Calculus 1, 15th and 16th lectures

Properties of continuous functions

Topological characterization

Theorem. Suppose that f: UcR— R is a function. Then the following statements
are equivalent.
(1) f is continuous on U,
(2) for all open set V c f(U) := {f(x) : x € U}, the preimage of V/,
(V) :={xeU:f(x)eV}is open.

Proof. (1) = (2)
Suppose that f is continuous on U and V c f(U) is open. Let a e f (V) then f(a) e V.
Since V is open, then there exists € > 0 such that B(f(a), €) c V.
Since f is continuous at g, then for this ¢ there exists 6 > 0 such that if x e B(a, 6),
then f(x) e B(f(a), €) c V.
It means that B(a, 6) c f-1(V), so f1(V) is open.

(2)=(1)

Suppose that the preimage of each open set is open.

It means that if a e U, then the preimage of B(f(a), €) is open, so for this ¢ there exists 6 >0
such that f(B(a, 6)) c B(f(a), €), so f is continuous at a.

Intermediate value theorem

Theorem (Intermediate value theorem or Bolzano’s theorem).
Assume that f is continuous on [a, b], f(a) # f(b) and f(a) < c < f(b) or f(b) < c < f(q).
Then there exists x, € (a, b) such that f(xp) =c.

Proof. We prove the case f(a) < c < f(b). The point xq can be found with an interval halving method.

a+b
1st step: Consider the midpoint —— of the interval [a, b]. There are three cases:
2

a+b a+b
If f >C = a;:=0a, b;:=
2
a+b a+b
If f <c=a;:=——, b;:=b
2 2
a+b a+b
Iff =C = Xp:=
2 2
al+b1

2nd step: Consider the midpoint

of the interval [a;, b;]. There are again three cases:

al+b1

al+b1
|ff( )>c=>02:=al, bz:=
2
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ar+b ar+b
|ff( ! 1)<C:>CIZ:= ! l,b2:=b1
2 2

Iff(al+bl)=c = Xg:= 01 + by
2 2
Continuing the above procedure, we either reach x; in one of the steps, or we define
the sequences (a,) and (b,) such that

la, b] o [ay, bi] 2 [ay, bo] > ... 2 [ap, byl 2 [An41, bpia] 2 ..,

and
b-a bi-a; b-a b-a
bl—alZ—, b2—02= = ,...,bn—an=—,...
2 2 22 2"
From this it follows that lim (b, — a,,) = 0, so by the Cantor axiom there exists a unique

N—>oco

element x, € [a, b] such that ﬂ[an, bnl = {Xo}-

n=1

Then a,— Xy, b,— X, so by the continuity of f we have that limf(a,,) = f(xg) = limf(b,),

and since f(a,) < c<f(b,), it follows that f(x;) = c.

Consequence (Bolzano’s theorem).
Assume that f is continuous on [a, b] and f(a) f(b) < 0.
Then there exists xq € (a, b) such that f(xg) = 0.

Remark. The above two theorems are equivalent.

Weierstrass extreme value theorem

Remark. Recall by the Heine-Borel theorem that K c R is compact < K is closed and bounded.
= the interval [a, b] is compact.

Theorem (Weierstrass boundedness theorem).
If f is continuous on [a, b], then f is bounded on [a, b].

Proof. 1) Indirectly, suppose that for example f is not bounded above.
Then for all n e N there exists x, € [a, b], such that f(x,,) > n.
2) Obviously x, € [a, b] for all n e N, so the sequence (x,) is bounded, and thus
by the Bolzano-Weierstrass theorem there exists a convergent subsequence (x,,) such that

Lim Xn, = a€la, b].

. . . k—oo .
3) Since f is continuous at a and x,, — a then limf (x,, ) = f(a), so the sequence
k=0

(f (xn,)) is bounded.
4) Since the index sequence (ny) is strictly monotonically increasing, then n, = k
= f(x,,)>nczkforallke N = the sequence (f (x,,)) is not bounded above

(it diverges to +). This is a contradiction, so f is bounded above on [q, b].
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Theorem (Weierstrass extreme value theorem).
If f is continuous on the closed interval [a, b] then
there exist numbers a € [a, b] and B e[a, b], such that
f(a) < f(x)<f(B)forall x e[a, b],
that is, f has both a minimum and a maximum on [a, b].

Proof. 1) Let A=f([a, b]) ={f(x): x €][a, b]}.
By the previous theorem A is bounded, so by the least-upper-bound property of the
real numbers, 3sup A:=MeR. We prove that 3 Be|[a, b], such that f(8) = M.

1
2) Since M is the least upper bound, then for allne N, M - — is not an upper bound for A, so
n

1
d x, e[a, b] such that f(x,) >M - —.
n

1
Since M is an upper bound for A, we have M- — <f (x,)<MforallneN.
n

3) The sequence (x,) c[a, b] is bounded, so by the Bolzano-Weierstrass theorem
there exists a convergent subsequence (x,, ) such that ‘l(im Xn, =B €la, b].

1 1 jse
4) Then M - — <f(x,,) <Mforall keN. Since — k—>0, then by the sandwich theorem
Nk Ny

(X)) 23 M,
. . . k—)oo
5) Since f is continuous at g and x,, — 8 then ‘l(im f (Xn,) = f(B).
The limit is unique, to f(8) = M.
6) The existence of a € [a, b] can be proved similarly.

Remark. If f is not continuous or if the interval is not compact, then the theorem is not true.
ifx+0

0 ifx=0
Then a) f is continuous on (0, 1] but not bounded and doesn’t have a maximum
b) the interval [-1, 1] is compact, but f is not continuous here and doesn’t have a

For example, let f(x) :{ X

minimum and a maximum
c) f is continuous and bounded on[1, ), but doesn’t have a minimum

Remark. It follows from the intermediate value theorem and the extreme value theorem that
if f is continuous on [a, b], then the range of f is a closed and bounded interval:
f([a, b]) =[c, d], where c=min{f(x): x e[a, b]} and d = max {f(x): x €[a, b]}.

Continuous image of a compact set is compact

Theorem. Suppose that f: Ec R—Ris a function and H c E is a compact set.
If f is continuous on H, then f(H) is compact.
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Proof. 1) Let K =f(H) ={f(x) : x e H}.
To prove compactness of K, it is enough to show that every sequence in K has a
convergent subsequence whose limit belongs to K.
2) Let (y,) € K be a sequence, then 3 x,, € H such that f(x,) = y, forallneN.
3) Since His compact and (x,) c H, then there exists a convergent subsequence
(xp,) such that E_sz,,k =aeH.

4) Since f is continuous at a, then Em Vn, = Em f (xn,) = f(a) € K, so K is compact.

Uniform continuity

Introduction. Recall that f : H cR— R is continuous on H if f is continuous for all x e H,
thatis,VxeH Ve>0 3I6>0suchthatVyeH, |x-y| <6 = |f(x)-f(y)]| <e.
Here 6 = 6(¢, x), that is, continuity at a point is a local property. In some cases 6

can be chosen independent of x.

Definition. The function f : Ec R— R is uniformly continuous on the set H c E, if
Ve>0 36>0 suchthat Vx,yeH: |x-y| <6 = |f(x)-f(x)]| <e.

Remarks. a) Here 6 depends only on € and not on x.
b) The definition implies that 3 inL o(g, x)>0.
Xe

¢) His usually an interval.

d) If f is uniformly continuous on the interval / (open or closed) and J c / then
f is uniformly continuous on J. The same ¢ is suitable for J.

e) If f is uniformly continuous on H then f is continuous for all x e H.

Example. Let f(x) = x°.
a) Prove that f is continuous for all xy €[1, 2].

b) Does there exist inf (e, xg) >0, that s,
Xo€[1,2]

does there exist a 6(¢) that is suitable for all xy €[1, 2]?
Is f uniformly continuous on [1, 2]?

c) If f uniformly continuous on (1, 2)?

d) Is f uniformly continuous on (1, o0)?

Solution. a) | f(x)=f(xo) | = | X*=x3 | = | Xx=xo | " | X+xo | = | x=Xo | (x+X0) <
€
< | x=X | "(Xo+1+xg)<e if |x—x0| < = 6(¢&, Xo)
2X0+1
£ xell2 ¢ £
b) 6(5’ XO): 2 =_:6(£’ 2))
2xy+1 2:2+1 5

this is a common 6(¢) that is suitable for all xe[1, 2],
so f is uniformly continuous on[1, 2].

¢) Yes, (¢, 2) is also suitable here, see Remark d).

d) f is not uniformly continuous on (1, ).
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1 1
Letx,=n+—-—wand y,=n—o. Then x, - y, = — —0, that s, the terms get
n n

arbitrarily close to each other if n is large enough, but

1\2 1
| F0) = Fym) | = |(n+—) —n2|=2+—>2,
n n?
so if € <2 then there is no suitable 6.

Another choice: x,= yn+1, y,= \/F

Example. f(x) = \/; is uniformly continuous on [0, ).
Lete>0.1f6=¢?and | x-y | <6then

0= = | Nx =y [ =y [ Y=y || Y-y | =
s\/|¢;_¢;|.|«/7“/7|=m<¢3=g.

1
Example. Let f(x) = —. Prove that
X

a) f is uniformly continuous on [1, );
b) f is not uniformly continuous on (0, 1).

[ x=y| |x-yl|
= <
Xy 1-1

1 1
Sowﬁoma)|ﬂm—fW)|=|———| = | x-y| <€=6.
Xy

| x-y

Xy
but 6(y)=exy—0if y—0, so there is no common ¢ that is independent of y.

1 1
thenx, - y,=—-—— = —0, but
n+1 n n+l n(n+1)

| f(Xn)_f(Yn) | = | n—(n+1) | =1,
so if € < 1 then thereis no suitable 6.

| <eif | x-y| <exy,

1 1
o) | f=fn | =2~ | =

1
For example, if x,=— and y, =
n

Theorem (Heine). If f is continuous on the compact set H then f is uniformly continuous on H.

Proof. 1) Indirectly assume that f is not uniformly continuous on K, that is,
Je>0 suchthat V6>0 3x, yeH suchthat | x-y | <6 but | f(x)-f(y)| 2e.

1
2) Let 6 =- forallneN".
n

1
Then forthis 6 3 x,, y,eH such that | Xn = Yn <; but | f(x,)-f(yn) | 2¢.

3) Since H is compact, then by the Bolzano-Weierstrass theorem the sequence (x,,) c H
has a convergent subsequence whose limit belongs to H, that is, there is an
index sequence (ny) such that (x,,) is convergent and Lim Xp, =aeH.

4) We show that with the same index sequence (ny), the sequence (y,,) is also convergent

and limy,, = a. ForallneN* we have
k-0
1
+ | x,,k—a| <— + | x,,k—a|
Nk

ynk _Xnk

ynk_a| =



6 | calculus1-15-16.nb

. 1 e koo A k—oo
Since ——0 and | x,,k—a| 230 then their sum also tends to 0, so | Yn,—Q | —0.
Ny

5) Since x,,klgfa and y,,klzfa and fis continuous at a € H, then f(x,,k),gof(a) and
f(y,,k)lgof(a), from where Il{im (F(xn,) = f(yn,)) =f(a) - f(a) =0,

however, this is a contradiction, since forallne N* | f(x,) - f(y,) | €.
It means that the indirect assumption is false, so the statement of the theorem is true.

Theorem. If f is continuous on [a, o) and 3 lim,__. f(xX)=A<R then fis
uniformly continuous on [a, oo).

Lipschitz continuity

Definition. The function f is Lipschitz continuous on the set A if there exists
L =0 (Lipschitz constant), such that | f(x)-f(y) | <L | x-y | forallx, yeA.

Theorem. If f is Lipschitz continuous on A, then f is uniformly continuous on A.

Proof. a) If L = 0 then & can be arbitrary, f is constant, so it is uniformly continuous.

£ €
b)IfL>0thenlet6=z.If |x—y| <zforallx,yeA,then
>
|f(x)—f(y)| <L|x—y| SL-zzs.

Remark. The converse of the theorem is not true.
For example f(x) = \/; is uniformly continuous on [0, 1] but not Lipschitz continuous.

Letx=0, y>0andL>0.Then
1

|\/;—\/;|5L|y—x| @WSL'ymESy

1
It means that there is no positive number that is less than = which is a contradiction.
L

Remark. f is Lipschitz continuous on A = f is uniformly continuous on A = f is continuous on A.

Continuity of the inverse function

Definition. The function f is invertible if forall x, ye Dy, x * y = f(x) = f(y).
(Or, equivalently, forall x, y e Ds: (f(x)=f(y) = x=Y)).
The inverse function f~! of f is defined as follows:
Dp1 =R and (f1of)(x) = x forall x € Dy.

Remark. If f is invertible and continuous at x, then from this it doesn’t follow that

f~1is continuous at f(x;).

x+1 ifx=20

For example, the function f(x) = { isinvertible.

x+2 ifx<-
If we express x from the equation y = f(x), then we get that the inverse of f is
~ y-1 ify=21
fHy)= :
y-2 ify<1
f is continuous but f~! is not continuous.
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s
//

Theorem. Assume that f : [a, b]— R is continuous and strictly monotonic.

Then f~tis continuous on Ry.

Proof. 1) Since f is continuous on [a, b] then it follows from the intermediate value theorem

and extreme value theorem that the range of f is a closed and bounded interval.
Let[c, d]=Ry.
Since f is strictly monotonic then it is bijective, so it has an inverse, f* : [c, d]—[a, b].

2) Let v e[c, d] arbitrary, u := f1(v) and assume that (y,) c [c, d], y,—> v is an arbitrary
sequence. To prove the continuity of f~! at v, it is enough to show that
Xp =y —Fv) =u.

3) Assume indirectly that the sequence (x,,) c [a, b] does not tend to u.
Then36>0 VkeN In,>k,suchthat | x, —u| 26.

4) Since the sequence (x,,) c [a, b]\ (u -6, u + 6) is bounded, then it has a convergent

subsequence (xy, ). Let Eim Xn, = a. Obviously a e[a, b], but a = u.
5) Since f is continuous at a then f(x,, ) = y,, —f().

Since y,—>v and (Vn,) is a subsequence of (y,), then y, —v,so f(a) =v.

6) We obtained that a + u, but f(a) = f(u) = v, which means that f is not bijective.
This is a contradiction, so the indirect assumption is false.
Therefore, x,— u and thus f~* is continuous at v.

Convexity and continuity

Definition. The function f is convex on the interval / c Dy if forall x, y e land t € [0, 1]
ftx+(L-t)y)stf(x)+(1-t)f(y)
The function f is concave on the interval / c Drif forall x, ye/and t € [0, 1]
fitx+ (1 -t)y)2tf(x)+ (1 -t)f(y).

f is strictly convex / strictly concave if equality doesn’t hold.
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a b

Remark. Let a, b e/, then the secant line passing through the points (g, f(a)) and (b, f(b)) is

f(b) - f
hap(X) = % (x - a) + f(a).

The function f is { convex on theinterval / c Dy if
concave
f(x) < hap(X)

,thatis, the secant lines of f
f(x) 2 hg p(X)

VYa,bel, a<x<b = {
always lie above the graph of f
y below grap )

Theorem. If f is convex on the open interval /, then f is continuous on /.

Proof. Leta, b, celsuchthata<c<b.
If x € (c, b), then hg < f(x) < h p(X).

Since lim h, () = lim h p(x) = f(c), then by the sandwich theorem lim f(x) = f(c),

X->C+

and similarly lim f(x) = f(c).

X->C—

a / ¢ N b

Remark. If f is convex on a closed interval, then f can be discontinuous only at the
endpoints of the interval.

Y
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Jensen’s inequality

Theorem (Jensen’s inequality).
The function f is convex on the interval / if and only if for all ay, a5, ...a, €,
andforallty, t,, ..., t,20,ift; +t; +... + t, = 1 then

f(tiar+tyay +...+ t,a,) <ty f(a;) +t, f(ay) +... + t, f(a,)

Examples 1. f(x) = x? is convex on R. Applying Jensen’s inequality with t; = t, =. .. = t, = —:

2
n

(al+az+"u+mj2<a%+a%+u.+a

n n

from where we obtain the inequality of the arithmetic and quadratic means:

2

ay+0y + ..+ 0, a4+ a5+ ..+ 0>
<

n n
l . . . . . l
2. f(x) = — is convex on (0, ). Applying Jensen’s inequality with ¢, =t, =...=t,=—:
X n
1 n 11 11 11 1/1 1 1
= S— —+—-— - — == (—— +— 4.+ ——)
ﬂ+ﬁ+m+ﬂ a1+0y+..+0, N a; N a, na, n\a; a a
n n n
from where we obtain the inequality of the arithmetic and harmonic means:
a,+a+..+4d, n
>
n 1 1 1

— — .+ —
a o a



