Calculus 1, 12th and 13th lecture

Basic topological concepts

Open and closed sets

Definition. The set $B(x, r) := \{ y \in \mathbb{R} : |x - y| < r \} = (x - r, x + r) \text{ is called an open ball with center } x \text{ and radius } r > 0.$

Definitions. The set $A \subset \mathbb{R}$ is

- (1) **open** if for all $x \in A$ there exists r > 0 such that $B(x, r) \subset A$.
- (2) **closed** if its complement $\mathbb{R} \setminus A$ is open.
- (3) **bounded** if there exists r > 0 and $x \in \mathbb{R}$ such that $A \subset B(x, r)$.

Examples. (1) (0, 1) is open, [0, 1] is closed, (0, 1] is not open and not closed

- (2) Q is not open and not closed
- (3) The empty set \emptyset and \mathbb{R} are both open and closed (and they are the only such sets) \mathbb{R} is open, since it contains all open balls $\Longrightarrow \mathbb{R} \setminus \mathbb{R} = \emptyset$ is closed. \emptyset is open, since it does not contain any points $\Longrightarrow \mathbb{R} \setminus \emptyset = \mathbb{R}$ is closed.

Theorem.

- (1) The intersection of any finite collection of open subsets of \mathbb{R} is open.
- (2) The union of arbitrarily many open subsets of $\mathbb R$ is open.

Proof. (1) Suppose $A_1, A_2, ..., A_n$ are open sets and let $x \in \bigcap_{i=1}^n A_i$. Then for all i = 1, ..., n there exists

 $r_i > 0$ such that $B(x, r_i) \subset A_i$. If $R = \min\{r_i : i = 1, ..., n\}$ then R > 0 and $B(x, R) \subset \bigcap_{i=1}^n A_i$.

(2) Suppose $\{A_i : i \in I\}$ is a collection of open sets, indexed by I. If $x \in \bigcup_{i \in I} A_i$ then $x \in A_k$ for some $k \in I$.

Since A_k is open, there exists r > 0, such that $B(x, r) \subset A_k \subset \bigcup_{i \in I} A_i$.

Remark. An infinite intersection of open sets is not necessarily open.

For example, $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$ are open but $\bigcap_{n=1}^{\infty} A_n = \{0\}$ is closed.

Theorem.

- (1) The union of any finite collection of closed subsets of R is closed.
- (2) The intersection of arbitrarily many closed subsets of \mathbb{R} is closed.

Proof. (1) Suppose $\bigcup_{i=1}^{n} A_i$ is a finite union of closed sets. Then $\mathbb{R} \setminus \bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} (\mathbb{R} \setminus A_i)$.

The complement of $\bigcup_{i=1}^{n} A_i$ is finite intersection of open sets, so it is open, and therefore $\bigcup_{i=1}^{n} A_{i}$ is closed.

(2) Suppose $\{A_i : i \in I\}$ is a collection of closed sets, indexed by I. Then $\mathbb{R} \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (\mathbb{R} \setminus A_i)$. The complement of $\bigcap_{i \in I} A_i$ is a union of a collection of open sets, so it is open, and therefore

Remark. An infinite union of closed sets is not necessarily closed.

For example,
$$\bigcup_{n=1}^{\infty} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = (-1, 1)$$
 is open.

Examples. (1) If $x \in \mathbb{R}$, then $\{x\} \subset \mathbb{R}$ is closed, since $\mathbb{R} \setminus \{x\}$ is the union of two open intervals.

(2)
$$\mathbb{Z}$$
 is closed, since $\mathbb{R} \setminus \mathbb{Z} = \bigcup_{n=1}^{\infty} ((-n-1, -n) \cup (n-1, n))$ is a union of open sets, so $\mathbb{R} \setminus \mathbb{Z}$ is open.

Definitions and examples

Definition. Let $A \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then

- (1) x is an **interior point** of A, if there exists r > 0 such that $B(x, r) \subset A$. The set of interior points of A is denoted by int A.
- (2) x is an **exterior point** of A, if there exists r > 0 such that $B(x, r) \cap A = \emptyset$. The set of exterior points of A is denoted by ext A.
- (3) x is a **boundary point** of A, if for all r > 0: $B(x, r) \cap A \neq \emptyset$ and $B(x, r) \cap (\mathbb{R} \setminus A) \neq \emptyset$ (that is, any interval (x - r, x + r) contains a point in A and a point not in A). The set of boundary points of A is denoted by ∂A .

Remarks. (1) ext $A = int(\mathbb{R} \setminus A)$

- (2) \mathbb{R} is a disjoint union of int A, ∂A and ext A.
- (3) int A and ext A are open, ∂A is closed.
- $(4) \partial A = \partial (\mathbb{R} \setminus A)$

Definition. Let $A \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then

- (1) x is a **limit point** or **accumulation point** of A, if for all r > 0: $(B(x, r) \setminus \{x\}) \cap A \neq \emptyset$ (that is, any interval (x - r, x + r) contains a point in A that is distinct from x). The set of limit points of A is denoted by A'.
- (2) x is an **isolated point** of A, if there exists r > 0 such that $B(x, r) \cap A = \{x\}$ (that is, x is not a limit point of A).

Remarks. (1) int $A \subset A'$, that is, every interior point of A is a limit point of A.

(2) If x is a boundary point of A, then x is a limit point or an isolated point of A.

Definition. The closure of the set $A \subset \mathbb{R}$ is $\overline{A} := \{x \in \mathbb{R} \mid \forall r > 0 : B(x, r) \cap A \neq \emptyset\}$.

Remarks. (1) $\overline{A} = \operatorname{int} A \cup \partial A$

- (2) $\overline{A} = A \cup A'$
- (3) \overline{A} is closed.

Some examples:

	Set of interior points	Set of boundary points	Set of limit points	Set of isolated points
$A = (1, 2) \cup (2, 3)$	Α	{1, 2, 3}	[1, 3]	Ø
$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$	Ø	A∪{0}	{0}	А
Z	Ø	Z	Ø	Z
Q	Ø	R	R	Ø

The set
$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$
 has only isolated points, since if $r = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$, then $B\left(\frac{1}{n}, r\right) \cap A = \left\{\frac{1}{n}\right\}$.

The points $0 \notin A$ is the only limit point of A, since for all r > 0 there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{r} < r$, so $B(0, r) \cap (A \setminus \{0\}) \neq \emptyset$.

Theorem. Let $A \subset \mathbb{R}$. Then

- (1) int A is open;
- (2) int A is the largest open set contained in A;
- (3) \overline{A} is closed;
- (4) \overline{A} is the smallest closed set containing A.

Consequence. Let $A \subset \mathbb{R}$. Then

- (1) A is open if and only if A = int A;
- (2) A is closed if and only if $A = \overline{A}$.

Theorem. A set $A \subset \mathbb{R}$ is closed if and only if it contains all of its limit points.

Proof. a) Assume that A is closed. Then $\mathbb{R} \setminus A$ is open

- \implies for all $x \in \mathbb{R} \setminus A$ there exists r > 0 such that $B(x, r) \subset \mathbb{R} \setminus A$
- \implies if x is not in A, then x is not a limit point of A
- \implies if x is a limit point of A, then x is in $A \implies A' \subset A$.
- b) Assume that $A' \subset A$ and let $x \in \mathbb{R} \setminus A$. Since $x \notin A$ and $x \notin A'$ then there exists r > 0 such that $B(x, r) \cap A = \emptyset$
- \implies for all $x \in \mathbb{R} \setminus A$ there exists r > 0 such that $B(x, r) \subset \mathbb{R} \setminus A$
- $\implies \mathbb{R} \setminus A \text{ is open } \implies A \text{ is closed.}$

Example. The set $A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ is not closed, since $0 \in A' \setminus A$. It is not open either, since it has no interior points.

Theorem. Let $A \subset \mathbb{R}$ be bounded. Then

- (1) if $A \subset \mathbb{R}$ is closed then inf A, sup $A \in A$ (that is, A has a minimum and a maximum);
- (2) if $A \subset \mathbb{R}$ is open then inf A, sup $A \notin A$.

Dense sets

Definition. Let $X, Y \subset \mathbb{R}$. Then

- (1) **X** is dense in **Y** if $\overline{X} = Y$;
- (2) *X* is **dense** if $\overline{X} = \mathbb{R}$.

Theorem. (1) \mathbb{Q} is dense in \mathbb{R} ;

(2) $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} .

Compact sets

Definition. A set $A \subset \mathbb{R}$ is **sequentially compact** if every sequence in A has a convergent subsequence whose limit belongs to A.

Theorem (Bolzano-Weierstrass). A set $A \subset \mathbb{R}$ is sequentially compact if and only if it is closed and bounded.

Definition. A **cover** of the set $X \subset \mathbb{R}$ is a collection of sets $C = \{A_i \subset \mathbb{R} : i \in I\}$, whose union contains X, that is, $X \subset \bigcup A_i$.

An **open cover** of *X* is a cover such that A_i is open for every $i \in I$.

A **subcover** S of the cover C is a sub-collection $S \subset C$ that covers X, that is,

$$S = \{A_{i_k} \in C : k \in J\}, \quad X \subset \bigcup_{k \in J} A_{i_k}$$

A **finite subcover** is a subcover $\{A_{i_1}, A_{i_2}, ..., A_{i_n}\}$ that consists of finitely many sets.

Definition. A set $A \subset \mathbb{R}$ is **compact** if every open cover of A has a finite subcover.

Theorem (Heine-Borel or Borel-Lebesgue theorem). A subset of \mathbb{R} is compact if and only if it is closed and bounded.

Consequence. A subset of \mathbb{R} is compact if and only if it is sequentially compact.

The extended set of real numbers

Definition. Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ denote the extended set of real numbers. We define $-\infty \le x \le \infty$ for all $x \in \overline{\mathbb{R}}$.

The arithmetic operations on \mathbb{R} can be partially extended to $\overline{\mathbb{R}}$ as follows.

(1)
$$a + \infty = +\infty + a = \infty$$
, $a \neq -\infty$ (5) $\frac{a}{\pm \infty} = 0$, $a \in \mathbb{R}$

$$(2) \ a - \infty = -\infty + a = -\infty, \qquad a \neq +\infty \qquad (6) \frac{\pm \infty}{a} = \pm \infty, \qquad a \in (0, +\infty)$$

$$(3) \ a \cdot (\pm \infty) = \pm \infty \cdot a = \pm \infty, \qquad a \in (0, +\infty) \qquad (7) \frac{\pm \infty}{a} = \mp \infty, \qquad a \in (-\infty, 0)$$

$$(3) \ a \cdot (\pm \infty) = \pm \infty \cdot a = \pm \infty, \qquad a \in (0, +\infty]$$

$$(7) \frac{\pm \infty}{a} = \mp \infty, \qquad a \in (-\infty, 0)$$

(4)
$$a \cdot (\pm \infty) = \pm \infty \cdot a = \mp \infty$$
, $a \in [-\infty, 0)$

Definition. The interval $(a - \varepsilon, a + \varepsilon)$ is called a neighbourhood of a if $\varepsilon > 0$.

For any $P \in \mathbb{R}$, the interval (P, ∞) is called a neighbourhood of $+\infty$ and the interval $(-\infty, P)$ is called a neighbourhood of $-\infty$.

Remark. The definition of a limit point can be extended to $\overline{\mathbb{R}}$ as follows.

Let $A \subset \overline{\mathbb{R}}$ and $x \in \overline{\mathbb{R}}$. Then x is a limit point of A, if any neighbourhood of x contains a point in A that is distinct from x.

Remark. Some examples for the set of limit points in $\overline{\mathbb{R}}$:

$$(\mathbb{N}^+)^{\,\prime} = \{\infty\}, \ \mathbb{Z}^{\,\prime} = \{\infty, \ -\infty\}, \ \mathbb{Q}^{\,\prime} = \overline{\mathbb{R}}, \ \mathbb{R}^{\,\prime} = \overline{\mathbb{R}}.$$