
Calculus 1, 10th and 11th lecture

Comparison test

Theorem. Assume that 0 ≤ cn ≤ an ≤ bn for n > N where N is some fixed integer. Then

  (1) If 
n=1

∞

bn is convergent, then 
n=1

∞

an is convergent.

  (2) If 
n=1

∞

cn is divergent, then 
n=1

∞

an is divergent.

Proof. Denote by sn
a, sn

b, sn
c  the nth partial sums of the numerical series 

n=1

∞

an, 
n=1

∞

bn and 
n=1

∞

cn respec-

tively. 

(1) 1st proof. We use the Cauchy criterion. Let ε > 0 be fixed, then by the convergence of  
n=1

∞

bn there 

exists N(ε) ∈ such that if m > n > N(ε), then sm
b - sn

b < ε, so if m > n > max {N, N(ε)} then 

sm
a - sn

a = 

k=n+1

m

ak ≤ 

k=n+1

m

b = sm
b - sn

b < ε,

so 
n=1

∞

an is convergent.

2nd proof. Changing finitely many terms does not affect the convergence or divergence of a series, 
so it may be assumed that 0 ≤ an ≤ bn holds for all n ∈. (If the series does not start at n = 1 then it 
can be reindexed.)
From the condition a1 ≤ b1, a2 ≤ b2, ..., an ≤ bn, so
       sn

a = a1 + a2 + ... + an ≤ b1 + b2 + ... + bn = sn
b.

Assume that 
n=1

∞

bn is convergent  ⟹  sn
b is bounded  ⟹   (sn

a) is bounded  

⟹  (sn
a) is convergent since it is monotonically increasing  ⟹  

n=1

∞

an is convergent.

(2) (sn
c ) is monotonically increasing if n > N and not bounded, so sn

a - sN
a > sn

c - sN
c ⟶∞ and thus 

sn
a⟶∞.

Example

The convergence of the p-series 
n=1

∞ 1

np
 can be investigated easily with the comparison test for p ≤ 1 

and p ≥ 2.

If p ≤ 1 then 0 <
1

n
≤

1

np
 and 

n=1

∞ 1

n
 is divergent so 

n=1

∞ 1

np
 is divergent.

If p = 2 then  
1

n2
≤

2

n(n + 1)
 for all n ∈+ and 

n=1

∞ 2

n(n + 1)
= 2 

n=1

∞ 1

n(n + 1)
 is convergent, so 

n=1

∞ 1

n2
 is conver-

gent.



If p > 2 then 0 <
1

np
≤

1

n2
 and 

n=1

∞ 1

n2
 is convergent so 

n=1

∞ 1

np
 is convergent.

Remark: Leonhard Euler proved in 1734 that 
n=1

∞ 1

n2
=
π2

6
.

Error estimation for series with nonnegative terms

Remark. Usually we don’t know the limit  s =

n=1

∞

an = lim
n∞



k=1

n

ak = lim
n∞

sn  but if n is large then sn gives 

an estimation of s. The error for the approximation s ≈ sn is E = s - sn .
If 0 ≤ ak ≤ bk for k ≥ n then the error can be estimated with the comparison test:

E = s - sn = s - sn =

k=1

∞

ak -

k=1

n

ak = 

k=n+1

∞

ak ≤ 

k=n+1

∞

bk.

Here sn ≤ s, since (sn) is monotonically increasing.

Example. Since 
1

n !
≤

1

n(n - 1)
≤

2

n2
, then by the comparison test 

n=0

∞ 1

n !
 is convergent (by definition 

0 ! = 1) and

s - sn = 

k=n+1

∞

ak =
1

(n + 1) !
1 +

1

n + 2
+

1

(n + 2) (n + 3)
+

1

(n + 2) (n + 3) (n + 4)
+ ... ≤

                                    ≤
1

(n + 1) !
1 +

1

n + 2
+

1

(n + 2)2
+

1

(n + 2)3
+ ... =

1

(n + 1) !


k=0

∞ 1

n + 2

k

=

                                    =
1

(n + 1) !
·

1

1 -
1
n+2

=
1

(n + 1) !
·
n + 2

n + 1

For example s - sn ≈ 0.000173611 and 

s6 = 1 + 1 +
1

2 !
+

1

3 !
+

1

4 !
+

1

5 !
+

1

6 !
≈ 2.718 ... ≈ e (here 3 digits are accurate).

The convergence of the series 
n=0

∞ 1

n !
 is very fast, for example

e ≈ 2.718281828459045235360287



n=0

10 1

n !
≈ 2.7182818 ...  (7 digits are accurate)



n=0

15 1

n !
≈ 2.71828182845 ...   (11 digits are accurate)



n=0

20 1

n !
≈ 2.7182818284590452353 ...  (19 digits are accurate)

Absolute convergence

Definition. We say that the numerical series 
n=1

∞

an is absolutely convergent if the series 
n=1

∞

an  is 

convergent.
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Example. 
n=1

∞

a1 qn-1 is absolutely convergent if q < 1.

Theorem. If 
n=1

∞

an is absolutely convergent then it is convergent.

Proof. Let ε > 0 be fixed. If 
n=1

∞

an  is convergent then by the Cauchy criterion there exists N ∈ 

such that if m > n > N then an+1 + an+2 ... + am < ε. Then for all m > n > N

sm - sn = an+1 + an+2 ... + am ≤ an+1 + an+2 ... + am < ε 

also holds, so by the Cauchy criterion 
n=1

∞

an is convergent.

Consequence. If an ≤ bn for n > N and 
n=1

∞

bn is convergent then 
n=1

∞

an is absolutely convergent 

and therefore also convergent.

Definition. If 
n=1

∞

an is convergent but not absolutely convergent then it is conditionally convergent.

Example. 
n=1

∞ (-1)n+1

n
= 1-

1

2
+

1

3
-

1

4
+

1

5
-

1

6
+ ... =

n=1

∞ 1

2 n - 1
-

1

2 n
=

n=1

∞ 1

2 n(2 n - 1)
 is convergent, since 

0 <
1

2 n(2 n - 1)
≤

1

2 n ·n
≤

1

n2
.

On the other hand 
n=1

∞ (-1)n+1

n
=

n=1

∞ 1

n
 which is divergent, so the series 

n=1

∞ (-1)n+1

n
 is conditionally 

convergent.

Rearrangements

Definition. If π : ⟶ is a permutation of the natural numbers (that is, every natural number 

appears exactly once in this sequence) then we say that 
n=1

∞

aπ(n) is a rearrangement of 
n=1

∞

an.

Theorem (Riemann rearrangement theorem). Suppose that 
n=1

∞

an is conditionally convergent 

and   -∞≤α ≤ β ≤∞. Then there exists a rearrangement 
n=1

∞

an ' with partial sums sn ' such that   

lim inf sn ' = α, lim sup sn ' = β .

Theorem. If 
n=1

∞

an is absolutely convergent then every rearrangement of 
n=1

∞

an converges and they 

all converge to the same sum.
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Proof: See W. Rudin: Principles of Mathematical Analysis, page 75:
https://web.math.ucsb.edu/~agboola/teaching/2021/winter/122A/rudin.pdf

Alternating series

Definition. 
n=1

∞

an is an alternating series if an an+1 < 0 for all n ∈.

Definition. The series 
n=1

∞

(-1)n+1 an = a1 - a2 + a3 - a4 + a5 - a6 + ... is a Leibniz series if 

0 < an+1 < an for all n ∈ and an
n∞

0.
Theorem. Every Leibniz series is convergent.

Proof. Since 0 < an+1 < an for all n ∈ then
   
s2 n ≤ s2 n + (a2 n+1 - a2 n+2) = s2 n+2 = s2 n+1 - a2 n+2 ≤ s2 n+1 = s2 n-1 - (a2 n - a2 n+1) ≤ s2 n-1,

that is,    0 ≤ s2 ≤ s4 ≤ s6 ≤ s8 ≤ ... ≤ s7 ≤ s5 ≤ s3 ≤ s1 = a1.

So (s2 n) is monotonically increasing and bounded above  ⟹  it is convergent,
and (s2 n+1) is monotonically decreasing and bounded below  ⟹  it is convergent.

Since s2 n+1 - s2 n = a2 n+1
n∞

0 then lim
n∞

s2 n = lim
n∞

s2 n+1 = lim
n∞

sn  ⟹  the series is convergent.

(Or, by the Cantor axiom 
n=1

∞

[s2 n, s2 n-1] is not empty and since s2 n-1 - s2 n = a2 n
n∞

0 then is has only 

one element which is the limit of (sn).)

Error estimation:
Let s = lim

n∞
sn. If n is odd then sn+1 ≤ s ≤ sn and if n is even then sn ≤ s ≤ sn+1.

In both cases the error for the approximation s ≈ sn is 

E = s - sn ≤ sn+1 - sn = an+1.

Example: The alternating series 
n=1

∞ (-1)n+1

n
 is convergent, since an =

1

n
 is monotonically decreasing 

and an⟶0.

Root test (Cauchy)

Theorem (Root test): Assume that an > 0 and lim sup an
n

= R. Then

(1) if R < 1, then 
n=1

∞

an is convergent;

(2) if R > 1, then 
n=1

∞

an is divergent.
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Proof. (1) Suppose R < 1, then there exists ε > 0 such that R + ε < 1.
By the definition of the limsup, for this ε there exists N ∈ such that if n > N then 

an
n

< R + ε, since if

an
n

≥ R + ε would hold for infinitely many n then this subsequence would have a limit 

point greater than R.

Thus an ≤ (R + ε)n if n > N, and since 
n=1

∞

(R + ε)n is a convergent geometric series 

then by the comparison test, 
n=1

∞

an is also convergent.

              (2) Suppose R > 1, then there exists ε > 0 and a subsequence of an
n  such that 

              ank
nk ≥ R - ε > 1, so ank ≥ (R - ε)nk > 1, and thus lim

n∞
an ≠ 0 and the series is divergent by the 

nth term test.

Consequence. Assume lim sup an
n

= R. Then

(1) if R < 1, then 
n=1

∞

an is convergent, since it is absolutely convergent;

(2) if R > 1, then 
n=1

∞

an is divergent, since if lim
n∞

an ≠ 0, then lim
n∞

an ≠ 0.

Remark. If R = 1 then we don’t know anything about the convergence of the series, for example 

1) 
n=1

∞ 1

n
 is divergent and 

1

n
n ⟶1

2) 
n=1

∞ 1

n2
 is convergent and 

1

n2
n ⟶1

Ratio test (D’Alambert)

Theorem (Ratio test): Assume that an > 0. Then

(1) if  lim sup
an+1

an
< 1, then 

n=1

∞

an is convergent;

(2) if  lim inf
an+1

an
> 1, then 

n=1

∞

an is divergent.

Proof. (1) Suppose R = lim sup
an+1

an
< 1, then similarly as in the previous proof, there exists ε > 0 

and N ∈ such that if n ≥ N then 
an+1

an
< R + ε < 1.

Thus aN+1 < (R + ε) aN
aN+2 < (R + ε) aN+1 < (R + ε)2 aN
...

an+1 < (R + ε) an = (R + ε)n-N aN =
aN

(R + ε)N
· (R + ε)n

so we can apply the comparison test similarly as in the proof of the root test.
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    (2) Suppose lim inf
an+1

an
> 1, then there exists ε > 0 and N ∈ such that if n ≥ N then

    
an+1

an
> R - ε > 1. Since an > 0 and (an) is monotonic increasing then lim

n∞
an ≠ 0.

Consequence. Assume an ≠ 0 for all n ∈. Then

(1) if lim sup
an+1

an
< 1, then 

n=1

∞

an is convergent, since it is absolutely convergent;

(2) if lim inf
an+1

an
> 1, then 

n=1

∞

an is divergent, since if lim
n∞

an ≠ 0, then lim
n∞

an ≠ 0.

Remark. If lim sup
an+1

an
= 1 or lim inf

an+1

an
= 1 then we don’t know anything about the convergence 

of the series, for example

1) 
n=1

∞ 1

n
 is divergent and 

an+1

an
=

1

n + 1
1

n

=
n

n + 1
⟶1

2) 
n=1

∞ 1

n2
 is convergent and 

an+1

an
=

1

(n + 1)2

1

n2

=
n2

(n + 1)2
⟶1

Remark. The ratio test is a consequence of the root test and the following theorem.

Theorem. Assume that an > 0. Then

lim inf
an+1

an
≤ lim inf an

n
≤ lim sup an

n
≤ lim sup

an+1

an

Proof. 1) We prove that lim sup an
n

≤ lim sup
an+1

an
.

Let lim sup
an+1

an
= C and let B > C be an arbitrary real number. 

Then by the definition of the lim sup, there exists N ∈ such that if k ≥ N then 
ak+1

ak
< B.

⟹  aN+1 < BaN, aN+2 < BaN+1 < B2 aN, ...

So if n > N then   an < Bn-N aN  ⟹  an
n

< Bn-N
n

aN
n

= B ·
aN

BN
n

⟹  lim sup an
n

≤ lim
n∞

B ·
aN

BN
n = B.

We obtained that the following implication holds for all B > C:  

lim sup
an+1

an
< B ⟹ lim sup an

n
≤ B.

From this it follows that   lim sup an
n

≤ lim sup
an+1

an
.

               2) lim inf an
n

≤ lim sup an
n  is obvious.
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               3) The proof of lim inf
an+1

an
≤ lim inf an

n  is similar to case 1).

Consequence. If an > 0 for all n and  ∃ lim
n∞

an+1

an
= α ∈  then ∃ lim

n∞
an

n
= α.

Remark. It is a consequence of the previous inequalities that the root test is “stronger” than the 
ratio test. Consider the series



n=1

∞

an =
1

2
+

1

3
+

1

22
+

1

32
+

1

23
+

1

33
+ ..., where a2 k-1 =

1

2k
 and a2 k =

1

3k
, k ≥ 1.

With the root test:

If n is odd, then an
n

= a2 k-1
2 k-1

=
1

2k
2 k-1 ⟶

1

2
 and if n is even, then 

an
n

= a2 k
2 k

=
1

3k
2 k =

1

3
.  

⟹  lim sup an
n

=
1

2
< 1  ⟹  the series is convergent.

With the ratio test: 

If n is even, then 
an+1

an
=
a2 k+1

a2 k
=

1

2k+1

1

3k

=
3k

2k+1 ⟶∞ and if n is odd, then 
an+1

an
=
a2 k

a2 k-1
=

1

3k
1

2k

=
2k

3k
⟶0.

⟹  lim sup
an+1

an
=∞ > 1 and lim inf

an+1

an
= 0 < 1  ⟹  the ratio test cannot be used here.

Cauchy product

Definition: The Cauchy product of the series 
n=0

∞

an and 
n=0

∞

bn is the series 
n=0

∞

cn 

where

cn = a0 bn + a1 bn-1 + ... + an b0 =

k=0

n

ak bn-k

a0 a1 a2 a3 ...

b0 a0 b0 a1 b0 a2 b0 a3 b0

b1 a0 b1 a1 b1 a2 b1

b2 a0 b2 a1 b2

b3 a0 b3

...
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Mertens’ theorem

Theorem (Mertens). If 
n=0

∞

an is absolutely convergent and 
n=0

∞

bn is convergent, then their Cauchy 

product is convergent and its sum is  
n=0

∞

cn =

n=0

∞



k=0

n

ak bn-k = 

n=0

∞

an 

n=0

∞

bn .

Proof. Let A =

n=0

∞

an,     B =

n=0

∞

bn,

An =

k=0

n

ak,     Bn =

k=0

n

bk,     Cn =

k=0

n

ck =

k=0

n



i=0

k

ai bk-i,     βn = Bn - B.

Then 

Cn = a0 b0 + (a0 b1 + a1 b0) + (a0 b2 + a1 b1 + a2 b0) + ... + (a0 bn + a1 bn-1 + ... + an b0) =

= a0 Bn + a1 Bn-1 + an Bn-2 + ... + an B0 =

= a0(B + βn) + a1(B + βn-1) + a2(B + βn-2) + ... + an(B + β0) =

= An B + (a0 βn + a1 βn-1 + a2 βn-2 + ... + an β0).

Let γn = a0 βn + a1 βn-1 + a2 βn-2 + ... + an β0. 
We have to show that Cn⟶AB. Since An B⟶AB, it is enough to show that lim

n∞
γn = 0.

Let α =

n=0

∞

an . (Here we use that 
n=0

∞

an is absolutely convergent.) Let ε > 0 be given.

Since B =

n=0

∞

bn then βn⟶0, so there exists N ∈ such that βn ≤ ε if n ≥ N. In this case

γn ≤ β0 an + ...βN an-N + βN+1 an-N-1 + ... + βn a0 ≤

             ≤ β0 an + ...βN an-N + βN+1 · an-N-1 + ... + βn · a0 ≤

             ≤ β0 an + ...βN an-N +ε · 

n=0

n-N-1

an ≤

             ≤ β0 an + ...βN an-N +ε α.
             
If N is fixed and n⟶∞ then β0 an + ...βN an-N ⟶0 since ak⟶∞ as k⟶∞. 
So we get that   lim sup γn ≤ ε α. Since ε is arbitrary, it follows that lim

n∞
γn = 0.

Remark. If both 
n=0

∞

an and 
n=0

∞

bn are absolutely convergent then their Cauchy product is also abso-

lutely convergent.

Theorem (Abel). Assume that 
n=0

∞

an and 
n=0

∞

bn are two convergent series and their Cauchy prod-

uct is also convergent. Then its sum is  
n=0

∞

cn =

n=0

∞



k=0

n

ak bn-k = 

n=0

∞

an 

n=0

∞

bn .
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Remark. In general it is not true that the Cauchy-product of two convergent series is convergent.

For example let  
n=0

∞

an =

n=0

∞

bn =

n=0

∞ (-1)n

n + 1
. These are Leibniz series, so they are convergent.

Then cn =

k=0

n

ak bn-k =

k=0

n (-1)n

k + 1

(-1)n-k

n - k + 1
= (-1)n

k=0

n 1

k + 1 · n - k + 1
.

Using the AM-GM inequality 
a + b

2
≥ a b , we get that

cn =

k=0

n 1

k + 1 · n - k + 1
≥

k=0

n 2

(k + 1) + (n - k + 1)
=

k=0

n 2

n + 2
=

2

n + 2
(n + 1), since the terms are 

independent of k.

Therefore cn ≥ 2 ·
n + 1

n + 2
⟶2, so lim

n∞
cn ≠ 0  ⟹  the Cauchy-product is divergent.

Examples

Example 1. If x < 1 then 
k=0

∞

xk = 1+x +x2 + x3 + ... =
1

1 - x
  and 



k=0

∞

(-x)k = 1-x +x2 - x3 + ... =
1

1 + x
.

1 x x2 x3 ...

1 1 x x2 x3

-x -x -x2 -x3

x2 x2 x3

-x3 -x3

...

The Cauchy-product is 

n=0

∞



k=0

n

xk(-x)n-k = 1 + (x - x) + x2 - x2 + x2 + x3 - x3 + x3 - x3 + ... =

= 1 + 0 + x2 + 0 + x4 + 0 + x6 + ... =

k=0

∞

x2 k =

k=0

∞

x2
k =

1

1 - x2
=

1

1 - x
·

1

1 + x
= 

k=0

∞

xk 

k=0

∞

(-x)k

Example 2.     Since 
k=0

∞

xk =
1

1 - x
 if x < 1 then

        
1

(1 - x)2
= 

k=0

∞

xk
2

=

n=0

∞



k=0

n

xk xn-k =

n=0

∞



k=0

n

xn =

n=0

∞

(n + 1) xn

Example 3.     
k=0

∞ 1

n !

2

=

n=0

∞



k=0

n 1

k ! (n - k) !
=

n=0

∞ 1

n !


k=0

n n !

k ! (n - k) !
=

n=0

∞ 1

n !


k=0

n n
k

=

n=0

∞ 2n

n !
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Power series

Definitions. The series 
n=0

∞

an(x - x0)
n = a0 + a1(x - x0) + a2(x - x0)

2 + ... is called a power series with 

    center x0, where an is the coefficient of the nth term.

    The domain of convergence of the power series is H = x ∈  : 

n=0

∞

an(x - x0)
n converges.

    The radius of convergence of the power series is R =
1

lim sup an
n

.

Remarks. H is not empty, since the series converges for x = x0.

 Since an
n

≥ 0, then 0 ≤ lim sup an
n

≤∞. If lim sup an
n

=∞ then R = 0 and if 

 lim sup an
n

= 0 then R =∞.

 If  lim
n∞

an+1

an
 exists  then R = lim

n∞

an

an+1
.

Theorem (Cauchy-Hadamard): Denote by R the radius of convergence of the power series 



n=0

∞

an(x - x0)
n. Then

(1) if x - x0 < R, then the series is absolutely convergent, and
(2) if x - x0 > R, then the series is divergent.

Proof. We define 
1

+0
= +∞ and 

1

+∞
= 0. By the root test

              limsup an · x - x0
nn
= x - x0 · limsup an

n
=

x - x0

R

              Then 
x - x0

R
< 1  ⟺  x - x0 < R  ⟹  the series is absolutely convergent

              and 
x - x0

R
> 1  ⟺ x - x0 > R  ⟹  the series is divergent.

Consequence. (1) If R = 0 then for all x ≠ x0,  x - x0 > 0 = R, so the series diverges 
      and if x = x0 then it converges. Then H = {x0}.
(2) If R =∞ then for all x ∈ , x - x0 < R, so the series is absolutely convergent.
       Then H =.
(3) If 0 < R <∞, then (x0 - R, x0 + R)⊂H⊂ [x0 - R, x0 + R] and the endpoints of the 
      interval must be investigated separately.
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