
19th and 20th lectures

L’Hospital’s rule

Remark. The following theorem can be applied for limits of the type 
0

0
,
∞

∞
, ∞ -∞, 0 ·∞, 1∞, ∞0.

Theorem (L’Hospital’s rule). 
Assume that a ∈  = ⋃ {-∞, ∞},  I is a neighbourhood of a, the functions f  and g are differentiable 
on I \ {a}   and   g(x) ≠ 0, g ' (x) ≠ 0 for all x ∈ I \ {a}.
Assume moreover that 

lim
xa

f (x) = lim
xa

g(x) = 0   or   lim
xa

f (x) = lim
xa

g(x) =∞.

If  ∃ lim
xa

f ' (x)

g ' (x)
= b ∈   then  ∃ lim

xa

f (x)

g(x)
= b.

Remark. The theorem holds for right-hand and left-hand limits as well.

Proof. 1st case (for right-hand limit).

         Assume that a ∈ , lim
xa+

f (x) = lim
xa+

g(x) = 0 and ∃ lim
xa+

f ' (x)

g ' (x)
= b ∈ .

         Extend the functions f  and g such that f (a) = g(a) = 0 and let x ∈ I, x > a.
         Then f  and g are continuous on [a, x] and differentiable on (a, x),
         so by Cauchy’s mean value theorem there exists c ∈ (a, x) such that 

         
f (x)

g(x)
=
f (x) - f (a)

g(x) - g(a)
=
f ' (c)

g ' (c)
.

         Let (xn) be a sequence such that xn⟶a and choose cn ∈ (a, xn) for all n.

         Then cn⟶a and 
f (xn)

g(xn)
=
f ' (cn)

g ' (cn)
 for all n ∈.

         Therefore lim
n∞

f (xn)

g(xn)
= lim
n∞

f ' (cn)

g ' (cn)
= b and by the sequential criterion for the limit, lim

xa

f (x)

g(x)
= b.

   2nd case.  

         Assume that a ∈ , lim
xa

f (x) = lim
xa

g(x) =∞ and ∃ lim
xa

f ' (x)

g ' (x)
= b ∈ .

         Let A = lim
xa

f (x)

g(x)
.

         (1) If A, b ∈ , A ≠ 0, b ≠ 0:

         ⟹  A = lim
xa

f (x)

g(x)
= lim
xa

1
g(x)

1
f (x)

= lim
xa

-
g' (x)

g2(x)

-
f ' (x)
f 2(x)

= lim
xa

f 2(x) g ' (x)

g2(x) f ' (x)
=



         = lim
xa

f 2(x)

g2(x)
· lim
xa

g ' (x)

f ' (x)
= A2 ·

1

b
  ⟹  A = b

         (2) If A = 0:

         1 + lim
xa

f (x)

g(x)
= lim
xa

f (x) + g(x)

g(x)
= lim
xa

f ' (x) + g ' (x)

g ' (x)
= 1 + lim

xa

f ' (x)

g ' (x)
  ⟹  A = b

         (3)  If A = lim
xa

f (x)

g(x)
=

+∞

-∞
  ⟹ lim

xa

g(x)

f (x)
= lim
xa

g ' (x)

f ' (x)
=

0 +

0 -
  ⟹  lim

xa

f ' (x)

g ' (x)
=

+∞

-∞

   3rd case.      

         Assume that x⟶+∞ and let t =
1

x
. Then t⟶0 + if  x⟶+∞.

         ⟹ lim
x +∞

f (x)

g(x)
= lim
t0+

f
1

t

g
1

t

= lim
t0+

d

dt
f

1

t

d

dt
g

1

t

= lim
t0+

-
f '  1

t


t2

-
g '  1

t


t2

= lim
t0+

f '
1

t

g '
1

t

= lim
x +∞

f ' (x)

g ' (x)

         If x⟶-∞ then t⟶0 - and the proof is similar.

Local properties and the derivative

Definition. Assume that x0 ∈ Df  and there exists δ > 0 such that 
   for all x, y ∈ Df , if x0 - δ < x < x0 < y < x0 + δ, 

   then  

f (x) ≤ f (x0) ≤ f (y)
f (x) ≥ f (x0) ≥ f (y)
f (x) < f (x0) < f (y)
f (x) > f (x0) > f (y)

. Then we say that f  is 

locally increasing
locally decreasing
strictly locally increasing
strictly locally decreasing

  at x0.

Remarks. (1) If f  is monotonically increasing on (a, b), then f  is locally increasing for all x0 ∈ (a, b).
  (2) If f  is locally increasing for all x0 ∈ (a, b), then f  is monotonically increasing on (a, b).
  (3) However, if  f  is locally increasing at x0 then it doesn’t imply that there exists

                 a neighbourhood B(x0, r) where f  is monotonically increasing.

Examples. The following functions are locally increasing at x0 = 0 but on any interval that contains 0, 
    the functions are not monotonically increasing.

         

1.  f (x) =
x sin2 1

x
if x ≠ 0

0 if x = 0
2. f (x) =

1

x
if x ≠ 0

0 if x = 0
     3. f (x) =

x if x ∈
2 x if x ∈  \
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Theorem. Assume that f  is differentiable at x0.
 (1) If f  is locally increasing at x0 then f ' (x0) ≥ 0.
 (2) If f  is locally decreasing at x0 then f ' (x0) ≤ 0.
 (3) If f ' (x0) > 0 then f  is strictly locally increasing at x0.
 (4) If f ' (x0) < 0 then f  is strictly locally decreasing at x0.

Proof. (1) If f  is locally increasing at x0 then ∃ δ > 0 such that

0 < x - x0 < δ  ⟹  
f (x) - f (x0)

x - x0
≥ 0.

(If x < x0 then x - x0 < 0 and f (x) - f (x0) ≤ 0 and
 if x > x0 then x - x0 > 0 and f (x) - f (x0) ≥ 0.)

 Since f  is differentiable at x0 then f ' (x0) = lim
xx0

f (x) - f (x0)

x - x0
≥ 0.

     (2) Similar to case (1).

     (3) If f ' (x0) = lim
xx0

f (x) - f (x0)

x - x0
> 0, then there exists δ > 0 such that 

if 0 < x - x0 < δ  then  
f (x) - f (x0)

x - x0
> 0.

⟹  if 
x0 < x < x0 + δ

x0 - δ < x < x0
  then 

f (x) > f (x0)

f (x) < f (x0)

⟹  f  is strictly locally increasing at x0.
     (3) Similar to case (4).

Remarks. Assume that f  is differentiable at x0.
(1) If f  is strictly locally increasing at x0 then it doesn’t imply that f ' (x0) > 0.  
      If f  is strictly locally increasing at x0 then f ' (x0) ≥ 0, since ∃ δ > 0 such that

      0 < x - x0 < δ  ⟹  
f (x) - f (x0)

x - x0
> 0, but for the limit lim

xx0

f (x) - f (x0)

x - x0
≥ 0.

      For example f (x) = x3 is strictly locally increasing at x0 = 0, but f ' (0) = 3 x2
x=0 = 0.

     
(2) If f ' (x0) ≥ 0 then it doesn’t imply that f  is locally increasing at x0.
      For example f (x) = -x3 is not locally increasing at x0 = 0, but f ' (0) = ≥ 0.   
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(3) If f ' (x0) > 0 then it doesn't imply that f  is monotonically increasing on an interval
      containing x0. 
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      For example, let f  be a function such that x - x2 ≤ f (x) ≤ x + x2 ∀ x  ⟹  f (0) = 0.

      If x > 0 then 1 - x ≤
f (x)

x
=
f (x) - f (0)

x - 0
≤ 1 + x,

      If x < 0 then 1 - x ≥
f (x) - f (0)

x - 0
≥ 1 + x, so by the sandwich theorem 

      f ' (0) = lim
xx0

f (x) - f (x0)

x - x0
= 1 > 0. For example, let f (x) =

x + x2 sin
10

x
if x ≠ 0

0 if x = 0

Darboux’s theorem

Theorem. Assume that f : [a, b]⟶ is differentiable and f ' (a) < y < f ' (b) or f ' (b) < y < f ' (a).
 Then there exists c ∈ (a, b) such that f ' (c) = y.

Remark. We say that f ' has the intermediate value property of Darboux property.

Proof. 1) Let g : [a, b]⟶, g(x) = f (x) - y · x     ⟹    g is differentiable and g ' (x) = f ' (x) - y.
    2) Assume that f ' (a) < y < f ' (b)   ⟹   g ' (a) = f ' (a) - y < 0 < f ' (b) - y < g ' (b)
    3) g is differentiable, so it is continuous on [a, b]
         ⟹  by Weierstrass extreme value theorem it has a minimum and a maximum on [a, b].

    4) Since 
g ' (a) < 0
g ' (b) > 0

  then  
g is strictly locally decreasing ata
g is strictly locally increasing at b

         ⟹  g does not have a minimum at a and b but on the open interval (a, b)
         ⟹  there exists c ∈ (a, b) such that g has a local minimum at c
         ⟹  g ' (c) = 0 = f ' (c) - y  ⟹  f ' (c) = y for some c ∈ (a, b).

Example. The sign function or signum function is defined as   sgn x =
-1 if x < 0
0 if x = 0
1 if x > 0

.

          This function is not continuous at x0 = 0, so there is no function f : ⟶

          for which f ' (x) = sgn x  on  (or on any interval that contains x0 = 0).

Remark. From Darboux’s theorem it follows that if f ' is not continuous at a point then
f ' cannot have a discontinuity of the first type at that point, so at least one of the
one-sided limits doesn’t exist or exists but is not finite
⟹  f ' has an essential discontinuity at the given point.

Statement. If f  is differentiable on [a, a + δ)  (δ > 0) and f ' has a discontinuity at a then the limit
    lim
xa+0

f (x) doesn’t exist or ∃ lim
xa+0

f (x) ∉ .     

Continuously differentiable functions

Definition. Assume that I is a neighbourhood of a ∈ Df  and f  is differentiable on I⋂ Df .
   Then f  is continuous differentiable at a if f ' is continuous at a.
   f  is continuously differentiable on A if f  is continuous differentiable ∀ x ∈ A.
   Notation: C1(A) = {f : f is continuously differentiable on A}.
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Example: The function f (x) =
x2 sin

1

x
if x ≠ 0

0 if x = 0
  is differentiable but f ' is not continuous 

 at x0 = 0, since f ' (x) =
2 x sin

1

x
- cos

1

x
if x ≠ 0

0 if x = 0
.

f(x)
y=x2

y=-x2
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Higher order derivatives

Definition. If f ' is differentiable at x then we say that f  is twice differentiable at x and
    the second derivative or second order derivative of f  at x0 is f '' (x) = (f ') ' (x).
    Differentiating f  repeatedly, we get the third, ..., nth derivative of f .

    Notation:     f '' (x) = f (2)(x) =
d2 f (x)

d x2

f ''' (x) = f (3)(x) =
d3 f (x)

d x3

...

f (n)(x) =
dn f (x)

d xn

    By definition: f (0)(x) = f (x)    

Example: f (x) = sin x  ⟹  f ' (x) = cos x, f '' (x) = -sin x, f ''' (x) = -cos x, f (4)(x) = sin x, ...
 f (x) = ex  ⟹  f (n)(x) = ex ∀ n ∈

Investigation of differentiable functions

Monotonicity on an interval

Theorem. Assume that f : (a, b)⟶ is differentiable. Then
(1) f  is monotonically increasing  ⟺  f ' (x) ≥ 0 for all x ∈ (a, b)
(2) f  is monotonically decreasing  ⟺  f ' (x) ≤ 0 for all x ∈ (a, b)
(3) f  is constant  ⟺  f ' (x) = 0 for all x ∈ (a, b)
(4) f ' (x) > 0 for all x ∈ (a, b) ⟹  f  is strictly monotonically increasing
(5) f ' (x) < 0 for all x ∈ (a, b) ⟹  f  is strictly monotonically decreasing
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Proof. (1) 
(i) If f  is monotonically increasing then f  is locally monotonically increasing for all x ∈ (a, b)

      ⟹ f ' (x) ≥ 0 ∀ x ∈ (a, b).
(ii) Assume that f ' (x) ≥ 0 for all x ∈ (a, b).  Let a < x1 < x2 < b and apply Lagrange’s 
      mean value theorem for [x1, x2]. Then there exists c ∈ (x1, x2)⊂ (a, b) such that

     

     
f (x2) - f (x1)

x2 - x1
= f ' (c) ≥ 0  ⟹  f (x2) ≥ f (x1)

          Therefore if x1 < x2 then f (x1) ≤ f (x2), so f  is monotonically increasing on (a, b).
(2) Similar to case (1).
(3) f  is constant  ⟺  f  is monotonically increasing and decreasing

      ⟺  f ' (x) ≥ 0 and f ' (x) ≤ 0   ∀ x ∈ (a, b)  ⟺  f ' (x) = 0 ∀ x ∈ (a, b)
(4) and (5): similar to case (1) (ii)

Remark. Statements (4) and (5) cannot be reversed.
          For example, f (x) = x3 is strictly monotonically increasing on , however f ' (x) > 0
          does not hold for all x ∈ , since f ' (x) = 3 x2 ⟹ f ' (0) = 0.

Remark. If the domain of f  is not an interval then the above theorem is not true, 
         as the following examples show.
         1) Let f :  \⟶, f (x) = {x} = x - [x]. Then f  is differentiable on  \
         and f ' (x) = 1 > 0 for all x ∈  \ but f  is not monotonically increasing.
         2) Let f :  \⟶, f (x) = [x]. Then f  is differentiable on  \
         and f ' (x) = 0 for all x ∈  \ but f  is not constant.

Local extremum, sufficient conditions

Definition. If f  is differentiable at x0 and f ' (x0) = 0 then x0 is a stationary point of f .
    If f ' (x0) = 0 or f  is not differentiable at x0 then x0 is a critical point of f .

Remark. Recall that if f  is differentiable at x0 ∈ intDf  and f  has a local extremum at x0 then f ' (x0) = 0.
          This is a necessary condition for the existence of a local extremum.
          The next two theorems formulate sufficient conditions.

Theorem (Sufficient condition for a local extremum, first derivative test). 
 Assume that f  is differentiable at x0 ∈ intDf .
 If f ' (x0) = 0 and f ' changes sign at x0, then f  has a local extremum at x0.
 

 Namely, if f ' (x0) = 0 and f ' is (strictly) locally 
increasing
decreasing

  at x0

 then f  has a (strict) local 
minimum
maximum

 at x0. 

Proof. Assume that f ' (x0) = 0 and f ' is locally increasing at x0 
    (that is, f ' changes sign from negative to positive)

    ⟹  ∃ δ > 0 such that 
f ' (x) ≤ 0 if x0 - δ < x < x0

f ' (x) ≥ 0 if x0 < x < x0 + δ
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    ⟹ 
f is monotonically decreasing on (x0 - δ, x0)

f is monotonically increasing on (x0, x0 + δ)

    

    ⟹  
f (x) ≥ f (x0) if x0 - δ < x < x0

f (x) ≥ f (x0) if x0 < x < x0 + δ
  ⟹  f  has a local minimum at x0.

Theorem (Sufficient condition for a local extremum, second derivative test).  
Assume that f  is twice differentiable at x0 ∈ intDf .
 If f ' (x0) = 0 and f '' (x0) ≠ 0 then f  has a local extremum at x0.

 If 
f '' (x0) > 0
f '' (x0) < 0

  then f  has a strict local 
minimum
maximum

  at x0.

Proof. f '' (x0) > 0  ⟹ f ' is locally increasing at x0 and f ' (x0) = 0
    ⟹ by the previous theorem f  has a local minimum at x0.

Remark. The sign change of f ' at x0 is only a sufficient but not a necessary condition 
      for the existence of a local extremum at x0.

          For example, if f (x) =
x2 2 + sin

1

x
if x ≠ 0

0 if x = 0
          then f  is differentiable for all x ∈ . At x = 0:

          f ' (0) = lim
x0

f (x) - f (0)

x - 0
= lim
x0

x2 2 + sin
1

x

x
= lim
x0

x 2 + sin
1

x
= 0  (since it is 0 ·bounded),

          so the necessary condition holds at x0 = 0.
          However, in any neighbourhood of x0 = 0:
          f  has strictly monotonic increasing and decreasing sections  ⟹ 
          f ' has both positive and negative values ⟹
          f ' doesn’t change sign at x0 = 0.
         Yet f  has a local extreme value at x0 = 0, and it is even an absolute minimum here.          

f(x)=x2(2+sin(1/x))

y=x2

y=3x2

-0.10 -0.05 0.00 0.05 0.10

0.01

0.02

0.03

0.04

      

f'(x)

-0.3 -0.2 -0.1 0.1 0.2 0.3

-1

1

2

Local extremum and higher order derivatives

Remark. If f ' (x0) = 0 and f '' (x0) = 0 then it cannot be decided whether f  has a local 
          extremum at x0. For example:
          1) f (x) = x3 does not have a local extremum at x0 = 0,
          2) f (x) = x4 has a local minimum at x0 = 0,
          3) f (x) = -x4 has a local maximum at x0 = 0, and in each case f ' (0) = f '' (0) = 0.         
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Theorem. (1) Assume that f  is 2 k times differentiable at x0, k ≥ 1.

        If f ' (x0) =. .. = f 2 k-1(x0) = 0  and 
f 2 k(x0) > 0

f 2 k (x0) < 0

        then f  has a strict local 
minimum
maximum

  at x0.

  (2) Assume that f  is 2 k + 1 times differentiable at x0, k ≥ 1.
        If f ' (x0) =. .. = f 2 k(x0) = 0  and f 2 k+1(x0) ≠ 0, then f  is strictly monotonic
        in a neighbourhood of x0, so f  doesn’t have a local extremum at x0.

Proof. (1) We prove the statement for a strict local minimum by induction.
(i) If k = 1 then the statement is true.

         (ii) Assume that the statement holds for k - 1 and let g = f ''.
     (⟹ g ' = f ''', ..., g2 k-3 = f 2 k-1, g2 k-2 = f 2 k.)
     From the induction hypothesis it follows that
     if g ' (x0) =. .. = g(2 k-3)(x0) = 0 and g(2 k-2)(x0) > 0 then the function
     g = f '' has a strict local minimum at x0.

       (iii) We want to prove that if 
     f ' (x0) = f '' (x0) = f ''' (x0) =. .. = f (2 k-1)(x0) = 0 and f (2 k)(x0) > 0 then 
     f  has a strict local minimum at x0.

            Since f '' (x0) = 0 and f '' has a strict local minimum at x0,
            then ∃ δ > 0 such that f '' (x) > 0,  ∀ x ∈ (x0 - δ, x0 + δ) \ {x0}

               ⟹ f ' is strictly monotonically increasing on (x0 - δ, x0 + δ)

               ⟹ f ' is strictly locally increasing at x0

               ⟹ f  has a strict local minimum at x0.
               
    (2) Assume that f ' (x0) = f '' (x0) =. .. = f (2 k)(x0) = 0  and f (2 k+1)(x0) ≠ 0.
          Let g = f ', then g ' (x0) =. .. = g(2 k-1)(x0) = 0  and g(2 k)(x0) ≠ 0.
          ⟹ by part (1), g = f ' has a strict local extremum at x0.
          Since f ' (x0) = 0, then either f ' (x) > 0 or f ' (x) < 0,  ∀ x ∈ (x0 - δ, x0 + δ) \ {x0}

          ⟹  f  is strictly monotonic on (x0 - δ, x0 + δ)

          ⟹  f  doesn’t have a local extremum at x0

Example. f (x) = xn is n times differentiable,
f k(x) = n(n - 1) (n - 2) ... (n - k + 1) xn-k, k = 1, 2, ..., n - 1
f (n)(x) = n !
⟹  if  x0 = 0,  then  f ' (0) = f '' (0) =. .. = f (n-1)(0) = 0,  f (n)(0) = n ! > 0
⟹  at x0 = 0  f  has a local minimum if n is even and f  doesn’t have a local
         extremum if n is odd.
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f(x)=x2 n
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f(x)=x2 n+1

-2 -1 1 2

-2
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Convexity / concavity on an interval

Theorem (Necessary and sufficient condition for convexity).
If f  is differentiable on the interval I, then the following statements are equivalent.
(1) f  is convex on I
(2) f (x) ≥ f (a) + f ' (a) (x - a)  if x, a ∈ I
(3) f ' is monotonically increasing on I

Remark. The geometrical meaning of (2) is that for all a ∈ I, the graph of f
          lies above the tangent line at a.

Proof of  (1) ⟹ (2):

f

hax

a xy

f(y)

hax(y)    y = λ a + (1 - λ) x
hax(y) = λ f (a) + (1 - λ) f (x)
f is convex ⟹ f (y) ≤ hax(y)

    If a < x and y ∈ (a, x) then ∃ λ ∈ (0, 1) such that 
            y = λ a + (1 - λ) x   ⟹ y - a = (λ - 1)a + (1 - λ) x
      ⟹ y - a = (1 - λ) (x - a)
    f  is convex    ⟹  f (y) ≤ λ f (a) + (1 - λ) f (x)
             ⟹ f (y) - f (a) ≤ (λ - 1) f (a) + (1 - λ) f (x)
             ⟹ f (y) - f (a) ≤ (1 - λ) (f (x) - f (a))
    Dividing both sides by y - a = (1 - λ) (x - a) > 0:

    
f (y) - f (a)

y - a
≤
f (x) - f (a)

x - a

    If y⟶a +, then f ' (a) ≤
f (x) - f (a)

x - a
  ⟹  f (x) ≥ f (a) + f ' (a) (x - a)  if x, a ∈ I.

    If a > x then the proof is similar and if a = x then the statement is obvious.   
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f

a

Ta(x)=f(a)+f'(a)(x-a)

Proof of  (2) ⟹ (3):
Let Ta(x) = f (a) + f ' (a) (x - a).
If a, b ∈ I, a < b  ⟹  Ta(a) = f (a) ≥ Tb(a)

Ta(b) ≤ f (b) = Tb(b)

  and

⟹  f ' (a) =
Ta(b) - Ta(a)

b - a
=
Ta(b) - f (a)

b - a
≤
f (b) - Tb(a)

b - a
=
Tb(b) - Tb(a)

b - a
= f ' (b)

⟹  f ' is monotonically increasing on I

f

a b

Ta Tb

Ta(b)Tb(a)

Tb(b)=f(b)Ta(a)=f(a)

f

a b

Ta Tb

Ta(b)Tb(a)

Tb(b)=f(b)Ta(a)=f(a)

Proof of  (3) ⟹ (1):
Let a, b ∈ I, a < b, λ ∈ (0, 1) for which  x = λ a + (1 - λ) b

⟹  x - a = (1 - λ) (b - a)
b - x = λ(b - a)

Then by Lagrange’s mean value theorem there exist 

c1 ∈ (a, x)  and  c2 ∈ (x, b) such that  
f (x) - f (a)

x - a
= f ' (c1) and f ' (c2) =

f (b) - f (x)

b - x
.

f ' is monotonically increasing  ⟹  f ' (c1) ≤ f ' (c2)

⟹ 
f (x) - f (a)

x - a
≤
f (b) - f (x)

b - x

⟹ 
f (x) - f (a)

(1 - λ) (b - a)
≤
f (b) - f (x)

λ(b - a)
⟹ f (x) ≤ λ f (a) + (1 - λ) f (b)  ⟹  f  is convex on I.
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a bx

f

c1 c2

Consequence (Necessary and sufficient condition for convexity). 
Assume that f  is twice differentiable on the interval I. Then
(1) f '' (x) ≥ 0 ∀ x ∈ I   if and only if   f  is convex on I.
(2) f '' (x) ≤ 0 ∀ x ∈ I   if and only if   f  is concave on I.

Consequence. 
Assume that f  is twice differentiable on the interval I. Then
(1) If  f '' (x) > 0 ∀ x ∈ I  then  f  is strictly convex on I.
(2) If  f '' (x) < 0 ∀ x ∈ I  then  f  is strictly concave on I.

Inflection point

Definition. Assume that f  is continuous at a ∈ intDf  and there exists δ > 0 such that
    f  is convex on (a - δ, a) and concave on (a, a + δ)

    or  f  is concave on (a - δ, a) and convex on (a, a + δ).
   Then a is called a point of inflection of the function f .

Theorem (Necessary condition for an inflection point, second derivative test).
If f  is twice differentiable at x0 and f  has an inflection point at x0 then f '' (x0) = 0.

Proof. If f  is convex on (x0 - δ, x0] and concave on [x0, x0 + δ) then
     f ' is monotonically increasing on (x0 - δ, x0] and monotonically decreasing on [x0, x0 + δ)

     ⟹  f ' has a local maximum at x0  ⟹  f '' (x0) = 0.

Theorem (Sufficient condition for an inflection point, second derivative test).
If f  is twice differentiable in a neighbourhood of x0,
f '' (x0) = 0 and f '' changes sign at x0, 
then f  has an inflection point at x0.
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Theorem (Sufficient condition for an inflection point, third derivative test).
If f  is three times differentiable in a neighbourhood of x0, 
 f '' (x0) = 0 and f ''' (x0) ≠ 0,
 then f  has an inflection point at x0.

Inflection point and higher order derivatives

Theorem. (1) Assume that f  is 2 k + 1 times differentiable at x0, k ≥ 1.
        If f '' (x0) =. .. = f 2 k(x0) = 0  and f 2 k+1(x0) ≠ 0
        then f  has an inflection point  at x0.
  (2) Assume that f  is 2 k times differentiable at x0, k ≥ 1.
        If f '' (x0) =. .. = f 2 k-1(x0) = 0  and f 2 k(x0) ≠ 0, then f  is strictly convex or concave
        in a neighbourhood of x0, so f  doesn’t have an inflection point at x0.

Linear asymptotes

Definition. The straight line x = a is a vertical asymptote of the function f  if 
    lim
xa+

f (x) = ±∞  or  lim
xa-

f (x) = ±∞.

Definition. The straight line g(x) = A x + B  is a linear asymptote of the function f  at ∞  or -∞ if
    lim
x∞

(f (x) - g(x)) = 0  or lim
x-∞

(f (x) - g(x)) = 0.

    g(x) is a horizontal asymptote if A = 0 and an oblique or slant asymptote if A ≠ 0.

Statement. g(x) = A x + B is a linear asymptote of f  at ±∞ if and only if

   A = lim
x±∞

f (x)

x
   and   B = lim

x±∞
(f (x) - A x)

Example. lim
xπ

2
±

tan x = ∓∞  ⟹  x =
π

2
 is a vertical asymptote of f (x) = tan(x).

Example. If f (x) = x + 2 +
1

x
  then g(x) = x + 2 is a linear asymptote of f  at ±∞.

f(x)=x+2+ 1
x

-3 -2 -1 1 2 3

-5

5

10

   
f(x)=x e

2

x

-4 -2 2 4

5

10

15

Example. If f (x) = x e
2
x   then g(x) = x + 2 is a linear asymptote of f  at ±∞.

Solution. A = lim
x±∞

f (x)

x
= lim
x±∞

x e
2
x

x
= lim
x±∞

e
2
x = e0 = 1
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B = lim
x±∞

x e
2
x - x = lim

x±∞

e
2
x - 1

1
x

. Let y =
2

x
, then B = lim

y0±

ey - 1
1
2
· y

= 2,

using that lim
x0

ex - 1

x
= 1. The limit can also be calculate with the L’Hospital’s rule.

So g(x) = x + 2.

Extreme values on a closed interval

Remark. If f  is continuous on a closed and bounded interval then by the 
          Weierstrass extreme value theorem f  has a minimum and a maximum.
          The possible points are:
          1) the points where f  is not differentiable
          2) the points where the derivative of f  is 0
          3) the endpoints of the interval 
          Finally the largest and smallest of the possible values must be selected.
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