
Calculus 1, 14th lecture

Limits of real functions

Definitions

A function f : A⟶B is a mapping that assigns exactly one element of B to every element from A.
The set A is called the domain of f  (notation: Df  or Dom(f )) and the set f (A) = {f (x) : x ∈ A} is called the 
range of f  (notation: Rf  or Ran(f )).

A function f : A⟶B is one-to one or injective if for all x, y ∈ A:  (f (x) = f (y) ⟹ x = y).
A function f : A⟶B is onto or surjective if f (A) = B.
A function f  is bijective if it is injective and surjective.

The function f : Df ⊂⟶ is
- even, if  ∀ x ∈ Df , -x ∈ Df  and f (x) = f (-x)
- odd, if ∀ x ∈ Df , -x ∈ Df  and f (-x) = -f (x)
- monotonically increasing if ∀ x ∈ Df   (x ≤ y ⟹ f (x) ≤ f (y))
- monotonically decreasing if ∀ x ∈ Df   (x ≤ y ⟹ f (x) ≥ f (y))
- strictly monotonically increasing if ∀ x ∈ Df   (x < y ⟹ f (x) < f (y))
- strictly monotonically decreasing if ∀ x ∈ Df   (x < y ⟹ f (x) > f (y))
- periodic with period p > 0 if ∀ x ∈ Df , x + p ∈ Df  and f (x) = f (x + p)

Limit at a finite point

Definition. The limit of the function f : Df ⊂⟶ at the point x0 ∈  is A ∈  if
    (1) x0 is a limit point of Df   (x ∈ Df ')
    (2) for all ε > 0 there exists δ(ε) > 0 such that
    if  x ∈ Df   and  0 < x - x0 < δ(ε)  then  f (x) - A < ε

    Notation: lim
xx0

f (x) = A

Example 1. lim
x-2

8 - 2 x2

x + 2
= 8, since if ε > 0, then 

               f (x) - A =
8 - 2 x2

x + 2
- 8 =

2 · 4 - x2

x + 2
- 8 = 2 · (2 - x) - 8 =

               = -2 x - 4 = 2 x + 2 < ε, if x + 2 <
ε

2

               ⟹ with the choice δ(ε) =
ε

2
 the definition holds. (Here -2 ∉ Df .)

Example 2. lim
x-3

1 - 5 x = 4, since if ε > 0, then 

              f (x) - A = 1 - 5 x - 4 =
1 - 5 x - 16

1 - 5 x + 4
=

5 x + 3

1 - 5 x + 4
≤

5 x + 3

0 + 4
< ε,

              if x + 3 <
4 ε

5
  ⟹  with the choice δ(ε) =

4 ε

5
 the definition holds.



Definition. Suppose f : Df ⊂⟶ is a function and x0 ∈ Df '. Then lim
xx0

f (x) =
∞

-∞
 if 

    for all P > 0 there exists δ(P) > 0 such that

    if  x ∈ Df   and  0 < x - x0 < δ(ε)  then  
f (x) > P
f (x) < -P

 .

Example 3. lim
x2

1

(x - 2)2
=∞, since if P > 0, then f (x) =

1

(x - 2)2
> P  ⟺  0 < x - 2 <

1

P

               ⟹ with the choice δ(P) =
1

P
 the definition holds.

Limit at ∞ and -∞

Definitions.
(1) lim

x∞
f (x) = A ∈  if for all ε > 0 there exists P(ε) > 0 such that if x > P(ε) then f (x) - A < ε.

(2) lim
x∞

f (x) =∞  if for all K > 0 there exists P(K) > 0 such that if x > P(K) then f (x) > K.

(3) lim
x∞

f (x) = -∞  if for all K > 0 there exists P(K) > 0 such that if x > P(K) then f (x) < -K.

Remark. If f  is a sequence, that is, Df =+, then the only accumulation point of Df  is ∞, so can we 
investigate the limit only here. 

Definitions. 
(1) lim

x -∞
f (x) = A ∈     if for all ε > 0 there exists P(ε) > 0 such that if x < -P(ε)  then f (x) - A < ε.

(2) lim
x -∞

f (x) =∞  if for all K > 0 there exists P(K) > 0 such that if x < -P(K) then f (x) > K.

(3) lim
x -∞

f (x) = -∞  if for all K > 0 there exists P(K) > 0 such that if x < -P(K) then f (x) < -K.

Summary

The above definitions of the limit can be summarized as follows.

Theorem. Assume that a ∈  is a limit point of Df  and b ∈ . Then lim
xa

f (x) = b if and only if 

for any neighbourhood J of b there exists a neighbourhood I of a such that 
if  x ∈ I⋂ Df   and  x ≠ a  then  f (x) ∈ J.

The sequential criterion for a limit of a function

In the syllabus it is called transference principle.

Theorem. Suppose f : Df ⊂⟶ is a function,  a, b ∈  = ⋃ {-∞, ∞}, and a ∈ Df '. 
Then the following two statements are equivalent.
(1) lim

xa
f (x) = b 

(2) For all sequences (xn)⊂ Df \ {a}  for which xn⟶a,  lim
n∞

f (xn) = b.

Proof. We prove it for a, b ∈ .
(1) ⟹ (2): Assume that for all ε > 0 there exists δ(ε) > 0 such that if 0 < x - a < δ(ε)  

then f (x) - b < ε.
Let (xn) be a sequence for which xn ∈ Df \{a} for all n ∈ and xn⟶a. 
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Then for δ(ε) > 0 there exists a threshold index N(δ(ε)) ∈ such that if n > N(δ(ε)) 
then xn - a < δ(ε).
Thus for all n > N(δ(ε)),  f (xn) - b < ε also holds, so f (xn)⟶b.

(2) ⟹ (1): Indirectly, assume that (2) holds but lim
xa

f (x) ≠ b, that is, 

there exists ε > 0 such that for all δ > 0 there exists x ∈ Df  for which 
0 < x - a < δ and f (x) - b ≥ ε.

Let δn =
1

n
> 0 for all n ∈+. Then for δn there exists xn ∈ Df  such that 

0 < xn - a < δ and f (xn) - b ≥ ε.
It means that xn⟶a, but lim

n∞
f (xn) ≠ b, which is a contradiction, so lim

xa
f (x) = b.

Example. The limit lim
x 0

sin
1

x
 does not exist. Let xn =

1

nπ
⟶0 and yn =

1
π

2
+ 2 nπ

⟶0. Then 

lim
n∞

sin
1

xn
= lim
x∞

sin(nπ) = 0 and

lim
x∞

sin
1

yn
= lim
x∞

sin
π

2
+ 2 nπ = 1 and 0 ≠ 1.

-0.4 -0.2 0.2 0.4

-1.0

-0.5

0.5

1.0

f(x)=sin
1

x

Consequences

Theorem. Suppose x0 ∈  = ⋃ {-∞, ∞} is a limit point of Df ⋂ Dg and lim
x x0

f (x) = A ∈ , 

lim
x x0

g(x) = B ∈ , c ∈ . Then 

(1) lim
x x0

(c f ) (x) = c ·A

(2) lim
x x0

(f ± g) (x) = A ± B

(3) lim
x x0

(f ·g) (x) = A ·B

(4) lim
x x0

f

g
(x) =

A

B

(5) If lim
x x0

f (x) = 0 and g is bounded in a neighbourhood of x0 then lim
x x0

(f g) (x) = 0.
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Remark. The statements (1)-(4) are also true if A, B ∈  and the corresponding operations are defined 
in .

Theorem. Suppose x0 ∈  = ⋃ {-∞, ∞} is a limit point of Df ⋂ Dg and 

  lim
x x0

f (x) = A ∈ , lim
x x0

g(x) = B ∈ .

  If f (x) ≤ g(x) for all x ∈ Df ⋂ Dg then A ≤ B.

Theorem (Sandwich theorem for limits). Suppose that 
(1) x0 ∈  = ⋃ {-∞, ∞} is a limit point of Df ⋂ Dg ⋂ Dh,

 (2) f (x) ≤ g(x) ≤ h(x) for all x in a neighbourhood of x0 and
 (3) lim

x x0

f (x) = lim
x x0

h(x) = b ∈ .

 Then lim
x x0

g(x) = b.

Remark. If b = ±∞ then only one estimation is enough.

Example. lim
x 0

x sin
1

x
= 0, since  - x ≤ x sin

1

x
≤ x .

Or, x⟶0 and sin
1

x
 is bounded, so the product also tends to 0.
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-0.5
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One-sided limits

Notation. The 
right hand limit
left hand limit

 of f  at x0 is denoted as 
lim
xx0+

f (x) = lim
xx0+0

f (x) = f (x0 + 0)

lim
xx0-

f (x) = lim
xx0-0

f (x) = f (x0 - 0)
.

   

Definition. Suppose x0 ∈  is a limit point of 
Df ⋂ [x0, ∞)

Df ⋂ (-∞, x0]
. Then 

   (1) 
lim
xx0+

f (x) = A

lim
xx0-

f (x) = A
 if for all ε > 0 there exists δ(ε) > 0 such that if  

x0 < x < x0 + δ(ε)

x0 - δ(ε) < x < x0
  

   then  f (x) - A < ε.
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   (2) lim
xx0+

f (x) =
∞

-∞
 if for all K > 0 there exists δ(K) > 0 such that if x0 < x < x0 + δ(K) 

   then 
f (x) > P(K)
f (x) < -P(K)

.

   

   (3) lim
xx0-

f (x) =
∞

-∞
 if for all K > 0 there exists P(K) > 0 such that if x0 - δ(K) < x < x0 

   then 
f (x) > P(K)
f (x) < -P(K)

.

Definition. Let f : X⟶Y  be a function and A⊂ X. The restriction of f  to A is the function
   f A : A⟶Y , f A (x) = f (x). 
  

Remarks. 1) lim
xx0+

f (x) = lim
xx0

f Df⋂[x0,∞) (x), lim
xx0-

f (x) = lim
xx0

f Df⋂(-∞,x0] (x)     

 2) Suppose f : Df ⊂⟶ and x0 is a limit point of Df   (x ∈ Df '). Then
 lim
xx0

f (x) exists if and only if lim
xx0+

f (x) and lim
xx0-

f (x) exist and lim
xx0+

f (x) = lim
xx0-

f (x).

Examples. 1) lim
x1-0

[x] = 0, lim
x1+0

[x] = 1

   2) lim
x1-0

{x} = 1,  lim
x1+0

{x} = 0
f(x)={x}
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   3) lim
x3+0

1

3 - x
= -∞, lim

x3-0

1

3 - x
= +∞

   

f(x)=[x]
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-3

-2

-1

1

2

    

f(x)= 1
3-x
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2

4

Continuity

Definition. The function f : Df ⊂⟶ is 
continuous
continuous from the right
continuous from the left

  at the point x0 ∈ Df  if

    for all ε > 0 there exists δ(ε) > 0 such that if  x ∈ Df   and  
x - x0 < δ (ε)

x0 - δ(ε) < x ≤ x0

x0 ≤ x < x0 + δ(ε)

  

    then  f (x) - f (x0) < ε.

Remarks.  1) f  is continuous at x0 ∈ Df   ⟺  for all ε > 0 there exists δ > 0 such that 
       if x ∈ (B(x0, δ) ⋂ Df  then f (x) ∈ B(f (x0), ε).
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  2) f  is 
continuous from the right
continuous from the left

 at x0 ∈ Df   ⟺  
f Df⋂[x0,∞)

f Df⋂(-∞,x0]

  is continuous at x0.

  3)  f  is continuous at x0 ∈ Df   ⟺  f  is continuous at x0 from the right and from the left.     

Definition. f  is continuous if f  is continuous for all x ∈ Df .

Notation. If A⊂ then C(A, ) or C(A) denotes the set of continuous functions f : A⟶. 
 For example, f ∈ C([a, b]) means that f : [a, b]⟶ is continuous.

Theorem. Suppose f : Df ⊂⟶ and x0 ∈ Df ⋂ Df '. Then f  is continuous at x0 
  if and only if lim

x x0

f (x) exists and lim
x x0

f (x) = f (x0).

The sequential criterion for continuity

Theorem:  The function f : Df ⊂⟶ is continuous at x0 ∈ Df  if and only if 
   for all sequences (xn)⊂ Df  for which xn⟶ x0,  lim

n∞
f (xn) = f (x0).

Consequences

Theorem. If f  and g are continuous at x0 ∈ Df ⋂ Dg then c f , f ± g and f g is continuous at x0  (c ∈ ).

  If g(x0) ≠ 0 then 
f

g
 is also continuous at x0.

Theorem (Sandwich theorem for continuity): Suppose that 
(1) there exists δ > 0 such that I = (x0 - δ, x0 + δ)⊂ Df ⋂ Dg ⋂ Dh
(2) f  and h are continuous at x0

(3) f (x0) = h(x0)

(4) f (x) ≤ g(x) ≤ h(x) for all x ∈ I
Then g is continuous at x0.

Definition. The composition of the functions  f  and g  is (f ◦ g) (x) = f (g(x)) whose domain is
   Df ◦ g = x ∈ Dg : g(x) ∈ Df .

Theorem. If g is continuous at x0 ∈ Dg and f  is continuous at g(x0) ∈ Df  then f ◦ g is continuous at x0.

Theorem (Limit of a composition). Let a be a limit point of Df ◦ g for which lim
xa

g(x) = b.

Assume that
(1) b ∈ Df , f  is continuous at b and f (b) = c  or
(2) b ∈ Df ' \Df  and lim

xb
f (x) = c  or

(3) g is injective, b ∈ Df ' and lim
xb

f (x) = c.

Then lim
xa

(f ◦ g) (x) = c.

Examples

1) The constant function f : ⟶, f (x) = c is continuous for all x0 ∈ .
     Let ε > 0, then with any δ > 0 if x - x0 < δ, then f (x) - f (x0) = c - c = 0 < ε.
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2) f : ⟶, f (x) = x is continuous for all x0 ∈ .
     Let ε > 0, then with δ(ε) = ε if x - x0 < δ(ε) = ε, then f (x) - f (x0) = x - x0 = 0 < ε.
3) f : ⟶, f (x) = xn is continuous for all x0 ∈ , n ∈, since
     f (x) = xn = x · x · ... · x⟶ x0 · x0 · ... · x0 = x0

n = f (x0)

4) Polynomials (Pn(x) = an xn + an-1 xn-1 + ... + a1 x + a0, ai ∈ ) are continuous for all x0 ∈ .

5) The Dirichlet function f (x) =
1 if x ∈

0 if x ∉
 is not continuous for all x ∈ .

     If x0 ∈, then let xn ∈  \ ∀ n such that xn⟶ x0. Then f (xn) = 0⟶0 ≠ 1 = f (x0).
     If x0 ∈  \, then let xn ∈ ∀ n such that xn⟶ x0. Then f (xn) = 1⟶1 ≠ 0 = f (x0).
6) f (x) = sin x and g(x) = cos x are continuous for all x ∈ .

     (i) 
0 < sin x < x if x > 0
x < sin x < 0 if x < 0

  ⟹  lim
x 0

sin x = 0.

      (ii) cos x = 1 - sin2 x

2
  ⟹  lim

x 0
cos x = 1. Therefore

      (iii) lim
x x0

sin x = sin x0 lim
x x0

cos (x -x0) +cos x0 lim
x x0

sin (x -x0) = sin x0

      (iv) lim
x x0

cos x = cos x0 lim
x x0

cos (x -x0) -sin x0 lim
x x0

sin (x -x0) = cos x0

7) f (x) =
x sin

1

x
if x ≠ 0

0 if x = 0
 is continuous for all x ∈ .

Example

Theorem. lim
x0

sin x

x
= 1

Proof. Since f (x) =
sin x

x
 is even, it is enough to consider the right-hand limit lim

x0+

sin x

x
.

    Let 0 < x <
π

2
. 

    The area of the PO A triangle is T1 =
1 ·sin x

2
.

    The area of the PO A circular sector is T2 =
12 · x

2
.

    The area of the O AB triangle is T3 =
1 ·tan x

2
.

    

x

O A

P
B

1

sin x

x

tan x
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    Obviously T1 < T2 < T3, that is,     
1 ·sin x

2
<

12 · x

2
<

1 ·tan x

2
.

    Multiplying both sides by 
2

sin x
> 0:   1 <

x

sin x
<

1

cos x
.

    Since lim
x0+

1

cos x
= 1 then lim

x0+

x

sin x
= 1  ⟹  lim

x0+

sin x

x
= 1 = lim

x0-

sin x

x
    

    Remark. If 0 < x <
π

2
, then sin x < x  ⟹  sin x ≤ x ∀ x ∈ .

Types of discontinuities

Definition. The function f  is discontinuous at x0 ∈ Df  or f  has a discontinuity at x0 ∈ Df  if f  is not 
continuous at x0.

    Classification of discontinuities:
    1) Discontinuity of the first kind:
    a) f  has a removable discontinuity at x0 if ∃ lim

x x0

f (x) and lim
x x0

f (x) ≠ f (x0).

    b) f  has a jump discontinuity at x0 if ∃ lim
x x0-

f (x) ∈  and ∃ lim
x x0+

f (x) ∈  

         but lim
x x0-

f (x) ≠ lim
x x0+

f (x).

    2) Discontinuity of the second kind:
    f  has an essential discontinuity or a discontinuity of the second kind at x0 
    if f  has a discontinuity at x0 but not of the first kind. 

Examples. 1. a) f (x) =
x2 - 1

x - 1
 has a removable discontinuity at x0 = 1.

   1. b) f (x) = [x] has a jump discontinuity for all x ∈.

   2. f1(x) =
1

x
, f2(x) =

1

x2
  and f3 = sin

1

x
 have an essential discontinuity at x0 = 0.

   The Dirichlet function has essential discontinuities for all x ∈ .
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