Calculus 1, 14th lecture

Limits of real functions

Definitions

A function $f: A \longrightarrow B$ is a mapping that assigns exactly one element of B to every element from A. The set A is called the domain of f (notation: D_{f} or $\operatorname{Dom}(f)$) and the set $f(A)=\{f(x): x \in A\}$ is called the range of f (notation: R_{f} or Ran (f)).

A function $f: A \longrightarrow B$ is one-to one or injective if for all $x, y \in A:(f(x)=f(y) \Longrightarrow x=y)$.
A function $f: A \longrightarrow B$ is onto or surjective if $f(A)=B$.
A function f is bijective if it is injective and surjective.

The function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is

- even, if $\forall x \in D_{f},-x \in D_{f}$ and $f(x)=f(-x)$
- odd, if $\forall x \in D_{f},-x \in D_{f}$ and $f(-x)=-f(x)$
- monotonically increasing if $\forall x \in D_{f}(x \leq y \Longrightarrow f(x) \leq f(y))$
- monotonically decreasing if $\forall x \in D_{f}(x \leq y \Longrightarrow f(x) \geq f(y))$
- strictly monotonically increasing if $\forall x \in D_{f}(x<y \Longrightarrow f(x)<f(y))$
- strictly monotonically decreasing if $\forall x \in D_{f}(x<y \Longrightarrow f(x)>f(y))$
- periodic with period $p>0$ if $\forall x \in D_{f}, x+p \in D_{f}$ and $f(x)=f(x+p)$

Limit at a finite point

Definition. The limit of the function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ at the point $x_{0} \in \mathbb{R}$ is $A \in \mathbb{R}$ if
(1) x_{0} is a limit point of $D_{f}\left(x \in D_{f}{ }^{\prime}\right)$
(2) for all $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that
if $x \in D_{f}$ and $0<\left|x-x_{0}\right|<\delta(\varepsilon)$ then $|f(x)-A|<\varepsilon$
Notation: $\lim _{x \rightarrow x_{0}} f(x)=A$
Example 1. $\lim _{x \rightarrow-2} \frac{8-2 x^{2}}{x+2}=8$, since if $\varepsilon>0$, then
$|f(x)-A|=\left|\frac{8-2 x^{2}}{x+2}-8\right|=\left|\frac{2 \cdot\left(4-x^{2}\right)}{x+2}-8\right|=|2 \cdot(2-x)-8|=$
$=|-2 x-4|=2|x+2|<\varepsilon$, if $|x+2|<\frac{\varepsilon}{2}$
\Longrightarrow with the choice $\delta(\varepsilon)=\frac{\varepsilon}{2}$ the definition holds. (Here $-2 \notin D_{f}$.)
Example 2. $\lim _{x \rightarrow-3} \sqrt{1-5 x}=4$, since if $\varepsilon>0$, then
$|f(x)-A|=|\sqrt{1-5 x}-4|=\left|\frac{1-5 x-16}{\sqrt{1-5 x}+4}\right|=\frac{5|x+3|}{\sqrt{1-5 x}+4} \leq \frac{5|x+3|}{0+4}<\varepsilon$,
if $|x+3|<\frac{4 \varepsilon}{5} \Longrightarrow$ with the choice $\delta(\varepsilon)=\frac{4 \varepsilon}{5}$ the definition holds.

Definition. Suppose $f: D_{f} \subset \mathbb{R} \rightarrow \mathbb{R}$ is a function and $x_{0} \in D_{f}$. Then $\lim _{x \rightarrow x_{0}} f(x)=\left\{\begin{array}{l}\infty \\ -\infty\end{array}\right.$ if for all $P>0$ there exists $\delta(P)>0$ such that if $x \in D_{f}$ and $0<\left|x-x_{0}\right|<\delta(\varepsilon)$ then $\left\{\begin{array}{l}f(x)>P \\ f(x)<-P\end{array}\right.$.
Example 3. $\lim _{x \rightarrow 2} \frac{1}{(x-2)^{2}}=\infty$, since if $P>0$, then $f(x)=\frac{1}{(x-2)^{2}}>P \Longleftrightarrow 0<|x-2|<\frac{1}{\sqrt{P}}$ \Longrightarrow with the choice $\delta(P)=\frac{1}{\sqrt{P}}$ the definition holds.

Limit at ∞ and $-\infty$

Definitions.

(1) $\lim _{x \rightarrow \infty} f(x)=A \in \mathbb{R}$ if for all $\varepsilon>0$ there exists $P(\varepsilon)>0$ such that if $x>P(\varepsilon)$ then $|f(x)-A|<\varepsilon$.
(2) $\lim _{x \rightarrow \infty} f(x)=\infty$ if for all $K>0$ there exists $P(K)>0$ such that if $x>P(K)$ then $f(x)>K$.
(3) $\lim _{x \rightarrow \infty} f(x)=-\infty$ if for all $K>0$ there exists $P(K)>0$ such that if $x>P(K)$ then $f(x)<-K$.

Remark. If f is a sequence, that is, $D_{f}=\mathbb{N}^{+}$, then the only accumulation point of D_{f} is ∞, so can we investigate the limit only here.

Definitions.

(1) $\lim _{x \rightarrow-\infty} f(x)=A \in \mathbb{R}$ if for all $\varepsilon>0$ there exists $P(\varepsilon)>0$ such that if $x<-P(\varepsilon)$ then $|f(x)-A|<\varepsilon$.
(2) $\lim _{x \rightarrow-\infty} f(x)=\infty$ if for all $K>0$ there exists $P(K)>0$ such that if $x<-P(K)$ then $f(x)>K$.
(3) $\lim _{x \rightarrow-\infty} f(x)=-\infty$ if for all $K>0$ there exists $P(K)>0$ such that if $x<-P(K)$ then $f(x)<-K$.

Summary

The above definitions of the limit can be summarized as follows.
Theorem. Assume that $a \in \overline{\mathbb{R}}$ is a limit point of D_{f} and $b \in \overline{\mathbb{R}}$. Then $\lim _{x \rightarrow a} f(x)=b$ if and only if for any neighbourhood J of b there exists a neighbourhood $/$ of a such that if $x \in I \cap D_{f}$ and $x \neq a$ then $f(x) \in J$.

The sequential criterion for a limit of a function

In the syllabus it is called transference principle.
Theorem. Suppose $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is a function, $a, b \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$, and $a \in D_{f}{ }^{\prime}$. Then the following two statements are equivalent.
(1) $\lim _{x \rightarrow a} f(x)=b$
(2) For all sequences $\left(x_{n}\right) \subset D_{f} \backslash\{a\}$ for which $x_{n} \rightarrow a, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=b$.

Proof. We prove it for $a, b \in \mathbb{R}$.
$(1) \Longrightarrow(2)$: Assume that for all $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that if $0<|x-a|<\delta(\varepsilon)$ then $|f(x)-b|<\varepsilon$.
Let $\left(x_{n}\right)$ be a sequence for which $x_{n} \in D_{f} \backslash\{a\}$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow a$.

Then for $\delta(\varepsilon)>0$ there exists a threshold index $N(\delta(\varepsilon)) \in \mathbb{N}$ such that if $n>N(\delta(\varepsilon))$
then $\left|x_{n}-a\right|<\delta(\varepsilon)$.
Thus for all $n>N(\delta(\varepsilon)),\left|f\left(x_{n}\right)-b\right|<\varepsilon$ also holds, so $f\left(x_{n}\right) \longrightarrow b$.
(2) \Longrightarrow (1): Indirectly, assume that (2) holds but $\lim _{x \rightarrow a} f(x) \neq b$, that is,
there exists $\varepsilon>0$ such that for all $\delta>0$ there exists $x \in D_{f}$ for which
$0<|x-a|<\delta$ and $|f(x)-b| \geq \varepsilon$.
Let $\delta_{n}=\frac{1}{n}>0$ for all $n \in \mathbb{N}^{+}$. Then for δ_{n} there exists $x_{n} \in D_{f}$ such that $0<\left|x_{n}-a\right|<\delta$ and $\left|f\left(x_{n}\right)-b\right| \geq \varepsilon$.
It means that $x_{n} \rightarrow a$, but $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq b$, which is a contradiction, so $\lim _{x \rightarrow a} f(x)=b$.
Example. The limit $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist. Let $x_{n}=\frac{1}{n \pi} \rightarrow 0$ and $y_{n}=\frac{1}{\frac{\pi}{2}+2 n \pi} \rightarrow 0$. Then
$\lim _{n \rightarrow \infty} \sin \left(\frac{1}{x_{n}}\right)=\lim _{x \rightarrow \infty} \sin (n \pi)=0$ and
$\lim _{x \rightarrow \infty} \sin \left(\frac{1}{y_{n}}\right)=\lim _{x \rightarrow \infty} \sin \left(\frac{\pi}{2}+2 n \pi\right)=1$ and $0 \neq 1$.

$$
\mathrm{f}(\mathrm{x})=\sin \left(\frac{1}{x}\right)
$$

Consequences

Theorem. Suppose $x_{0} \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ is a limit point of $D_{f} \cap D_{g}$ and $\lim _{x \rightarrow x_{0}} f(x)=A \in \mathbb{R}$, $\lim _{x \rightarrow x_{0}} g(x)=B \in \mathbb{R}, c \in \mathbb{R}$. Then
(1) $\lim _{x \rightarrow x_{0}}(c f)(x)=c \cdot A$
(2) $\lim _{x \rightarrow x_{0}}(f \pm g)(x)=A \pm B$
(3) $\lim _{x \rightarrow x_{0}}(f \cdot g)(x)=A \cdot B$
(4) $\lim _{x \rightarrow x_{0}}\left(\frac{f}{g}\right)(x)=\frac{A}{B}$
(5) If $\lim _{x \rightarrow x_{0}} f(x)=0$ and g is bounded in a neighbourhood of x_{0} then $\lim _{x \rightarrow x_{0}}(f g)(x)=0$.

Remark. The statements (1)-(4) are also true if $A, B \in \overline{\mathbb{R}}$ and the corresponding operations are defined in $\overline{\mathbb{R}}$.

Theorem. Suppose $x_{0} \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ is a limit point of $D_{f} \cap D_{g}$ and $\lim _{x \rightarrow x_{0}} f(x)=A \in \overline{\mathbb{R}}, \lim _{x \rightarrow x_{0}} g(x)=B \in \overline{\mathbb{R}}$.
If $f(x) \leq g(x)$ for all $x \in D_{f} \cap D_{g}$ then $A \leq B$.

Theorem (Sandwich theorem for limits). Suppose that
(1) $x_{0} \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ is a limit point of $D_{f} \cap D_{g} \cap D_{h}$,
(2) $f(x) \leq g(x) \leq h(x)$ for all x in a neighbourhood of x_{0} and
(3) $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} h(x)=b \in \overline{\mathbb{R}}$.

Then $\lim _{x \rightarrow x_{0}} g(x)=b$.
Remark. If $b= \pm \infty$ then only one estimation is enough.
Example. $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$, since $-|x| \leq x \sin \left(\frac{1}{x}\right) \leq|x|$. Or, $x \rightarrow 0$ and $\sin \left(\frac{1}{x}\right)$ is bounded, so the product also tends to 0 .

One-sided limits

Notation. The $\left\{\begin{array}{l}\text { right hand limit } \\ \text { left hand limit }\end{array}\right.$ of f at x_{0} is denoted as $\left\{\begin{array}{l}\lim _{x \rightarrow x_{0}+} f(x)=\lim _{x \rightarrow x_{0}+0} f(x)=f\left(x_{0}+0\right) \\ \lim _{x \rightarrow x_{0}-} f(x)=\lim _{x \rightarrow x_{0}-0} f(x)=f\left(x_{0}-0\right)\end{array}\right.$.

Definition. Suppose $x_{0} \in \mathbb{R}$ is a limit point of $\left\{\begin{array}{l}D_{f} \cap\left[x_{0}, \infty\right) \\ D_{f} \cap\left(-\infty, x_{0}\right]\end{array}\right.$. Then
(1) $\left\{\begin{array}{l}\lim _{x \rightarrow x_{0}+} f(x)=A \\ \lim _{x \rightarrow x_{0}-} f(x)=A\end{array}\right.$ if for all $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that if $\left\{\begin{array}{l}x_{0}<x<x_{0}+\delta(\varepsilon) \\ x_{0}-\delta(\varepsilon)<x<x_{0}\end{array}\right.$
then $|f(x)-A|<\varepsilon$.
(2) $\lim _{x \rightarrow x_{0}+} f(x)=\left\{\begin{array}{l}\infty \\ -\infty\end{array}\right.$ if for all $K>0$ there exists $\delta(K)>0$ such that if $x_{0}<x<x_{0}+\delta(K)$ then $\left\{\begin{array}{l}f(x)>P(K) \\ f(x)<-P(K)\end{array}\right.$.
(3) $\lim _{x \rightarrow x_{0}-} f(x)=\left\{\begin{array}{l}\infty \\ -\infty\end{array}\right.$ if for all $K>0$ there exists $P(K)>0$ such that if $x_{0}-\delta(K)<x<x_{0}$ then $\left\{\begin{array}{l}f(x)>P(K) \\ f(x)<-P(K)\end{array}\right.$.

Definition. Let $f: X \longrightarrow Y$ be a function and $A \subset X$. The restriction of \boldsymbol{f} to \boldsymbol{A} is the function $\left.f\right|_{A}: A \longrightarrow Y,\left.f\right|_{A}(x)=f(x)$.

Remarks. 1) $\lim _{x \rightarrow x_{0}+} f(x)=\left.\lim _{x \rightarrow x_{0}} f\right|_{D_{f} \cap\left[x_{0}, \infty\right)}(x), \lim _{x \rightarrow x_{0}-} f(x)=\left.\lim _{x \rightarrow x_{0}} f\right|_{D_{f} \cap\left(-\infty, x_{0}\right]}(x)$
2) Suppose $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ and x_{0} is a limit point of $D_{f}\left(x \in D_{f}{ }^{\prime}\right)$. Then $\lim _{x \rightarrow x_{0}} f(x)$ exists if and only if $\lim _{x \rightarrow x_{0}+} f(x)$ and $\lim _{x \rightarrow x_{0}-} f(x)$ exist and $\lim _{x \rightarrow x_{0}+} f(x)=\lim _{x \rightarrow x_{0}-} f(x)$.

Examples. 1) $\lim _{x \rightarrow 1-0}[x]=0, \lim _{x \rightarrow 1+0}[x]=1$
2) $\lim _{x \rightarrow 1-0}\{x\}=1, \lim _{x \rightarrow 1+0}\{x\}=0$

3) $\lim _{x \rightarrow 3+0} \frac{1}{3-x}=-\infty, \lim _{x \rightarrow 3-0} \frac{1}{3-x}=+\infty$

Continuity

Definition. The function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is $\left\{\begin{array}{l}\text { continuous } \\ \text { continuous from the right at the point } x_{0} \in D_{f} \text { if } \\ \text { continuous from the left }\end{array}\right.$ for all $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that if $x \in D_{f}$ and $\left\{\begin{array}{l}\left|x-x_{0}\right|<\delta(\varepsilon) \\ x_{0}-\delta(\varepsilon)<x \leq x_{0} \\ x_{0} \leq x<x_{0}+\delta(\varepsilon)\end{array}\right.$ then $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
Remarks. 1) f is continuous at $x_{0} \in D_{f} \Longleftrightarrow$ for all $\varepsilon>0$ there exists $\delta>0$ such that if $x \in\left(B\left(x_{0}, \delta\right) \cap D_{f}\right.$ then $f(x) \in B\left(f\left(x_{0}\right), \varepsilon\right)$.

3) f is continuous at $x_{0} \in D_{f} \Longleftrightarrow f$ is continuous at x_{0} from the right and from the left.

Definition. f is continuous if f is continuous for all $x \in D_{f}$.
Notation. If $A \subset \mathbb{R}$ then $C(A, \mathbb{R})$ or $C(A)$ denotes the set of continuous functions $f: A \longrightarrow \mathbb{R}$. For example, $f \in C([a, b])$ means that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous.

Theorem. Suppose $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ and $x_{0} \in D_{f} \cap D_{f}{ }^{\prime}$. Then f is continuous at x_{0} if and only if $\lim _{x \rightarrow x_{0}} f(x)$ exists and $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

The sequential criterion for continuity

Theorem: The function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at $x_{0} \in D_{f}$ if and only if for all sequences $\left(x_{n}\right) \subset D_{f}$ for which $x_{n} \longrightarrow x_{0}, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.

Consequences

Theorem. If f and g are continuous at $x_{0} \in D_{f} \cap D_{g}$ then $c f, f \pm g$ and $f g$ is continuous at $x_{0}(c \in \mathbb{R})$. If $g\left(x_{0}\right) \neq 0$ then $\frac{f}{g}$ is also continuous at x_{0}.

Theorem (Sandwich theorem for continuity): Suppose that
(1) there exists $\delta>0$ such that $I=\left(x_{0}-\delta, x_{0}+\delta\right) \subset D_{f} \cap D_{g} \cap D_{h}$
(2) f and h are continuous at x_{0}
(3) $f\left(x_{0}\right)=h\left(x_{0}\right)$
(4) $f(x) \leq g(x) \leq h(x)$ for all $x \in I$

Then g is continuous at x_{0}.
Definition. The composition of the functions f and g is $(f \circ g)(x)=f(g(x))$ whose domain is $D_{f \circ g}=\left\{x \in D_{g}: g(x) \in D_{f}\right\}$.

Theorem. If g is continuous at $x_{0} \in D_{g}$ and f is continuous at $g\left(x_{0}\right) \in D_{f}$ then $f \circ g$ is continuous at x_{0}.

Theorem (Limit of a composition). Let a be a limit point of $D_{f \circ g}$ for which $\lim _{x \rightarrow a} g(x)=b$.
Assume that
(1) $b \in D_{f}, f$ is continuous at b and $f(b)=c$ or
(2) $b \in D_{f}^{\prime} \backslash D_{f}$ and $\lim _{x \rightarrow b} f(x)=c$ or
(3) g is injective, $b \in D_{f}^{\prime}$ and $\lim _{x \rightarrow b} f(x)=c$.

Then $\lim _{x \rightarrow a}(f \circ g)(x)=c$.

Examples

1) The constant function $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=c$ is continuous for all $x_{0} \in \mathbb{R}$.

Let $\varepsilon>0$, then with any $\delta>0$ if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|=|c-c|=0<\varepsilon$.
2) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=x$ is continuous for all $x_{0} \in \mathbb{R}$.

Let $\varepsilon>0$, then with $\delta(\varepsilon)=\varepsilon$ if $\left|x-x_{0}\right|<\delta(\varepsilon)=\varepsilon$, then $\left|f(x)-f\left(x_{0}\right)\right|=\left|x-x_{0}\right|=0<\varepsilon$.
3) $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=x^{n}$ is continuous for all $x_{0} \in \mathbb{R}, n \in \mathbb{N}$, since
$f(x)=x^{n}=x \cdot x \cdot \ldots \cdot x \longrightarrow x_{0} \cdot x_{0} \cdot \ldots \cdot x_{0}=x_{0}^{n}=f\left(x_{0}\right)$
4) Polynomials $\left(P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, a_{i} \in \mathbb{R}\right)$ are continuous for all $x_{0} \in \mathbb{R}$.
5) The Dirichlet function $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{array}\right.$ is not continuous for all $x \in \mathbb{R}$.

If $x_{0} \in \mathbb{Q}$, then let $x_{n} \in \mathbb{R} \backslash \mathbb{Q} \forall n$ such that $x_{n} \longrightarrow x_{0}$. Then $f\left(x_{n}\right)=0 \longrightarrow 0 \neq 1=f\left(x_{0}\right)$.
If $x_{0} \in \mathbb{R} \backslash \mathbb{Q}$, then let $x_{n} \in \mathbb{Q} \forall n$ such that $x_{n} \longrightarrow x_{0}$. Then $f\left(x_{n}\right)=1 \longrightarrow 1 \neq 0=f\left(x_{0}\right)$.
6) $f(x)=\sin x$ and $g(x)=\cos x$ are continuous for all $x \in \mathbb{R}$.
(i) $\left\{\begin{array}{l}0<\sin x<x \\ x<\sin x<0 \\ x<0\end{array} \Rightarrow \lim _{x \rightarrow 0} \sin x=0\right.$.
(ii) $\cos x=1-\sin ^{2} \frac{x}{2} \Longrightarrow \lim _{x \rightarrow 0} \cos x=1$. Therefore
(iii) $\lim _{x \rightarrow x_{0}} \sin x=\sin x_{0} \lim _{x \rightarrow x_{0}} \cos \left(x-x_{0}\right)+\cos x_{0} \lim _{x \rightarrow x_{0}} \sin \left(x-x_{0}\right)=\sin x_{0}$
(iv) $\lim _{x \rightarrow x_{0}} \cos x=\cos x_{0} \lim _{x \rightarrow x_{0}} \cos \left(x-x_{0}\right)-\sin x_{0} \lim _{x \rightarrow x_{0}} \sin \left(x-x_{0}\right)=\cos x_{0}$
7) $f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is continuous for all $x \in \mathbb{R}$.

Example

Theorem. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
Proof. Since $f(x)=\frac{\sin x}{x}$ is even, it is enough to consider the right-hand limit $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x}$.
Let $0<x<\frac{\pi}{2}$.
The area of the POA triangle is $T_{1}=\frac{1 \cdot \sin x}{2}$.
The area of the $P O A$ circular sector is $T_{2}=\frac{1^{2} \cdot x}{2}$.
The area of the $O A B$ triangle is $T_{3}=\frac{1 \cdot \tan x}{2}$.

Obviously $T_{1}<T_{2}<T_{3}$, that is, $\frac{1 \cdot \sin x}{2}<\frac{1^{2} \cdot x}{2}<\frac{1 \cdot \tan x}{2}$.
Multiplying both sides by $\frac{2}{\sin x}>0: 1<\frac{x}{\sin x}<\frac{1}{\cos x}$.
Since $\lim _{x \rightarrow 0+} \frac{1}{\cos x}=1$ then $\lim _{x \rightarrow 0+} \frac{x}{\sin x}=1 \Longrightarrow \lim _{x \rightarrow 0+} \frac{\sin x}{x}=1=\lim _{x \rightarrow 0-} \frac{\sin x}{x}$

Remark. If $0<x<\frac{\pi}{2}$, then $\sin x<x \Longrightarrow|\sin x| \leq|x| \quad \forall x \in \mathbb{R}$.

Types of discontinuities

Definition. The function f is discontinuous at $x_{0} \in D_{f}$ or f has a discontinuity at $x_{0} \in D_{f}$ if f is not continuous at x_{0}.

Classification of discontinuities:

1) Discontinuity of the first kind:
a) f has a removable discontinuity at x_{0} if $\exists \lim _{x \rightarrow x_{0}} f(x)$ and $\lim _{x \rightarrow x_{0}} f(x) \neq f\left(x_{0}\right)$.
b) f has a jump discontinuity at x_{0} if $\exists \lim _{x \rightarrow x_{0}-} f(x) \in \mathbb{R}$ and $\exists \lim _{x \rightarrow x_{0}+} f(x) \in \mathbb{R}$ but $\lim _{x \rightarrow x_{0}-} f(x) \neq \lim _{x \rightarrow x_{0}+} f(x)$.
2) Discontinuity of the second kind:
f has an essential discontinuity or a discontinuity of the second kind at x_{0} if f has a discontinuity at x_{0} but not of the first kind.

Examples. 1. a) $f(x)=\frac{x^{2}-1}{x-1}$ has a removable discontinuity at $x_{0}=1$.

1. b) $f(x)=[x]$ has a jump discontinuity for all $x \in \mathbb{Z}$.
2. $f_{1}(x)=\frac{1}{x}, f_{2}(x)=\frac{1}{x^{2}}$ and $f_{3}=\sin \frac{1}{x}$ have an essential discontinuity at $x_{0}=0$.

The Dirichlet function has essential discontinuities for all $x \in \mathbb{R}$.

