17th and 18th lectures

The exponential function

X\n
Definition. The function f(x) = lim (l + —) is called the exponential function of base e.

N—oo n

Notation: e*, exp,(x) or exp(x).

Statement. eV =e*e¥ Vx, yeR.

n-1
Proof. Using the identity a” - b" = (a - b) Zak b"*"* and choosing n large enough such that

k=0
X+
1+

X y
>0, 1+->0and 1+ - >0, we get that
n

n n

X+ y\n X\n n xy | =1 X+ Yk X n-1-k

(22 (2] () =22 S 2 (2 a2
n n n n” 15 n n n

(l 0)k< 1 ifa<o

+—] <

n e’ ifa>0

Here
(1+ X+y)k((1+g)-(1+f))n_l_ksK

™M

So

where K = max {1, e*¥}-max {1, e}-max {1, e’}, therefore

[ (e ) =2 ()

1
Statement. If xeR, thene*>0,e*21+x,andif x<1,thene*s—.
1-x

X K | x 0
Sl yl-nK: | )/|n;)0

n? n

Proof. 1) If x =2 0 then from the definition it follows that * > 0.

1
If x<0theneX= — >0, sincee™ > 0.
-

X
2) If ne N* such that n 2 —x, then — 2 -1, so by the Bernoulli inequality
n

X\n X
(1+—) 2l+n—=1+x
n n
By the monotonicity of the limite* =1 + x.

1 1
3) Ifx<lthene™®21+(-x)>0 = e¥=— <

e—)(

1—)('

Statement. f(x) = €~ is continuous at 0.

1
Proof. If x <1then 1+ x <eX¥<——, so from the sandwich theorem lime* = e = 1.

1-x x-0



2 | calculus1-17-18.nb

Consequence. f(x) = e’ is continuous.

Proof. lim e* = e*0 lim ¥ = ¥ |ime* = e*0.
X-Xo X-Xo Xx-0

Statement. f(x) = ¥ is strictly monotonically increasing and its range is (0, o).

Proof. 1) Let x, y e R such that x < y. We have to show thate* < ¢”.
Sincey-x>0thene’™*21+(y-x)>1
andsincee* >0thene’ =eV V¥ =gV X X5 1-e* =¥,
2) sup R =co.Sincee* 21+ x and lim(1 + x) = «, SO lxigge’(:oo.

x-0

3) inf R¢ = 0. Since f(x) = €* is strictly monotonically increasing, then
lim e*=lime™=lim— =0.
X =00 X= o0 X 00 X

4) By the intermediate value theorem the range of f is an interval, so R = (0, ).

Definition. Denote In = log, the inverse of f(x) = e*, so el"* =neX

D, = Rexp = (O, oo) and Rin= Dexp =R.

=X.

Differentiation

The derivative

Definition. Suppose that x, is an interior point of Ds. Then the function f is
differentiable at x if the following finite limit exists:

. ) =f(x) = flxo+h)=f(x)
f'(xg) = lim =lim
XX X =X h-0 h

df
The number f' (xy) = ™ (Xo) € Ris called the derivative of f at xq.
X

f(x)

f(xo) f(xo)

|
1 1 1
/ Xo X 7~ Xo

Remark. f' (xq) gives the slope of the tangent line of the graph of f at the point (xg, f(X))-
The equation of the tangent line is y = f(xg) + ' (xo) (X = Xo)

' o fx)-f(x) . c-c
Examples.1)f(x)=c = f'(xp) =Xl|nX1 . =Xl|nX1 .
X0 - Xo X0 X — Xg

=0 VX()G[R.
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f(x) = f(xo) X =Xo
2)f(x)=x = f'(x)=lim——— =lim =1 VxeR.
X—=>Xp X—XO X—)Xox_XO
x> -x;

3)f(X)=x> = f'(xo)=lim =limx+x)=2xy VxpeR.

X=Xo X = Xg X-Xo
Find the tangentlineof f at x, = 1. Then f(1) =1, f'(1)=2,
sothetangentlineisy=f(1)+f'(1)(x-1)=1+2(x-1)=2x-1.

7

One-sided derivatives

Definition. The left-hand and right-hand derivative f at a are

fo)-f Fx) - F
f.'(a)= lim f-fa) g £.' (@)= lim fx) -f(a)
x-a-0 X-a x-a+0 X-a

respectively, if these finite limits exist.

Theorem. Assume that a e int D. Then f is differentiable at a if and only if
f'(a)=£"(a)=1."(a)

Definition. Let a < b. Then f is differentiable on (a, b) if f is differentiable at x for all x e (a, b).
f is differentiable on [a, b] if f is differentiable on (a, b) and 3f,' (a), f.' (a) eR.
The derivative function of f is the function f':{xeDf: 3f' (x)}, x> f'(X)

Relation to continuity

Theorem. If f is differentiable at x, then f is continuous at x.

. () = f(xo0)
Proof. lim f(x) = lim | ——————— (x = xo) + f(x0) | ="' (Xg) -0 +f (x0) = f (xg).
X=Xo X=Xo X = Xo
Remark. Continuity is necessary for differentiability but not sufficient.
ifx=0 fxX)-f0) (1 ifx>0
For example, letf(x)= | x | = X I X . Thenatxy=0: M= I x>
x ifx<0 X-0 -1 ifx<0
f(x) = f(x f(x) = f(x
— £ )= tim 2T and )= tim 0
X=Xo+0 X = Xo X-Xo—-0 X = Xo

= fis not differentiable at x, = 0.

Some interesting examples.
1) The following function is everywhere continuous but nowhere differentiable:

1 1 1
f(x)=lim[=sin2x+—sin4x+..+— sin(2" x)
n-eo\ 2 4 2"
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2) The following function is differentiable only at x, = 0 but discontinuous for all x e R\ {0}:
f(x)={ x* ifxeQ

-x* ifxeR\Q
f(x)-f(0 X2

Then|u|=|—|=|x|—>0ifx—>0
Xx-0 X

= f is differentiable at x, =0 and ' (0) = 0 but f is discontinuous if x 0.
Examples

Statement. f(x) =x" (neN"*) is differentiable on Rand f' (x) = n x"L.

n n

X
Proof. ' (a) =lim =lim(x" + x"2

x>0 x—q x-a

a+..+xa2+a")=na™!

Statement. f(x) = sin x is differentiable on R and f' (x) = cos x.

. . in X280 | o X 0 X2a
sinx-sina 2sin == -Cos = sin = x+a
1 . . .
Proof. f'(a)=lim =lim =lim - COS =1-cosa=cosa
X-a X—-a X>a X—-a x->a X=a 2
2
Statement. f(x) = cos x is differentiable on Rand f' (x) = —sin x.
0 X24 o X+ 0 X0
_ cosx-cosa  "2SInTEosinTEo o =sinTE o y4g _ _
Proof. ' (a) = lim———— =lim =lim -sin =-1-sina=-sina
X0 X—-a X-a X-a X0 X-a 2
2

Statement. f(x) = e* is differentiable on R and f' (x) = e*.

1 e*-1 1 1 1
Proof. If x<1 then 1+ x<e¥s— = 1< S(——l)-—=—

1-x X 1-x X 1l-x
e¥-1 1 . e*-1
= 1=<lim <lim—— =1 = lim =1
x-0 x x-0]1-x x=-0  x
X _ A0 X-a _
= f'(a)=lim =e%lim =e9-1=¢"
X=a x—q X=a x—q

Operations with the derivatives

Theorem. If f and g are differentiable at a and c e R then
(c-f), (f£g)and (f-g) are differentiable at a and
(1) (cf)'(a@)=c-f'(a)
(2) (fxg)'(a)=f'(a)g'(a)
(3) (f-9)'(a)=f"(a)-g(a) +f(a)-g'(a)

1 f
If g(a) + 0 then — and — are differentiable at a and
9 9

1 .
(4) (—)' (@)= _gz(a)
g g7(a)
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f], f'(a)-g(a) - f(a) g'(a)
(a

g 9%(a)
“f)(x) - (c-f “f(x)-c-f f(x)-f
Proof. (1) (cf)'(a)=lim €hHt-lehia) =limc ()~ cHa) =limc- (- a) =c-f'(a)
X—=>a X-0a X—=>a X-0a X—>a X-0a
f -(f f(x) - f -
2) (f+g)'(a)=lim( +9) () = ( +g)(a)=“m( () (a)+g(X) 9(0)]=f,(a)+g @
x=a X-a x=a\  x-q X-a

o (f-9)(x) - (f-g)(a) lim f(x)-g(x) -fla)-g(x) + 1 (a) g(x) -f(a)-g(a)

X=>a X-a

(3) (f-9)'(a)=li
X—=>a X-a

- nm(f(x) D )+ () 2022 (a)) = f'(a)-g(a) +f(0)-g' (a)

X-a X-a X-a

Lot 9(a)-g(x)
@) (}).(a)=“m 90 g . 9@-90) . " q _ 9'@)
X=a X-a X-a g(X) g(a) (X— CI) X=a g(x) g(a) 92(0)

f 1 1 g'(a
(5) (—)’(a)=[f——]'(a)zf'(a)-(—)(a)+f(a)-(— .
g g g g°(a)

Examples
1
Statement. (tan x)' = and (cotx)'=-
cos? x sin? x

sin x COS X+ COS X — Sin x - (-sin x) 1
Proof. (tan x)' =( )' = -

cos x cos? x cos? x

CoS X —Sin x-sin x — cos x-cos x 1

(cotx)':( - )‘: =—
sin x sin? x sin? x

Linear approximation
Theorem. The function f is differentiable at a if and only if it can be approximated by a linear

function at a, that is, there exists A € R (independent of x) such that

f(x)=f(a) +A(x - a) + &(x) (x— a), wherelime(x)=0.

Then A=f"(a).
f(x) - f(a)

X—-a

-f'(a).

Proof. 1) Assume that f is differentiable at a and let g(x) =
= f(x)=f(a)+f'(a)(x-a)+&(x)(x-a) and limg(x)=0.

2) Assume that f(x) =f(a) + A(x - a) + €(x) (x —a) and lime(x)=0.
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f(x)-1f(a)
=

=A+e(x)—Aifx—a
X-a

= f is differentiable ata and ' (a) = A.

Remark. If f is differentiable at a, then L(x) = f(a) + f' (@) (x — a) is the linearization of f at a.
The approximation f(x) = L(x) is the standard linear approximation of f at a.
Then lim (f(x) = L(x)) = 0.

Chain rule

Theorem (Chain rule). If g is differentiable at a and f is differentiable at g(a) then
fogisdifferentiable ataand (fog)'=f"(g(a))-g' (a).

Proof. 1) Since g is differentiable at a then there exists ¢; : D,— R such that

g(x)-g(a)=g'(a) (x-a)+ & (x)(x-a) and limeg(x)=0.

2) Since f is differentiable at g(a) then there exists €, : Df— R such that
f(t) - f(g9(a)) =" (g(a)) (t - g(a)) + &(t) (t - g(a)) and tﬂéﬂ(a) &(t)=0.

3) Substituting t = g(x):
f(g(x)) - f(g(a)) =" (9(a)) (9(x) - g(a)) + £2(g(x)) (9(x) - g(a)) =
=f"(g(a)) (9" (a) (x - a) + &1(x) (x - @) + £2(9(x)) (9" (a) (x — @) + £1(x) (x - a)) =
=f'(9(a)) g'(a) (x - a) + &(x) (x - a)
where
£(x) =f' (9(0)) 1) + £(9(%) ' (0) + £2(9(x)) £1(x)
If x> a then g(x)—0, so f o g can be linearly approximated at a
= f o g is differentiable at a and we obtain the chain rule.

Derivative of the inverse

Theorem. Assume that f is continuous and strictly monotonic on (a, b),

f is differentiable at c € (a, b) and f' (c) 0. Then £~ is differentiable at f(c) and

1
f—luf -
() (N =7

Proof. 1) Let ¢(x) = f1(x) = o(f(c))=c and f(@(y))=y Y y ef((a, b)).

2) Let Fx) = f(x) - f(c). Then 2V~ oflc) _oy)-c 1
X-c y-f(0 fle(y)-f(c) Flo(y)
3) @ is strictly monotonic = if y #f(c) then @(y) * ¢
4) If y £f(c) then @' (f(c))= lim M = limi = -
y>fe) y=f(c) y2ef(y) f'(0)
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1 1
Remark. a + = ' tanatanf=1 = (f!)'(f(c)) =tanB= =—
2 tana f'(c)
Remark. f(f(x))=x = f'(f(x)-(F)' (x)=1 = (F!)' (x) =
f'(F(x)
Examples
Statement. Let f(x)=x" (neN*, x+0) = f'(x)=-nx""
3r 3-
2 2r
1 —_— X_1 1 R X_2
1 2 3 x° -3 -2 1 2 3 Xt
— X f — x8
2}
-3t
' n-1
Proof: (i)&—g ) = f'(X)=(X‘”)'=(i)'=—nX =—nx"1
g(X) QZ(X) X” X2n

Statement. Let f(x) = Q/; (neN*). Then Df = [0, ) if nis even and Ds =R if nis odd.

1 .
= f'(x)=— x»""wherex>0ifnisevenand x 0ifn>1is odd.
n
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3r 30
2r 251
Tt — X 20f — X2
. _ X1/3 15F _ X1/4
-3 -2 -1 1 2 3
Zit x1/5 1.0} x1/6
o
0.0 : ; ; )
st 0 2 4 6 8
Proof. Using the derivative of the inverse:
f)=y=Vx = x=Fy)=y", () )=ny"*
1 1 1 1 1o,
:f‘()(): = = = l:—)(n_
(O et noy™ g ( V})n_l nx‘
If n>1is odd then f'(0) doesn’t exist and if n is even then £, ' (0) doesn’t exist.
(The tangent line at 0 is vertical.)
P . . p £,
Statement. f(x) = x7 (peZ, geN*, x> 0) is differentiable and ' (x) = — xa .
q
. . 1 1, 1 2
Proof. Using the chain rule: f' (x) = — (x")s -pxP* == xa
q
Statement. f(x) =x® (aeR, x > 0) is differentiable and f' (x) = a x*™1.
30 3.0
25 2.5 — X
12
X
20f 2.0 x1/2
-1
150 X 15 — X'
— X732
1.0f 1.0 — x2
-2
05} — X 05 32
0.0 ; ; ; ; ; ' 0.0 ; ; ; ; ; )
0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0
1 a
Proof. Using the chain rule: f' (x) = (x%)' = (e*'™)' = e*" - - = =x*-— = ax*?
X X

Statement. f(x) = a* is differentiable forall xeRand f' (x) = a*-In a.

Proof. Using the chain rule: f' (x) = (¢*)' = (¢*"?)' =e*"*-Ina=a"-Ina

1
Statement. f(x) = In x is differentiable forall x>0 and ' (x) = —.
X

Proof. Using the derivative of the inverse: f(x)=Inx, f(x)=¢*, (f')' (x)=¢
1 1 1
—3 f' ()() = = = -
(f—l)l (f(X)) elnX X
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1
Statement. f(x) = log, x (0<a#*1, x>0)is differentiable and f' (x) = e
xlna

Inx 1 1 1
Proof.f'(x):(logax)'z(—)'z—‘(lnx)'=—-—
Ina Ina lna x

Trigonometric functions and their inverses

Remark. The sine, cosine, tangentand cotangent functions are periodic, so they are

not invertible on their whole domains. In order to define their inverses, they must be
restricted to suitable intervals where they are one-to-one.

Definition. The arcsine function is the inverse of the restriction of the sine function

. T . . -1
to themterval[——,— : arcsm:(sm |[__n _n])
2 2 272

The arccosine function is the inverse of the restriction of the cosine function

to the interval [0, 7] : arccos = (cos | o) "
T Tt
Daresin = [-1, 1] and Ryresin = [_E’ _]

2
Darccos =[=1, 1]1and Rarecos = [0, 71

The derivatives are

1 1
arcsin' (x) = (arcsin x)' = — — = _ =
sin'(arcsinx)  cos(arcsin x)
1 1
= = , xe(-1,1).
\jl—sinz(arcsinx) \/l—x2
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1 1
arccos' (x) = (arccos x)' = = =
cos'(arccos x)  —sin(arccos x)
1 1
=- =- , xe(-1,1).

\/l - cos?(arccos x) 1-x2

Definition. The arctangent function is the inverse of the restriction of the tangent function

. T JT -1
to the interval (——, —) : arctan = (tan |(_g _n))
2 2 272

The arccotangent function is the inverse of the restriction of the cotangent function
to the interval (0, 1) : arccot = (cot | (o,n)"
JT 7T)

Darctan = R and Rarctan = (__, -
2 2

Darccot =R and Ryrecot = (0, 17)

1 | tan(x) |
l 1 1 l I arctan(x)
| | | A 17—
| | | L T A
| 1 1 | 2
cot(x)
T

e ____

3

|
(NN

15

5-

w

3

N

S|

=1+tan’x,and (cotx)'=- = —(1 + cot® x), the derivatives are
cos? x sin? x

1 1 1
arctan'(x) = (arctanx)'= = =
tan'(arctanx) 1+tan?(arctanx) 1+x2

Using that (tan x)' =

arccot' (x) =-
1+x?
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Hyperbolic functions and their inverses

e’ —-e
Definition: Hyperbolic sine function: sinhx = , XeR
. ) ) ef+e™
Hyperbolic cosine function: cosh x = , XeR
. ) sinhx e*-e™
Hyperbolic tangent function: tanh x = = , xeR
coshx e +e™”
. . coshx e‘+e”
Hyperbolic cotangent function: coth x = = , xeR\{0}
sinhx e‘-e”
4r 4+
n | coth(x)
cosh(x) I
sinh(x)
R S R S e 23
ol Ll tanh(x)
4L L
Properties:
1) sinh: e Dgiyp =R, Rsjnh =R 2) cosh: @ Dcogh =R, Reosh = [1, )
e |im sinhx=*o e lim coshx=o0
X—>too X—too
e strictly monotonically increasing, e strictly mon. decreasing on (-0, 0],
continuous, odd strictly mon. increasing on [0, ),
continuous, even
3)tanh: e Diypp =R, Rianh = (-1, 1) 4) coth: e Doy =R\ {0}, Reoth = (o0, =1) U (1, o0)
e limtanhx=%1 e limcoshx=%1, lim coshx=%c
X—*oo X—>%o0 Xx- 0£0
e strictly monotonically increasing, e strictly mon. decreasing on (-oo, 0)
continuous, odd and (0, ), continuous, odd

Remark. If a chain or arope is suspended at two points, then its shape is called a catenary curve and
it is the graph of the hyperbolic cosine function.
See https://en.wikipedia.org/wiki/Catenary

Some identities:

1.cosh?x-sinh?x=1 5. cosh 2 x = cosh? x + sinh? x
. . . 5 cosh2x+1
2.sinh(x £ y) =sinh x cosh y £ cosh x sinh y 6.cosh® x= —
2
. . _— cosh2x-1
3.sinh 2 x =2 sinh x cosh x 7.sinh“ x= —
2

4. cosh(x £ y) = cosh x cosh y £ sinh x sinh y
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Area hyperbolic functions

The inverse hyperbolic functions are the area hyperbolic functions.

Definition: Area hyperbolic sine: arsinh =sinh™, Darsinh =R
Area hyperbolic cosine: arcosh = (cosh |[0,w))‘1, Darcosh =[1, o)
Area hyperbolic tangent:  artanh =tanh™, Dartanh = (-1, 1)
Area hyperbolic cotangent: arcoth =coth™, Darcoth = (=00, =1) U (1, o)

arcoth(x)

arcosh(x)

a2 2 4 6
arsinh(x) /_;t

Theorem.

1) arsinhx:ln(x+ \jx2+l) V xeR
2) arcoshx:ln(x+ \]xz—l) V xel[l, o)

1 1+x
3) artanhx=-In Vxe(-1,1)
2 1-x
1 x+1
4) arcothx=-In V X € (—o0, =1) U (1, o)
2 x-1
earsinhx_e—arsinhx
Proof. 1) x =sinh(arsinhx)=———  xeR
2
1
y -2

Lety:earSinhX>O=>X=—y:yz—ZXy—l=0
2

= J12=

Sincey>0 = y=x+ Yx?+1 =e*nx — arsinhx:ln(x+ \jx2+1)

2), 3), 4): homework

2x% \j24x2+4 I ey

Derivatives
Theorem.
1
1) (sinhx)'=coshx VxeR 5) (arsinhx)'= VxeR
x*+1
1
2) (cosh x)'=sinh x VxeR 6) (arcoshx)'= V xe(l, )
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3) (tanhx)'=

Vxe(-1,1) 7) (artanhx)'=
cosh” x 1-x

4) (cothx)'=-

Vxe(-1,1)

V x e R\ {0} 8) (arcothx)'=

V x € (-0, —=1) U (1, o)
sinh? x 1-x

Some proofs.

cosh? x—sinh? x=1 = coshx = sinh? x + 1
sinhx= 4/cosh?x -1

) 1 1 1
5) (arsinh x)' =

sinh' (arsinh x) - cosh(arsinh x) - \/sinhz(arsinhx) +1 \/Xz +1
1 1

cosh' (arcosh x) - sinh(arcosh x) B \/coshz(arcosh X) -1 B ‘/)(2 -1

6) (arcosh x)' =

(x>1)

Mean value theorems

Local extremum

local minimum

at the point a e int Dy, if there exists

Definition. The function f has a .
local maximum

f(x)zf(a)
f(x)<f(a)
f has a local extremum at a if f has a local minimum or maximum at a.

0>0suchthatifxe(a-6, a+6),then{

Theorem (Necessary condition for the existence of a local extremum).
If f is differentiable at a € int Df and has a local extremum at a then ' (a) = 0.

Proof. Assume that f has a local maximum at g € int Dy.

) - f o) - f
M09 26 = fri@y=£ (@)= tim 2@ 5 g
X-a X-a- X-a

fx) - f fx)-f
9= o f'(a)=Ff."(a) = fim 071D g

X-0a X=>0+ X-0a

lfa-6<x<athenf(x)<f(a) =

lfa<x<a+dthenf(x)sf(a) =

= f'(a)=0.

f(a)
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Rolle’s theorem

Theorem (Rolle). Assume that f : [a, b]— R is continuous on [a, b], differentiable on (a, b)
and f(a) = f(b). Then there exists c € (a, b) such that f' (c) = 0.

a ¢y c, b

Proof. Since f is continuous on the closed and bounded interval [a, b] then by the Weierstrass
extreme value theorem f has a minimum and a maximum on [a, b].
1) If both extreme values are attained at the endpoints, then
f(x)=f(a)=f(b)forall xe[a, b] = fis constant
= f'(c)=0forallce(a, b).
2) If the minimum or the maximum is attained at an interior point c € (a, b),
then f has a local extremum at ¢, so f'(c) = 0.

Lagrange’s mean value theorem

Theorem (Lagrange’s mean value theorem).
Assume that f : [a, b]— R is continuous on [a, b], differentiable on (a, b).
f(b) - f(a)

Then there exists c € (a, b) such that f' (c) = b
-a

Geometrical meaning: There exists a point in the interval where the slope of the tangent line
is the same as the slope of the secant line connecting the endpoints of the graph.

Proof. The equation of the secant line connecting the points (a, f(a)) and (b, f(b)) is

f(b) - f(a)
y=hap(x)= o (x -a) +f(a).
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f(b) - f(a)
Let g(x) =f(x) — hgp(x) =f(x) - b— (x=a)-f(a). Then

1) g is continuous on [a, b]
2) g is differentiable on (a, b)
3)g(a)=9g(b)=0
= by Rolle’s theorem there exists c € (a, b) such thatg'(c)=0

f(b) -f(a)
=>g'(c)=f‘(c)—b—=0.

Remark. Rolle’s theorem is a special case of this theorem.

Cauchy’s mean value theorem

Theorem (Cauchy’s mean value theorem).
Assume that f, g : [a, b]— R are continuous on [a, b], differentiable on (a, b)
and g' (x) 0 forall xe(a, b). Then
1) g(a) * g(b) and

f'(c
2) there exists c € (a, b) such that .( ) =

Proof. 1) If g(a) = g(b) then by Rolle’s theorem there exists c € (g, b) such that
g'(c)=0which is a contradiction.
2) Let h(x) = (g(b) - g(a)) f(x) - (f(b) - f(a)) g(x). Then
e his continuous on [a, b]
e his differentiable on (a, b)
* h(a) = h(b) =f(a) g(b) - f(b) g(a)
= by Rolle’s theorem there exists c € (a, b) such that
f'(c) f(b)-1f(a)
h'(c)=(g9(b) - g(a)) f'(c) - (f(b) - f(a))g' (c) =0 = —— = :
g'(c) g(b)-g(a)

Remark. Lagrange’s mean value theorem is a special case of this theorem with g(x) = x.

Consequence. Assume that f : [a, b]— R is continuous on [a, b], differentiable on (a, b)
and f'(x)=0forall xe(a, b). Then f(x) = ¢ (constant) for all x e [a, b].

Proof. By Lagrange’s mean value theorem for all [x;, x,] € [a, b] there exists c € (x1, x;)

. f(x1) - f(x2)
suchthatf'(c)=———— =0 = f(x;) =f(x,) forall x; # x,
X1 — X2

= fis constant.

Remark. If Dy is not an interval then the statement is not true.

Consequence. Assume that f, g :[a, b]—R are continuous on [a, b],
differentiable on (a, b) and f' (x) = g' (x) for all x € (a, b).
= JceR suchthatf(x)=g(x)+c V¥ xe]a, b].

Proof. Apply the previous theorem for f — g.
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Exercises

Exercise. Prove that f(x) = x” + 14 x - 3 has exactly one root.

Solution. f(0) <0 and f(1) >0 = by the intermediate value theorem f has a root on (0, 1).
Assume that f has at least two roots: f(x;) = f(x;) = 0.
Then applying Rolle’s theorem on [xy, x,]: there exists ¢ € (x1, x,) such that f' (c) = 0.
However, f' (x) =7 x® + 14 > 0, which is a contradiction.

Exercise. Prove that if x < y then arctan y —arctanx < y - x.

. , fy)-f(x)
Solution. f(x) = arctan x = by Lagrange’s theorem3dce(x, y): — =f'(c)

arctan y — arctan x 1
= = <1 = arctany-arctanx<y - x.
Y- X 1+c?

Exercise. Prove that | cosx-cosy | < | x-y | forallx, yeR.

Solution. Let f(x)=cosx and x>y = by Lagrange’s theorem 3 ce(y, x):
f(x)-f(y) cosx-cosy

=f'(c)=-sinc
X=y X=y
= | cosx-cosy|=|(-sinc)-(x-y)| < |x-y]|.

Remark. From this it follows that f(x) = cos x is uniformly continuous on R, since forall € >0, 6 = ¢.



