xk-1)-
k=1

n
The Riemann sum of f with respectto Pis gp= Zf(ck) (Xk = Xx_1), where
k=1
Cx € [Xk-1, Xx] is arbitrary. The points ¢, are called the evaluation points.
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Statement. sp < gp < Sp for all partitions P.

Proof. It follows from the fact that m, < f(cx) < M, on each subinterval [x;_;, Xk

Definition. Let P, and P, be partitions of [a, b]. If P, contains all points of P,
and some additional points then P, is a refinement of P;.
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Theorem. If P, is a refinement of P; then sp, <sp, and Sp, < Sp,,
that is, by refining a partition, the lower Darboux sum cannot
decrease and the upper Darboux sum cannot increase.

Proof. Let P, be the partition that is obtained from P, = {xo, X1, ..., x,} by adding
the point x,_; <y < x4. We prove sp, <sp,.
Let A=inf{f(x): xe[xc1, ¥]} and B=inf{f(x): x e[y, x]}.
Then my(xy = Xk-1) = My(y = Xk-1) + Mi(Xk = ¥) S A(Y = Xk-1) + B(Xk = )
= Sp, = Sp, = A(Y = Xk-1) + BXk = ¥) = My (Xk = X-1) 2 0.
A A

P
»

P
»

Xo Xe-1 Y X Xp Xo Xe-1Y Xk Xp

Theorem. sp, < Sp, for any partitions P; and P, of [a, b], thatis,
any lower Darboux sum is less than or equal to any upper Darboux sum.

Proof. Let P; =P, UP, = P;isarefinementof Py and P, = sp, <sp, <Sp, < Sp,
Definition. Assume that f : [a, b]— R is bounded.

b
The lower Darboux integral of f is J f =sup{sp: Pis a partition of [a, b]}.

b
The upper Darbouxintegraloffisjf:inf{Sp:Pisapartition of [a, b]}.
b (b
Consequence: j fsjf

b (b
Definition. If f : [a, b]— R is bounded and / = f f= j f then f is Riemann integrable on [q, b].

In this case the Riemann integral of f on [a, b] is denoted as
b b
= J f(x)dx or I= j f.  (fis called the integrand.)
Notation. R[a, b] denotes the set of those functions that are Riemann integrable on [a, b]
b (b
Remark. If f : [a, b]—Ris not bounded on [a, b] or bounded but j f< J f then fisnot
Riemann integrable on [a, b].

Example: Let f(x)=ceR, fc dx=?

Sp= ka(Xk - Xj-1) = ZC(Xk - X-1) = (b -a),

k=1 k=1
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Sp= ZMk(xk - Xj_1) = Zc(xk - X4_1) = c(b - a) for all partitions P.
k=1 k=1

b b b
ff=sup{sp}=c(b—a)=inf{Sp}zJf = fcdx:c(b—a)

1 if 1
Example: The Dirichlet function f(x) ={ 0 :fi:g, 11 Cg is bounded, and for all

partitions Pof [0, 1], sp=0and Sp=1
b b
= Jf:Oandezl
Ja_ a

= fisnotintegrableon [0, 1].

Necessary and sufficient conditions for Riemann integrability

Definition. The mesh or norm of a partition is the maximal distance between
adjacent points in the partition: AP= max (xx - Xx_1)-
ke{l,...,n}

,,,,,

Statement. Assume that f : [a, b]— R is bounded and (P,) is a sequence of partitions of [a, b].

If imAP,=0 then limspn- fand lim Sp, -jf

N—oo N—oo N—oo

b
Statement. a) If 3 J f(x) dx = for all partition sequences (P,) for which limA P, = 0:
a N—co

b
im sp, = im, _Jf(x)dx.

N—oo

b) If (P,) is a partition sequence for which limA P, =0 and limsp, = l|m Sp =/

N—co N—oco

=3 ff(x)dx:l.

Definition. Assume that f : [a, b]—R is bounded and P ={xy, x1, ... X5} is a partition of [a, b].
Then the oscillation sum of f related to the partition Pis

n
Op= Z(Mk = M) (Xk = Xk-1) = Sp = Sp.
k=1
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Theorem (Riemann’s criterion for integrability). Assume that f : [a, b]— R is bounded.
fisintegrable on [a, b] < forall £ > 0 there exists a partition P such that Op = Sp—sp< €.

Proof. = : Assume that f is integrable and € > 0. Then there exist partitions P; and P, such that

€ b £
OSSPZ—J;f<E andOst—spl<£.
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LetP=P; UP, (Pisacommon refinement of P; and P;). Then sp, <sp<Sp<Sp,, 50

b b E €
OSOP=SP—SPSSPZ—SPI=(SPZ—J +(jf—$pl)<5+5=£
a =g

)
< For any partition P, SPSJfSJfSSP,SO
ZJa_ a

b b R b
OSJf—stSP—sp=Op<£forall£>0 = Jf=jf,thatis,fisintegrable.

Remark. Recall that the Riemann sum of f with respect to the partition Pis

n
Op= Zf(ck) (Xx = Xx-1), where the evaluation points ¢, € [x,_1, xx] are arbitrary and
k=1

sp < gp < Sp for all partitions P.

Theorem. Assume that f : [a, b]— R is bounded. Then

b
1.3 J f(x)dx =/ = for all partition sequences (P,) for which limA P, = 0:

N—oco

b
limop = J f(x) dx =/ (independent of the choice of the evaluation points).

N—oo

b
2.3 J f(x)dx =/ < there exists a partition sequence (P,) for which imAP,=0
a

N—oco

and 3 lim gp, =/ (independent of the choice of the evaluation points).

N—oo

Remark. The proof of part 1. is obvious, since sp, <gp <Sp, and limsp =1limSp =1.
N—>co

N—>c0

Remark. It is important that the limit exists independent of the choice of ¢, € [x,_1, xx] in the
Riemann sum. For example, assume that f is the Dirichlet function on [a, b] and
(P,) is a sequence of partitions for which limA P, =0.

N—oco

If ¢y is rational: gp, = > 1+(x = X41) =1:(b-a)—b-a
k=1

n
If ¢ isirrational: gp, = > 0+ (Xy - Xj-1) = 0—0
k=1
= the Dirichlet function is not integrable on any interval.

Sufficient conditions for Riemann integrability

Theorem. If f is monotonic and bounded on [a, b] then f is Riemann integrable on [a, b].

Proof. Assume that f is monotonically increasing.
1) If f(a) = f(b) then f is constant, so f e R[a, b].
2) If f(a) < f(b) then we show that for all € > 0 there exists a partition P such that
the oscillation sum Op=Sp - sp < €.
3) Let P ={xp, X1, ..., Xo} be a partition with mesh

AP= max (Xy—=Xy_1)<6=—>0
o (i =Xi-a) f(b) - f(a)

4) Then for the oscillation sum we get that
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n

Op=Sp-sp= Z(Mk = my) (Xi = Xj-1) = Z(f(xk) = F(Xk-1)) (Xpc = Xk-1) <
k=1 k=1

<6 ) (fOu) = f(xn)) = 6(F(b) - f(a)) = &.
k=1

Theorem. If f : [a, b]— R is continuous then f is Riemann integrable on [a, b].

Proof. 1) We prove that for all € > 0 there exists a partition P such that
the oscillation sum Op=Sp - sp < €.
2) f is continuous on [a, b] = f is bounded and also uniformly continuous on [a, b].

= for p >0 there exists 6 >0 such thatV x, y €[a, b],
-a
&
| x-y| <6 = | f(x)—f(y)l <—.
b-a
3) Let P ={xp, X1, ..., X»} be a partition with mesh AP= max (X, — Xx_1) < 0.

kefl,...n}
4) f is continuous on [x_;, x,] = by the extreme value theorem f has a
minimum for some ¢, € [x_1, xx] and a maximum for some dj € [x,_1, Xk],
let f(cy) = my, f(dy) =M.

5) Then obviously | dx-cx | <6, so for the oscillation sum we get that
n

Op=Sp-sp= Z(Mk = M) (X = Xie-1) = Z(f(dk) = f(ck) (X = Xk-1) =

k=1 k=1

n n £
= | fd - (e | (e=x102) < ) — (= x02) =
k=1 icib-a
£ ”( ) £ b
=— ) X =X1)=—— (b-0a)=¢.
b—a; Kk = Xk-1 b—a( )

Theorem. If f : [a, b]— R is bounded and continuous except finitely many points then
f is Riemann integrable on [a, b].

Proof. 1) We prove it in the case of one point. Let c € [a, b] and assume that f is continuous on
[a, b]\{c}. Let K> 0 be such that | f(x) | <K forall x €[a, b]. We show that forall e>0
there exists a partition P such that Op < €.

& & &
2) If c- — >athenletc; =c - — and let P, be a partition of [a, ¢;] such that Op, < —.
8K 8K 4

Such a partition exists since f is continuous on [a, ¢1].

&
Ifc—— <athenletc; =aand P, ={a}.
8K

& & &
3)Ifc+ — <bthenletc, =c+— and let P, be a partition of [¢,, b] such that Op, < —.
8K 8K 4

Such a partition exists since f is continuous on [c,, b].

&
If c+ — = bthenletc, =band P, ={b}.
8K
4) Then P=P; U P, is a suitable choice.

Remark. Iff, g :[a, b]—R, f is Riemann integrable and f(x) = g(x) except finitely many points

b b
in [a, b] then g is Riemann integrable and j f= J g.
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Newton-Leibniz formula

Theorem (First fundamental theorem of calculus, Newton-Leibniz formula).
Iff : [a, bl— R is Riemann integrable and F : [a, b]— R is an antiderivative of f,
thatis, F' (x) = f(x) for all x e [a, b], then

f f(x) dx = F(b) - F(a) = [F(x)I5

Proof. Let (P,) be a partition sequence of [a, b] such that imA P, =0.

N—>c0

Forallke{l, 2, ..., n}, F is continuous on [x,_;, X,] and differentiable on (xx_1, Xx), SO

by Lagrange’s mean value theorem there exists x,_; < ¢k < X, such that

F(xi) = F(Xk-1)
T S P () = () = FOu) = Flxicr) = F(6) (- Xk
Xy — Xk-1

= F(b) - F(a) = (F(x1) = F(x0)) + (F(x2) = F(x1)) + ... + (F(Xp) = F(Xp-1)) =

= > (FO) = F(Xko1)) = ) F(C) (X = Xe-1) = T,

k=1 k=1
= F(b) - F(a) = op,
Taking the limits of both sides: lim (F(b) - F(a)) = lim gp,

The left-hand side is independent of n and since f is integrable then the limit of the
right-hand side is the integral of f, so

F(b) - F(a)= ff(x)dx.
b
Remark. The geometrical meaning of j fis the signed area under the graph of f on [a, b].

Remark. Both conditions of the theorem are important as the following examples show.

Examples

1 1 2 1
x?sin— ifx*0 2xsin— -—cos— ifx*0
Example 1. Let F(x) = X2 ,then F'(x) =f(x) = X2 X X2 .
0 ifx=0 0 ifx=0

1
f has an antiderivative, however, J f(x) dx doesn’t exist, since f is not bounded.
0

5
Example 1. J sign (x2 - 5x +6) dx exists, since f is continuous except 2 points. However,
0

by Darboux’s theorem, f doesn’t have an antiderivative, since f has jump discontinuities.
Properties of Riemann integrable functions
a b a
Definition. If f < R[q, b] j F(x)dx := — j F(x) dx, j F(x) dx:= 0
b a a

Theorem. Let f, ge R[a, b]and AeR. Then
b b b b b
(1) Af, f+g, f-geRla, b] and fAf:Ajf, J(fig)=ff¢[g

(2)[a, Bl c[a, b] = feRla, [
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(3)a<c<b = [bf=ff+[bf
a a C . .
(8) f(x) S g(x) V xe[a, b] = j f(x) dx < j gx) dx

(5) | f| <Rla, b] = |jbf(x)dx| sr’

a

f(x) | dx

1 b
(6) inf f< JfSSUpf
[G,b] b-a Ja [Cl,b]

Integration by parts

b b
Theorem. If f and g are continuously differentiable on [a, b] then J flg=[fgl>- J fg'

Integration by substitution

Theorem. If g is continuously differentiable, strictly monotonic, [a, b] c Dy and

b (b)
f is continuous on [a, b] then J f(x)dx = Jg f(g(t)) g' (t)dt.
a 97

n2
Example./:] Ve¥-1dx=?
0

Solution. Substitution: t= Ve -1 = x=x(t)=In(t*+1)
dx 1 2t

x'(t)=— = 2t = dx=

dt t2+1 t2+1

dt

The bounds will change: x; =0 = ¢, = «jeo -1=0

X=In2 = t,=e™-1=42-1=1

b 2t 1op2 12(2+1)-2 1 2
I= [ e -1 dx= [t-——dt= [ dt=j(—)dt=j(2— )dt:
p t+l ot?+1 0 t?+1 0 t2+1

:[2t—2arctgt]é:(2-1—2arctg1)—(0—0):2—7—T
2

Lebesgue’s theorem

Definition. We say that the set A cR has Lebesgue measure 0 if for all £ > 0 there exist

sequences (x,) and (y,) such that X, < y,, Ac | Jlxn, yal and > (va - xa) <.

n=1 n=1
(That s, A can be covered with countably many intervals such that their total
length is less than ¢.)

Examples. 1) Any countable set of R has Lebesgue measure 0, for example N, Z or Q.

2) The Cantor set is defined in the following way. Let C =[O0, 1].
C, is obtained from C, by deleting the open middle third from Cy, that is,



8 | calculus1-24-25.nb

1 2
Ci=10,—-|Ul-, 1|
1=[o.5]u[5 1]
C, is obtained from C; by deleting the open middle thirds from Cy, that is,
1 21 27

8
C =O)_ Ul—,— U -, —|U _)l
o L (P I e (U R
Continuing this process, C,.; is obtained from C, by deleting the open middle thirds
of each of these intervals. The Cantor setis C = ﬂ C,.

neN

It can proved that the Cantor set is uncountable but has Lebesgue measure 0.

Theorem (Lebesgue). The function f : [a, b]— R is Riemann integrable if and only if it is bounded
and the set of discontinuities of f has Lebesgue measure 0.

Remark. If f : [a, b]—R is monotonic then f has at most countably many discontinuities (and they are
jump discontinuities), so by Lebesgue’s theorem f is Riemann integrable.

Example*. The Riemann function is defined as

0 ifxeR\Q
f:R—>R, f(x)={ 1
—R, f(x) - ifngwherepez, and g e N* are coprimes
q q
Prove that

a)limf(x)=0 VaeR;

X->a
a) f is continuous at all irrational numbers;
b) f is discontinuous at all rational numbers.

1 k
Solution. If g e N* is fixed then the set Z- — = {— ke Z} does not have any real limit points.
q *-q

Therefore a finite union of such sets, A, = {B 'peZ,qef{l, 2, .., n}} does not have any
q

1
limit points either. If xe R\ A, the | f(x) | <—,soforall X, eR, lim f(x) =0.

n X-Xg

= fis continuous at all irrational points and has a removable discontinuity

at all rational points.

The Riemann function is bounded and the set of discontinuities is countable, so it has

Lebesgue measure 0 = f is Riemann integrable and f:f(x) dx=0.

The integral function

Definition. Assume that f is Riemann integrable on [a, b]. Then the function
F(x) = j “f(t) dt, xe[a, b]

is called the integral function of f.
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Theorem (Second fundamental theorem of calculus).

Assume that f is Riemann integrable on [a, b] and F(x) = Ff(t) dt, xe|[a, b]. Then

1. Fis Lipschitz continuous on [a, b].

2. If f is continuous at xg € [a, b] then F is differentiable at xo and F' (xp) = f(xo).

Proof. 1. Let K =sup | f(x) | .IfK=0 thenf=0so0F=0is Lipschitz continuous.
[a.b]

&
IfK+0then0<KeR. Lete>0and 6(5):7(.Ifx,ye[a, blsuchthat | x-y | <&then

| Fo)-F0) | = | Ef(t)dt—ff(t)dt|= | Ef(t)dt| < | L

SK | x-y| <Kbé=¢ = FisLipschitz continuous.

f(t)|dt| < | rKdt| <
y

, . FO) = F(xo) . .
2. F'(xp) = lim ———— =f(xo) if for all € >0 there exists 6 > 0 such that
X-Xo X = Xo

F(x) = F(x
|M—f(xo)| <eif 0< | x-xo| <6.
X =Xp

Let € > 0. Since f is continuous at xo then 36 >0such that | f(x)-f(xo) | <€if | x=xo | <O.
Then with this 6

F0=FOa) 1| 0= Flo) = o) (- 0) | _ J e [ e )
| X=X, B (XO)|_ | X=X - | X = Xg |_
] | L(f(t)—f(xo))dt | ] | j | (1)~ F (xo) | dt | ) | Lsdt| e
X=X ) | x=xo | Clx=xl 1 x-x|
Consequence.

1. If f is continuous on [a, b] and F(x) = fo(t) dt, xe[a, b] then F' (x)=f(x) V xe]a, b].

2. Every continuous function has an antiderivative.

Examples

Example 1. Calculate the derivatives of the following functions:
a) F(x) = Fsin t2dt, x+0 b)G(x)= JX sint? dt ) H(x) = F sint? dt
0 0 x?
Solution. a) F' (x) = sin x%, since f(t) = sin(t?) is continuous.

b) G(x) = F(x*}) = G'(x)=F'(x3)-3x2=sin(()(3')2)-3x2=sin(x6)-3x2
c) H(X)=Fsin t? dt-J

“sin i dt = F(x*) - F(x*) = H'(x) =sin(x®)-3x* - sin(x*)-2x
0

Earctan t2 dt

Example 2. im—— =7
Xx-0 X2

Solution. The limit has the form % and the numerator is differentiable since

f(t) = arctan t? is continuous



10 | calculus1-24-25.nb

1
X 2 2 ‘22X
~ [arctant’dt ., arctanx® .y T
= |im——— = lim———— = lim
X=0 X2 x-0 2 X x-0 2

=0

Improper integrals

Case 1: The interval is not bounded

Definition. Let a e R and assume that f is Riemann integrable on [a, b] forall b 2 a.

b
If the limit lim | f(x) dx € R exists then we say that f is improperly integrable

b Jg

or f has an improper integral on [a, ) and the value of the integral is
‘00 b
j fix) dx = lim j F(x) dx.

In this case we also say that the improper integral converges.

b b
If the limit lim | f(x)dx doesn’t exist or if lim j f(x) dx = o0 Or —co then we

b oo a b- o

say that f is not improperly integrable on [a, «) or the improper integral diverges.

Definition. Similarly, let b € R and assume that f is Riemann integrable on [a, b] for alla < b.
Then

Kf(x)dx: lim Lbf(x)dx.

a- oo

If the limit exists and is finite then the improper integral converges.
If the limit doesn’t exist or exists but is o or —co then the improper integral diverges.

Examples
oo 6
Exercise 1. /= f — dx=7?
2 X2+ x-2
Solution. Using partial fraction decomposition:
6 6 A B
= = + = 6=A(x+2)+B(x-1)
Xex-2 (x-1)(x+2) x-1 x+2
Ifx=-2: B=-2
fx=1. A=2

b6 bl 2 2
/=lim[—dx=lim[(—— )dx:
boeo s 24 x -2 bsowlo\x-1 x+2

=2 gim [In(x-1)-In(x+2) =2 gim (In(b-1)-In(b+2)-(In1-1n4)) =

b-1
=2[im(ln +n4|=2-(0+ln4)=2Iln4
bse\  H+2

(the improper integral converges)
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Exercise 2.I=jl ! dx=7?
= (x=2)yIn(2-x)
fa+l
Solution. We use that Jf'f“: +C, a*-1:
a+1
I= lim 1—(ln(2 X))~ zdx—

a- - Jg 2 —

= lim [M]_l_z lim (\/ln3 - \/ln(z a )

a—> —oo

(the improper integral diverges)
Important remark

— b
Definition. Let a, b e R. The improper integral / = f f(x) dx is said to be convergent if for all c € (a, b)

the improper integrals
C b
Ilzjf(x)dx and /2=Jf(x)dx
a ©

are both convergent.
The improper integral / is divergent if at least one of /; and /, is divergent.

b
Definition. f(x)dx_ l|m lim j f(x) dx if the double limit exists and is finite.

—oco > -0oh>

Remark. Because of the previous definition - f(x)dx # lim ’ f(x) dx.

oo a-w J_g

) 0 =)
Forexample,[ xdxis divergent,sincej xdx:—ooandj X dx = co.
0

—oo —o0

a X2 a 02 a2
However, lim f xdx=lim [—] =lim|—-—]=0.
—a 2 l-a

a— oo a— oo a->e\ 2 2

Case 2: The function is not bounded

Definition. Assume that f is not bounded at a but f is Riemann integrable on [A, b]
foralla<As<b.
Then

b
fx)dx— lim f(x)dx or fx)dx: lim Jf(x)dx

0-+0 Jg+6 A-a+0 Jp

Definition. Assume that f is not bounded at b but f is Riemann integrable on [a, B]
forallasB<b.
Then

b b-6 b
jf(x)dx: limj f(x)dx or | f(x)dx= lim jf(x)dx

6-+0 Jg B-b-0
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Definition. If f is not bounded atce (a b) then

-0 b
jf(x)dx jf(x)dx+ F(x) dx = nmj Fydx+ lim [ F(x)dx

61->+0 Jg 6,-+0 Jc+6,

Examples
7 1
Exercise 1.I=j—dx=?
5 3 (X—5)2
. o 2 . x=5)
Solutlon.l=;l_>rPOL+6(x—5) 3dx-;|_)r110[ . ]5+ -3(&1{1\0(\/7— \/7) \/—
3
1 \jarcsinx
Exercise 2.I=J—dx=?
0 1 —X2
fa+l
Solution. We use that Jf'f“: +C, a+-1:
a+1
-6 1 oL (arcsinx)z2q1-6 2 3
I=lim J (arcsin x)z dx = lim —] =— lim ((arcsin(l—é))z —0):
6-+0 Jo 1- 2 6-+0 3 0 3 6-+0
2

Improper integrals of f(x) = Xi

a

1
Statement. The improper integral r—a dx is convergent if a> 1 and divergentif a < 1.
1 X

Proof.

w 1 Al
Ifa:l,thenj — dx=Ilim cﬂx—llm[lnx]l_hm(lnA IN1)=o

1 x% A-eo J1 x A-eo
If a#1,then

1 1

w 1 A x4y Ao+l 1 0- =— ifa>1
[—d/x:limjx'“d/x:lim = tim - 0T T e
1 x® Ao J1 Avol_q+ 11 Aseol-a+1l -a+1 - fa<l

11
Statement. The improper integral | — dxis convergentif a <1 and divergentif a > 1.
0 x“%

Proof.

11 11
Ifa:l,thenj—dx: limj —dx=lim [Inx]t= lim (In1-1ng)=0-(~c0) =0
0

0 x% 040 Jo+e X £ 0+0 £-0+0

11 1 X—a+l 1 1 g—a+l
If a1, then [ — dx= lim J xedx= lim [ = tim - =
x% e-0+0 Jo+e e0+0l g+ 17 040\ —g+1 -a+1

oo, ifa>1

l .
-0= , ifa<l
-a+1 l1-a
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Comparison test for improper integrals
Theorem. Assume that 0 < g(x) < f(x) for all x € [a, ).
1. If jmf(x) dx converges then J’wg(x) dx also converges.

1.If rg(x) dx diverges then rf(x)dx also diverges.
a a

Remark. Similar statements can be stated for improper integrals defined on intervals (-, b]
and [a, b].

1 1 1 1
Remark. 1. If x 21 then - <—. Since r— dx diverges then r— dx also diverges.
X \/; 1 X 1 \/;

1 1 11 11
2.1f0<x<1then - <—.Since | - dxdivergesthen j — dxalso diverges.
X X2 0 X 0 x2

Applications

Area

Example. Calculate the area of the unit circle.

Solution. The equation of the circle with radius r = 1 centered at the origin is
X+yt=1= y?=1-x* = y=+1-x2

1
The area of the unit circle is A=2j 1-x% dx
-1
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Substitution: x=x(t)=sint = t=arcsinx

dx
x’(t):d— =cost = dx=costdt
t

The bounds will change: x, = -1 = t; =arcsin(-1) = -3

X =1= 1.‘2=arcsin1=%r

1 12 12
=>A=2j 1-x2 dx=f 241-(sint)? costdt=2 | cost-costdt
-1 7T/2

—7T/2
sin2tnn2

/2 /2
= | 2cos’tdt= (1+coszt)dt=[t+ ]
) ) 2 A2

=(7—2T + Sir;n)_(_g + Sin(z_n))=(7—2T +O)—(—§ +0):Tl'

Arc length

Theorem. Assume that f : [a, b]— R is continuously differentiable. Then the arc length of the

b
graphof f is L=J \/1+(f'()())2 dx.

Remark. Let a = xy < x; < x; < ... < X, = b be a partition. If f is differentiable then by Lagrange’s
mean value theorem there exists ¢, € (xx_1, Xx) such that m=f"'(c,), where m is the slope of
the secant line connecting the points (x,_1, f(Xk-1)) and (xx, f(xk)).

So the arc length can be approximated by the sum Z \/ 1+ (F'(ck))? (Xk = Xi_1), Which is

k=1

the Riemann sum of the function /1 + (f' (x))?.

If f is continuously differentiable then the arc length of the graph of f is
b
= j 1+ (F' () dx.

M(Xx—Xk-1)

Example. Calculate the arc length of the unit circle.
Solution. Let f(x) = Y1-x? ifxe[-1, 1].
1 1
frx)==(1-x))72(-2x)=
2

1-x2
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/ 2 { 1 1
f‘ 2: X - -
= \/l+( (X)) l+l—x2 -y —

The arc length of the unit circle is
1 1 1 b 1

L=2J N1+ (F ()2 dx=2f dx=2 lim blimj dx =
-1 -1 2 a--1+b-1- Jg , 2

=2 lim lim [arcsinx]2=2 lim l|m(arcsmb arcsina) =
a--1+b->1- a-»-1+b-1-

=2 (arcsin1l-arcsin(-1)) = 2(12r - (—g)) =277

Volume of solids of revolutions

Theorem. Assume that f : [a, b]— R is continuous and nonnegative and the graph of f is rotated

b
about the x axis. Then the volume of this solid of revolutionis V =7 f f2(x) dx.

Remark. If a = xy < x; < X, <... < X, = b is a partition then the volume can be approximated by the

n
sum Z(xk — Xy1) 7T F2(c) where ¢ € [X_1, X4] is arbitrary.
k=1
(Geometrically it means that the volume can be approximated by the sum of volumes of

cylinders.)
This is the Riemann sum of the function 7t f2(x), so if f is continuous then the volume is

b
V=7TJ 2(x) dx.

Surface area of solids of revolutions

Theorem. Assume that f : [a, b]— R is continuously differentiable and nonnegative and the graph
of f is rotated about the x axis. Then the surface area of this solid of revolution is

A= 27TJf NI+ (F () dx.

Remark. If a = xg < x; < X; <... < x, = b is a partition then the surface area of the solid of revolution

can be approximated by the sum
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D 7t (xio1) + F(x)) L+ (F' (i) (k= Xeoa)
k=1

where ¢, € [xy_1, Xk] exists by the Lagrange intermediate value theorem if f is differentiable.
(Geometrically it means that the surface area can be approximated by the sum of lateral
surfaces of truncated cones.)

If f is continuously differentiable then f(x,_1) + f(xx) = 2 f(ck), S0 the above sum will be the

Riemann sum of the function 2 7 f(x) 4/1 + (f' (x))*. Therefore if f is continuously

b
differentiable then the surface areaisA=2 7 j fx) N1+ (F' (x))? dx.

A
f(x)
1 1 1 1 R
Xo= =Xn
Exercise

Let f(x) = \]rz - x?, -r<x<r.Rotating the graph of f about the x axis, we get a sphere
with radius r. Calculate the volume and surface area of the sphere.

b
Solution: 1. The volume can be calculated as V=7t j f2(x) dx
Theintegrandis (f(x))?>=r?-x2

. X3 r
The volumeis V = rrJ’_rr(r2 -x*)dx= rr[r2 X - ;]_r =

A2 )2

b
2. The surface are can be calculated as A=2 rrj f(x) Y1+ (F' (x))? dx

1 1 1 X
The derivative of fis f'(x) = ((r2 - xz)i)' =—(rP-x*) 2 (-2x)=-
2 2 _x2
5 x? r? = x* + x* r?
= 1+(f'(X))"=1+ = =
r? - x? r? - x? r? - x?

.
Thesurfaceareais A=27t | rdx=2m[rxl,=2m(r* - (-r*))=4r*m

-r
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Integral test

Theorem. Assume that f : [1, ) — R be a positive valued, monotonically decreasing function
and let f(k)=a, > 0.

1.1 rf(x)dx is convergent = > aj is convergent
1 k=1

2.1f rf(x) dxis divergent = a, is divergent
1 k=1
Remark. The equivalence is also true, that is, the integral rf(x) dx and the series Zak are
1 k=1

both convergent or both divergent.

Proof. 1. Consider Figure a). Since the sum of the areas of the inscribed rectangles is less than or

equal to the area under the graph of f then

02+a3+...+ansff(x)dXSIimJ"f(x)dx=rf(x)dx eR.
1 1 1

N—>co

n oo oo
Since a,>0and Zak isbounded = Zak is convergent = Zak is convergent.

k=2 k=2 k=1
A A
air---
| y=f(x) y=f(x)
azkf”‘ ar---fF---
asr--—-fF---
=ﬁ
1 2 3 n-1 n 1 2 3 n-1 n
a) b)

2. Consider Figure b). Since the sum of the areas of the circumscribed rectangles is
greater than or equal to the area under the graph of f then

Jnf(x) dx< gy +0y+...+0,1 =Sp_1
1

Since lim | f(x)dx=c0 => lims, ;=0 => > ayisdivergent.
N—oo J71 N—>co py
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Error estimation

Theorem: Let f: [1, o)— R be a positive valued, monotonically decreasing function, let f(k) =a, >0

and suppose that Ff dx is convergent. Let s, = Zak ands= Zak
k=1 k=1

Then the error for the approximation s = s, is

O0<E=s- sn_Zak rfx)dx

k=n+1

Proof: Since a,,; + Opsy + ... + Ay < J f(x) dx then

0<E=s-s,= lim Zak<l|m Jmf(x)dx rf(x

M—o0
k=n+1

The convergence of the series Z—

nlr7

Theorem: Z—a is convergent if @ > 1 and divergent otherwise.
n
n=1

1
Proof: If a <0 then lim— = limn%=limn!?l = and

N—co na N—c0 N—co0

1
if a =0then lim — =1, so in these cases the series is divergent by the nth term test.

N—>oco na

1
If a>0thenletf(x)= —, x21L. This function is positive valued, monotonic decreasing
X

1
andf(n)=— =a,>0.
n[l

Thus, we can apply the integral test to investigate the convergence of Za,,.
n=1

1
We already proved that r—a dx is convergent if a > 1, therefore the series
1 X

Z— is also convergent if a > 1.

a
n=1 n

The improper integral is divergent if 0 < a < 1, so in this case the series is also divergent.

Examples

Exercise. Decide whether the following series are convergent or divergent.

© 1 © 1
a) b) >
naninn o3 n(Inn)?
Solution.

1
a) Let f(x) = , X>3
xlnx

Then f is positive valued and monotonically decreasing on the interval [3, o)
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and f(n) =

>0 = theintegral test can be applied:
nilnn
1

1 A =
r dx = lim f 2 dx = lim [In(ln ) = lim (In(ln A) = In(In 3)) = o
3 xlnx As J3 |nx A oo A oo

Since the improper integral is divergent then the series Z is also divergent

rsnlnn

by the integral test.

1
b) Let f(x) = x>3
x (In x)?

Then f is positive valued and monotonically decreasing on the interval [3, o)

and f(n) = >0 = theintegral test can be applied:
n(lnn)?
1 Al 1 -4 1 1 1 1
r dx=limj—(lnx)‘2dx=lim ——] =lim(——+—)=0+—=—
3 x(Inx)? Are J3 X Aswl |nx®B Ase\ INA In3 In3 In3

oo

Since the improper integral is convergent then the series

is also convergent
n=s N (Inn)?

by the integral test.



