19th and 20th lectures

L’Hospital’s rule

Remark. The following theorem can be applied for limits of the type

0 o 0

oo
-, —, 00—00, 0r00, 1%, co".

0 o

Theorem (L’Hospital’s rule).

Assume thatae R=R U {-oo, o0}, /isa neighbourhood of g, the functions f and g are differentiable
on/\ {a} and g(x)*0, g'(x)*0forall xe/\{a}.

Assume moreover that

limf(x)=limg(x)=0 or lim | f(x) | =lim | g(x) | =co.

(%) — f(x)
If 3lim =beR then Jlim— =b.
X-a g'(X) X-a g(X)

Remark. The theorem holds for right-hand and left-hand limits as well.

Proof. 1st case (for right-hand limit).

AssumethataeR, lim f(x) = lim g(x) =0and 3 lim ) =beR.

X-a+ X-a+ X->a+ g' (X)

Extend the functions f and g such that f(a)=g(a)=0and letx e/, x>a.
Then f and g are continuous on [a, x] and differentiable on (a, x),

so by Cauchy’s mean value theorem there exists c € (a, x) such that
fx)  f(x)=fla) f'(c)

9 g0 -g(@ g'()
Let (x,) be a sequence such that x,— a and choose ¢, € (a, x,) for all n.

f n ' n
(xn) =m forallneN.
9(xn) g'(cn)

f(x, f'(c,
Therefore lim ( )=lim (€n)

Thenc,—aand

f(x
= b and by the sequential criterion for the limit, lim Q =b.

e g(X,) 12 g'(cp) x>0 g(x)
2nd case.
AssumethataeR,lim | f(x) | =lim | g(x) | =coand 3 lim =beR.
X-a X-a X=>a g' (X)

f(x)

Let A=lim—.
X-a g(X)
(1)IfA,beR, A0, b*0:
1 _g™ X
f(x) 9(x) Fx f“(x)g" (x)

. . . (

= A=lim— =lim— =1lim
X-a g(X) x»a 1 xoa f'(
f(x) 2(x)

) —lim _
)0 g ) (1)

X
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PR g 1

=lim -lim =A— = A=b
X-a gZ(X) X-a f'(X) b
(2)IfA=0:
f f! ' '
l+limf(—X =lim 0d+9k) =lim b+9 () =1+lim 0 = A=b
X-a g(X) X-a g(X) X-a g'(x) X-a g'(x)
f o ' f! o
(3) |fA:|imﬁ={+ :lim@=' g(x)={0+=>nm m:{*
X-a g(x) —oo X-a f(X) X-a f'(X) 0- X-a g'(X) —00

3rd case.

1
Assume that x— +o and lett=—. Thent— 0 + if x— +oo.

X
o2 if[z) MO
) (t) . odt \t o £2 . (t] o f'(x)
= lim — =lim = lim = lim — = lim = lim
X +00 g()() t>0+ (1 -0+ 1 >0+ gn(_) 50+ | 1 X—>+oog' x)
"2
t dt \t 2 t

If x— —oo then t— 0 — and the proof is similar.

Local properties and the derivative

Definition. Assume that x; € Df and there exists 0 > 0 such that
forallx, yeDy,ifxg—O0<x<xg<y<xy+06,

f(x)<f(xo) <f(y) locally increasing
f(x)=f(xg)=f locally d i

then (02 1(X0) (y).Then we say that f is oc.a y ecreasmg . at xo.
f(x) < f(xo) <f(y) strictly locally increasing
f(x)>f(x0) > f(y) strictly locally decreasing

Remarks. (1) If f is monotonically increasing on (a, b), then f is locally increasing for all xq € (a, b).
(2) If fis locally increasing for all xq € (a, b), then f is monotonically increasing on (a, b).
(3) Howevers, if fis locally increasing at x; then it doesn’t imply that there exists
a neighbourhood B(xy, r) where f is monotonically increasing.

Examples. The following functions are locally increasing at xy = 0 but on any interval that contains 0,
the functions are not monotonically increasing.

1 1
27 ifxz0 — ifx®0 ifxe@Q
1. f(x):{xsm PR 2.f(x)={x "X 3.f(x)={)2(x ifXER\Q
0 ifx=0 0 ifx=0 <
3r 107 . P
1) 04f 2) N 3) K ,
sl &
02f It .;.-'.’_.-’
0.2 04 1 2 3 -1.0 —6.5 o 0.5 1.0
o'....
o".. ',.
o o5
.‘..0 i'..
»~ N
5 s ot
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Theorem. Assume that f is differentiable at xp.
(1) If fis locally increasing at xo then f' (xo) = 0.
(2) If fis locally decreasing at x, then f' (xp) < 0.
(3) If f' (xo) > 0 then f is strictly locally increasing at xq.
(4) If f' (xo) < 0 then f is strictly locally decreasing at x,.

Proof. (1) If f is locally increasing at xo then 3 6 > 0 such that
f(x) - f(x
O< | x=xo | <6=>M2 .
X = Xo
(If x < xo then x — xo <0 and f(x) - f(xy) <0 and
if x> xo then x - xg > 0and f(x) — f(xg) 2 0.)

. . . \ _ f(x)=f(xo)
Since f is differentiable at x; then f' (xg) = lim ——— = 0.
XX X = Xp

(2) Similar to case (1).

. (%) = f(x0) .
(3) If f' (xo) = lim —————— >0, then there exists ¢ > 0 such that
X—Xo X=X
f(x) - f(x
if0< | x=x9| <06 then f09 - 100) > 0.
X = Xo

[ Xo<x<Xxg+0O f(x) > f(xg)
= if
Xo—-0<X<Xg f(x) < f(xo)
= fis strictly locally increasing at xq.
(3) Similar to case (4).

Remarks. Assume that f is differentiable at xp.
(1) If f is strictly locally increasing at xq then it doesn’t imply that f' (xg) > 0.
If f is strictly locally increasing at x, then f' (xp) = 0, since 3 6 > 0 such that
f(x) - f(x f(x) - f(x
0< | X=X | <6 = [0~ 7) >0, but for the limit lim f09 - 10) 20.
X = Xo X=Xo X = Xo

For example f(x) = x is strictly locally increasing at xo = 0, but ' (0) =3 x* | 4.0 = 0.

(2) If f' (xo) 2 0 then it doesn’t imply that f is locally increasing at x,.
For example f(x) = -x% is not locally increasing at x, = 0, but f' (0) = 20.

27 27 15-

1) 2) 3)

-2

2L
(3) If f' (xo) > 0 then it doesn't imply that f is monotonically increasing on an interval

containing xo.

N
N
o
o
T
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For example, let f be a function such that x - x2 < f(x) < x + x2 V x = £(0) =0.

f f(x) - f(0
Ifx>0thenl—xsﬁ:MSl

+X,
X x-0
f(x) - (0) .
Ifx<0thenl-x2——— 21+ Xx,s0 bythe sandwich theorem
x-0
f(x) - f(xo)

f'(0)=lim

X
X=X X =X

10
2 . - . +
=1>0. Forexample, letf(x)={x+x sm( ) =0
0 ifx=0

Darboux’s theorem

Theorem. Assume that f : [a, b]— R is differentiable and f' (a) < y < f' (b) or f' (b) < y < f' ().
Then there exists c e (a, b) such that ' (c) = y.

Remark. We say that f' has the intermediate value property of Darboux property.

Proof. 1) Letg:[a, b] >R, g(x)=f(x)-y-x = gisdifferentiableandg'(x)=f"(x)-y.

2) Assumethatf'(a)<y<f'(b) = g'(a)=f"(a)-y<0<f'(b)-y<g'(b)
3) g is differentiable, so it is continuous on [a, b]

= by Weierstrass extreme value theorem it has a minimum and a maximum on [a, b].
4) since { g'(a)<0 th {gis str?ctly locally‘decreas.,ing ata

g'(b)>0 gisstrictly locally increasing at b
= g does not have a minimum at @ and b but on the open interval (a, b)
= there exists c e (a, b) such that g has a local minimum at ¢

= g'(c)=0=f"(c)-y = f'(c)=yforsomece(a, b).

-1 ifx<0
Example. The sign function or signum function is defined as sgnx={ 0 ifx=0.
1 ifx>0

This function is not continuous at xp = 0, so there is no function f : R—R
for which f' (x) =sgn x onR (or on any interval that contains x, = 0).

Remark. From Darboux’s theorem it follows that if ' is not continuous at a point then
f' cannot have a discontinuity of the first type at that point, so at least one of the
one-sided limits doesn’t exist or exists but is not finite
= f' has an essential discontinuity at the given point.

Statement. If f is differentiable on [a, a + §) (6 >0) and f' has a discontinuity at a then the limit
lim f(x) doesn’texistor 3 lim f(x)¢&R.

Xx-a+0 x-a+0

Continuously differentiable functions

Definition. Assume that / is a neighbourhood of a € Df and f is differentiable on I n Dy.
Then f is continuous differentiable at a if f' is continuous at a.
f is continuously differentiable on A if f is continuous differentiable ¥ x € A.
Notation: C}(A) = {f : fis continuously differentiable on A}.
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1

X2 sin(—) ifx+0
X

0 ifx=0

1 1
2xsin(—) —cos(—) ifx+0

X X .
0 ifx=0

Example: The function f(x) = { is differentiable but f' is not continuous

at xo =0, since f'(x) ={

f(x)

Higher order derivatives

Definition. If f' is differentiable at x then we say that f is twice differentiable at x and
the second derivative or second order derivative of f at xp is f"' (x) = (f')' ().
Differentiating f repeatedly, we get the third, ..., nth derivative of .

d*f
Notation: f" (x) =f®(x) = il
d x*
3f
flll(X)=f(3)(X)= d (X)
dx®
d" f(x)
£ (x) =
0=—"

By definition: fO(x) = f(x)

Example: f(x)=sinx = f'(x)=cosx, " (x)=-sinx, f'" (x)=-cosx, fP(x)=sinx, ..
fx)=e* = fM(x)=¢* VneN

Investigation of differentiable functions

Monotonicity on an interval

Theorem. Assume that f : (a, b)— R is differentiable. Then
(1) f is monotonically increasing < f'(x) 20 forall x e (a, b)
(2) f is monotonically decreasing < f'(x)<0forall xe(a, b)
(3)fisconstant < f'(x)=0forall xe(a, b)

(4)
(5)

5)f'(x)<0forallx e (a, b)= f is strictly monotonically decreasing

f'(x)>0forall xe(a, b)= fis strictly monotonically increasing
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Proof. (1)
(i) If f is monotonically increasing then f is locally monotonically increasing for all x € (a, b)
=f'(x)20 Vxe(a,b).
(ii) Assume that f' (x) 20 for all x e (g, b). Let a < x; < x, <b and apply Lagrange’s
mean value theorem for [x1, x;]. Then there exists c € (x1, X;) c (a, b) such that

Y =f'(c)20 = f(xp) 2f(x1)
X2 = X1
Therefore if x; < x, then f(x;) < f(x,), so f is monotonically increasing on (a, b).
(2) Similar to case (1).
(3) fis constant <= f is monotonically increasing and decreasing
= f'(x)20and f'(x)<0 Vxe(a,b) = f'(x)=0 Vxe(a,b)
(4) and (5): similar to case (1) (ii)
Remark. Statements (4) and (5) cannot be reversed.
For example, f(x) = x* is strictly monotonically increasing on R, however f' (x) > 0

does not hold for all xeR, since f' (x) =3 x> = f'(0)=0.

Remark. If the domain of f is not an interval then the above theorem is not true,
as the following examples show.
1) Letf:R\Z—R, f(x)={x}=x-[x]. Then f is differentiable on R\ Z
and f'(x)=1>0forall xeR\Z but f is not monotonically increasing.
2) Letf :R\Z—R, f(x) =[x]. Then f is differentiable on R\ Z
and f'(x)=0forall xeR\Z but f is not constant.

Local extremum, sufficient conditions

Definition. If f is differentiable at x, and ' (xg) = 0 then x; is a stationary point of f.
If f' (xo) =0 or f is not differentiable at x, then xj is a critical point of f.

Remark. Recall that if f is differentiable at xq € int Dy and f has a local extremum at x, then ' (xg) = 0.
This is a necessary condition for the existence of a local extremum.
The next two theorems formulate sufficient conditions.

Theorem (Sufficient condition for a local extremum, first derivative test).
Assume that f is differentiable at xo € int Dy.
Iff' (xo) =0and f' changes sign at xo, then f has a local extremum at xq.

increasing

N ly, if f' =0andf'is (strictly) locall
amely, if f' (xg) =0an is (strictly) loca y{ decreasing at xp
then f has a (strict) local{ m|n|.mum at xo.

maximum

Proof. Assume that f' (xo) =0 and f' is locally increasing at xg
(thatis, f' changes sign from negative to positive)
Frix)<0if xg- 0 <x<xg

3 6> 0such that
= >osuchha {f‘(X)ZOifxo<x<xo+6
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fis monotonically decreasing on (xo — 6, Xo)
fismonotonically increasing on (xq, X + O)
FX) 2 F(x0) if X0 = 0 < x < Xo f has a local minimum at x

f—1 .

{f(x)Zf(xo) if Xo<x<Xo+6 0

Theorem (Sufficient condition for a local extremum, second derivative test).
Assume that f is twice differentiable at xy € int Dy.
Iff'(xo)=0andf" (xo) #0then f has a local extremum at x,.
If{ "' (x)>0 minimum

£ (x0) <0 I

then f has a strict local{ .
maximum

Proof. f" (xo) >0 = f"'is locally increasing at xo and f' (xy) =0
= by the previous theorem f has a local minimum at xj.

Remark. The sign change of f' at xg is only a sufficient but not a necessary condition
for the existence of a local extremum at x,.

1
2 . - .
For example, if f(x) = X (2+sm(x)) ffx0
0 ifx=0
then f is differentiable for all x e R. At x = 0:

1
x?| 2 +sin| -
f(x) - £(0) X (1 L
f'(0)=lim——— = lim—— = limx(z +sm(—)) =0 (sinceitis 0-bounded),
x-0 x-0 x-0 X x-0 X

so the necessary condition holds at xq = 0.
However, in any neighbourhood of x4 = 0:
f has strictly monotonic increasing and decreasing sections =
f' has both positive and negative values =
f' doesn’t change sign at xo = 0.
Yet f has a local extreme value at x; =0, and it is even an absolute minimum here.

0.04 -

f(x)=x3(2+sin(1/x))

0.01f

!

0.10

!

-0.10

! !

-0.05 0.00 0.05

Local extremum and higher order derivatives

Remark. If f' (x;) =0 and " (xo) = 0 then it cannot be decided whether f has a local
extremum at xg. For example:
1) f(x) = x> does not have a local extremum at xo = 0,
2) f(x) = x* has a local minimum at x, =0,
3) f(x) = —x* has a local maximum at x, =0, and in each case f' (0) =" (0) = 0.
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Theorem. (1) Assume that f is 2 k times differentiable at xg, k = 1.

f@R(x,) >0
If£' (xo) =. .. = F2KD(x0) = 0 and{ 0
(x0) (x0) P
then f has a strict local{ m|n|‘mum at xo.
maximum

(2) Assume that f is 2 k + 1 times differentiable at xg, k= 1.
Iff' (xo) =. .. = f?¥(xo) =0 and F**1)(xo) # 0, then f is strictly monotonic
in a neighbourhood of Xy, so f doesn’t have a local extremum at xq.

Proof. (1) We prove the statement for a strict local minimum by induction.

(i) If k = 1 then the statement is true.

(ii) Assume that the statement holds fork-1and letg=f".
(=>g'=f", .., gi2k3) = f2k-1) g2k-2) _ f2K) )
From the induction hypothesis it follows that
ifg" (xo) =. .. = g?**(x,) =0 and g**~?)(x,) > 0 then the function
g =f""has a strict local minimum at xo.

(iii) We want to prove that if

f'(xo)=F" (Xo) =f"" (Xo) =. .. = F2KV(x,) = 0 and F?¥)(x,) > 0 then
f has a strict local minimum at xo.
Since f'' (xo) =0 and ' has a strict local minimum at xq,
then3 6 >0suchthatf" (x)>0, Vxe(xg- 0, xg+ )\ {X}
= f'is strictly monotonically increasing on (xo - 6, xo + 0)
= f'is strictly locally increasing at xq
= f has a strict local minimum at x,.

(2) Assume that ' (xo) = f"" (Xo) =. .. = F?F)(x5) = 0 and F@*+V)(x,) £ 0.
Letg=f",then g" (xo) =. .. = g?*V(xo) =0 and g?¥(x,) = 0.
= by part (1), g =f" has a strict local extremum at x.
Since f' (xo) =0, then either f' (x)>0o0rf'(x) <0, Vxe(xg -0, X+ 6)\ {X}
= fis strictly monotonic on (xy — 6, Xy + O)
— f doesn’t have a local extremum at x,
Example. f(x) = x" is n times differentiable,
fRox)y=n(n-1)(n-2)...(n-k+1)x"*, k=1,2, ..,n-1
fM(x)=n!
= if x,=0, then f'(0)=f"(0)=...=f"1(0)=0, F"(0)=n!>0
= atxy; =0 f hasalocal minimum if nis even and f doesn’t have a local
extremum if nis odd.
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Convexity / concavity on an interval

Theorem (Necessary and sufficient condition for convexity).
If f is differentiable on the interval /, then the following statements are equivalent.
(1) fis convex on/
(2)f(x)=2f(a)+f'(a)(x-a) ifx,ael
(3) f"is monotonically increasing on /

Remark. The geometrical meaning of (2) is that for all a €/, the graph of f
lies above the tangent line at a.

Proof of (1) = (2):

y=Aa+(1-A)x
hax(y) = Af(a) + (1 - A) f(x)
fisconvex = f(y)<hy(y)

Ifa<xand ye(a, x)then 3 Ae(0, 1) such that
y=Aa+(1-A)x = y-a=A-1)a+(1-A)x
= y-a=(1-A)(x-a)
fisconvex = f(y)<Af(a)+(1-A)f(x)
= f(y)-f(a)<(A-1)f(a)+(1-A)f(x)
= f(y) - f(a) < (1 - A) (f(x) - f(a))
Dividing both sidesby y—-a=(1-A)(x-a)>0:
f(y)-f(a) - f(x)-f(a)

y-a X-a

f(x) - f(a) .
fy—a+thenf'(a)s — = f(x)2f(a)+f'(a)(x-a) ifx,ael.
X-da

If a > x then the proof is similar and if a = x then the statement is obvious.



10 | calculus1-19-20.nb

Proof of (2) = (3):

Let T,(x)=f(a) +f'(a) (x - a).

Ifa,bel, a<b = T,(a)=f(a)2Ty(a) and
To(b) < (D) = Ty(b)

— F(a)= Ta(b) - To(a) Ta(b)-f(a) f(b)-Th(a) Tp(b)-Ts(a)
- b-a - b-a b-a b-a

= f'is monotonically increasing on /

IN
I}
]
-
—
o
~

Ta(a)=f(a) Tr(b)=f(b)

Tp(a)

Proof of (3) = (1):
Leta,bel, a<b, Ae(0, 1) forwhich x=Aa+(1-A)b
= x-a=(1-A)(b-aqa)

b-x=A(b-a)
Then by Lagrange’s mean value theorem there exist
f(x)-f(a) f(b) - f(x)
c1€(a, x) and ¢, € (x, b) such that =f'(cy) and f'(c;) = .
X-da -X

f'is monotonically increasing = f'(c;) <f'(cy)
f(x)-f(a) f(b)-f(x)
-

<

X-a b-x
f(x)-f(a) . f(b) - f(x)

(1-A)(b-a) Ab-a)
= f(x)<Af(a)+(1-A)f(b) = fisconvexonl.
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a

Consequence (Necessary and sufficient condition for convexity).
Assume that f is twice differentiable on the interval /. Then
(1)f"(x)20Vxel ifandonlyif fisconvexon/.
(2)f"(x)<0Vxel ifandonlyif fisconcaveon/.

Consequence.
Assume that f is twice differentiable on the interval /. Then
(1) If f"(x)>0 V¥V xel then fis strictly convexon /.
(2) If f""(x)<0 V x el then fis strictly concave on /.

Inflection point

Definition. Assume that f is continuous at a € int Dy and there exists 6 > 0 such that
fiis convex on (a - 6, a) and concave on (a, a + 6)
or fisconcaveon (a -6, a) and convexon (a, a + 6).
Then ais called a point of inflection of the function f.

Theorem (Necessary condition for an inflection point, second derivative test).
If f is twice differentiable at x, and f has an inflection point at xo then f'' (xg) = 0.

Proof. If f is convex on (xg — 8, xg] and concave on [xg, X + ) then
f'is monotonically increasing on (xg — 6, xo] and monotonically decreasing on [xg, Xo + O)
= f'hasalocal maximumatx, = f'"(x,)=0.

Theorem (Sufficient condition for an inflection point, second derivative test).
If f is twice differentiable in a neighbourhood of xq,
" (xo)=0and f" changes sign at X,
then f has an inflection point at x;.
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Theorem (Sufficient condition for an inflection point, third derivative test).
If f is three times differentiable in a neighbourhood of xg,
f"(xo)=0and f'" (xo) £0,
then f has an inflection point at x,.

Inflection point and higher order derivatives

Theorem. (1) Assume that f is 2 k + 1 times differentiable at xg, k= 1.
If £ (X0) =. .. = F2K)(x0) =0 and F2*¥*1(x,) £ 0
then f has an inflection point at xp.
(2) Assume that f is 2 k times differentiable at xo, k= 1.
If £ (X0) =. .. = F2¥D(x,) = 0 and Ff@X)(x,) # 0, then f is strictly convex or concave
in a neighbourhood of xq, so f doesn’t have an inflection point at xg.

Linear asymptotes

Definition. The straight line x = a is a vertical asymptote of the function f if
lim f(x) =to0 or lim f(x) =%oo.
X->a-

Definition. The straight line g(x) = Ax + B is a linear asymptote of the function f at o or —oo if
lim (f(x) = g(x)) =0 or lim (f(x) - g(x)) =0.

g(x) is a horizontal asymptote if A= 0 and an oblique or slant asymptote if A+ 0.

Statement. g(x) = Ax + Bis a linear asymptote of f at £ if and only if

f(x)
A= lim — and B= lim (f(x) - Ax)

X—koo  x

JT
Example. lim tanx =% = x = — is a vertical asymptote of f(x) = tan(x).

P 2
2

1
Example. If f(x) =x + 2+ — then g(x) = x + 2 is a linear asymptote of f at + co.
X

f(x)=x+2+ e

Example. If f(x) = x ex then g(x) = x +2is a linear asymptote of f at tco.
. ) xe .
Solution. A= lim — = lim = lim ex=e’=1

Xt X—o*co  x X—>too
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2

) 2 o oex-1 2 er-1
B = lim (xex—x)zhm .Lety=—-,thenB=lim =2,
X—too Xt 1 X y-0+ 1.
X 2

X

using that lim
x-0 X

Sog(x)=x+2.

= 1. The limit can also be calculate with the L’Hospital’s rule.

Extreme values on a closed interval

Remark. If f is continuous on a closed and bounded interval then by the
Weierstrass extreme value theorem f has a minimum and a maximum.
The possible points are:
1) the points where f is not differentiable
2) the points where the derivative of f is 0
3) the endpoints of the interval
Finally the largest and smallest of the possible values must be selected.



