Calculus 1, 10th and 11th lecture

Comparison test

Theorem. Assume that0<c, < a, < b, forn>N where N is some fixed integer. Then

(1) If an is convergent, then Za,, is convergent.

n=1 n=1

(2)If > cpis divergent, then > aj is divergent.

n=1 n=1

Proof. Denote by s9, s®

7, Sn» S5 the nth partial sums of the numerical series > a,, > b,and ) c, respec-

n=1 n=1 n=1

tively.

(1) 1st proof. We use the Cauchy criterion. Let £ > 0 be fixed, then by the convergence of an there

n=1
exists N() €N such that if m>n > N(e), then | sp, - s5 | <&, 50if m>n>max{N, N(e)} then

m m
|sp=snl= D as ) b=|sp-s| <e,
k=n+1 k=n+1

50 ) ap is convergent.

n=1
2nd proof. Changing finitely many terms does not affect the convergence or divergence of a series,
so it may be assumed that 0 < a, < b, holds for all n e N. (If the series does not start at n = 1 then it
can be reindexed.)
From the conditiona; <b;, a,<b,, ..., a,<b,,so

sg=al+a2+...+a,,sb1+b2+...+b,,=sg.

Assume that b, is convergent = (sp) is bounded = (sf) is bounded

n=1

= (s7) is convergent since it is monotonically increasing = Za,, is convergent.
n=1
(2) (s5) is monotonically increasing if n > N and not bounded, so s{ - s§ > sf, - sj,— o0 and thus

Sg—)oo.
Example

The convergence of the p-series Z—p can be investigated easily with the comparison test forp <1
n=1

andp=2.

1 1 >1 > 1
lfp<lthen0<- < - and Z; is divergent so Z; is divergent.

n n n=1 n=1

had 2
forallneN*and Z
. ln(n+l)

1
Ifp=2then — <
n? n(n+1)

is convergent, so Z—z is conver-
n=1

gent.
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1 1
Ifp>2then0<— <—and Z— is convergent so Z— is convergent.
n n n n=11

. © 1 g
Remark: Leonhard Euler proved in 1734 that Z—Z =—.
6
n=11

Error estimation for series with nonnegative terms

Remark. Usually we don’t know the limit s = Zan_ lim Zak_ lims, butifnislarge thens, gives

N—oco N—>co
n=1 k=1

an estimation of s. The error for the approximations=s,is | E| = | s-5, |-
If 0 < ay < by for k= nthen the error can be estimated with the comparison test:
|E|=|s-5,|=s- sn-Zak—Zak- Zak > by

k=1 k=n+1 k=n+1

Heres, <s, since (s,) is monotonlcally increasing.

1

2 1
< —, then by the comparison test Z— is convergent (by definition
n n=0 n!

1
Example. Since — <
n! n(n-1)

0! =1)and

1 1 1
| s- S,,|—Za— (l+ + + +...)S
(n+1)! n+2 (n+2)(n+3) (n+2)(n+3)(n+4)

k=n+1
1 1 1 1 1 &/ 1 \k
< (1+ + + +...)= Z( )=
(n+1)! n+2 (n+2)? (n+2)> (n+1)!,5\n+2
1 1 1 n+2

n+1)! 1L (n+1)! n+1

n+2
For example | s—s, | =0.000173611 and

1 1 1 1 1
S¢=1+1+—+—+— +— +— =2.718...= e (here 3 digits are accurate).
2! 31 41 51 6!

e 1
The convergence of the series Z—' is very fast, for example
=0 n!

€=2.718281828459045235360287

10

Z— ~2.7182818 ... (7 digits are accurate)
oo 1!

1
Z— ~2.71828182845 ... (11 digits are accurate)

nO

1
Z— ~2.7182818284590452353 ... (19 digits are accurate)
n=0 n!

Absolute convergence
Definition. We say that the numerical series Za,, is absolutely convergent if the series Z | an | is

n=1 n=1

convergent.
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Example. Zal g"!is absolutely convergentif | g | <1.

n=1

Theorem. If Zan is absolutely convergent then it is convergent.
n=1

Proof. Let € > 0 be fixed. If Z | a, | is convergent then by the Cauchy criterion there exists N e N

n=1

suchthatifm>n>Nthen | |apa | +| 02| -+ | am| | <& Thenforallm>n>N

| Sm=Sn | = |1+ 40| S| |Onaa |+ | On2| o+ 0m | | <€

also holds, so by the Cauchy criterion Zan is convergent.
n=1

Consequence. If | a, | <b,forn>Nand Zb,, is convergent then Zan is absolutely convergent
n=1 n=1

and therefore also convergent.

Definition. If Za,, is convergent but not absolutely convergent then it is conditionally convergent.

n=1
o (-1)™1 11 1 1 1 © 1 o )
Example. > =lo— 4 -4 ——+4..= Z( ] > ———— isconvergent, since
£ 2 3 4 5 6 Slan- Son@2n-1)
1 1 1
0< < <—.
2n(2n-1) 2n-n pn?
™t el (-1)™ .
on theotherhandZ| | > — which is divergent, sotheserlesz is conditionally
n= ln n=1 n
convergent.
Rearrangements

Definition. If 71: N— N is a permutation of the natural numbers (that is, every natural number

appears exactly once in this sequence) then we say that Za"(”) is a rearrangement of Za,,.
n=1 n=1

Theorem (Riemann rearrangement theorem). Suppose that Zan is conditionally convergent
n=1

and -oo < a<B<o. Then there exists a rearrangement Zan' with partial sums s,,' such that

n=1

liminfs,'=a, limsups,'=28.

Theorem. If Za,, is absolutely convergent then every rearrangement of Za,, converges and they
n=1 n=1

all converge to the same sum.
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Proof: See W. Rudin: Principles of Mathematical Analysis, page 75:
https://web.math.ucsb.edu/~agboola/teaching/2021/winter/122A/rudin.pdf

Alternating series

Definition. Za,, is an alternating series ifa, a,,; <0 forallneN.

n=1

Definition. The series Z(—l)”+1 ap =01 -0y + 03— 04 + 05— dg + ... is a Leibniz series if

n=1
N—co
0<a,.<a,forallneNand a,—0.
Theorem. Every Leibniz series is convergent.

Proof. Since0<a,,; <a,forall neN then

SanSSon+(02ne1 = 02142) = S2n42 = S2041 = 02042 S S2p41 = S20n-1 = (020 = A2 p41) S S2p-1,
thatis, 0<5,<5;<55<53<...<S7<S5<53<S;=0j.

So (s, ,) is monotonically increasing and bounded above = it is convergent,
and (s, 1) is monotonically decreasing and bounded below = it is convergent.

. n_>°° - . . - .
Since Syp.1 = S2n=0a2p,1—>0then lims;, = lims; 5,1 = lims, = the series is convergent.
N—oc0 N—->co

N—->co

(Or, by the Cantor axiom m[sm Syp-1] is not empty and since s, 5.1 =Sy, = az,,E;O then is has only

n=1

one element which is the limit of (s,).)

Error estimation:
Lets=Ilims,.Ifnisoddthens,,; <s<s,andifniseventhens,<s<s,,;.

N—co

In both cases the error for the approximation s = s, is

|E[=1S=Sn| S| Sn1=Sn| =0
. - o e : 1. : :
Example: The alternating series Z is convergent, since a, = — is monotonically decreasing
n

n=1

and a,—0.

Root test (Cauchy)

Theorem (Root test): Assume that a, >0 and limsup y/a, =R. Then
(1)ifR<1,then > a,is convergent;
n=1

(2)ifR>1,then > a,is divergent.

n=1
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Proof. (1) Suppose R < 1, then there exists ¢ >0 such that R + e < 1.

By the definition of the limsup, for this ¢ there exists N e N such that if n > N then
\a, <R+¢,sinceif

Q/a_,, 2 R + £ would hold for infinitely many n then this subsequence would have a limit
point greater than R.

Thusa,<(R+¢)"ifn>N, and since Z(R +£)" is a convergent geometric series

n=1
then by the comparison test, Zan is also convergent.
n=1
(2) Suppose R > 1, then there exists £ > 0 and a subsequence of 4/ a, such that

”{/ank 2R-€¢>1,500, 2(R-¢€)">1,and thus lima, * 0 and the series is divergent by the

N—>c0

nth term test.

Consequence. Assume limsup 4/ | a, | =R. Then

(1)ifR<1,then Zan is convergent, since it is absolutely convergent;

n=1

(2)ifR>1, then Zan is divergent, since if lim | a, | #0, thenlima, *0.
N—->oo Nn—oco

n=1

Remark. If R =1 then we don’t know anything about the convergence of the series, for example

=

1 1
1) Z— is divergentand /- —1
on n

1

o

2) Z— is convergentand n|— —1
n=1 n2 nz

Ratio test (D’Alambert)

Theorem (Ratio test): Assume that a, > 0. Then

Qns ©
(1) if limsup i 1, then Zan is convergent;

an n=1

(eS] =
(2) if liminf — > 1,then » aj is divergent.

an n=1

a + . . . . .
Proof. (1) Suppose R =lim sup SN 1, then similarly as in the previous proof, there exists £ > 0
an

.
andNel\Isuchthatifnthhenn—1 <R+e<l1.
an

Thus ay,; <(R+¢€)ay

a2 < (R+€) ane1 < (R+ €)% ay

an
(R+e)
so we can apply the comparison test similarly as in the proof of the root test.

An<(R+€)a,=(R+€)"Nay=

“(R+¢)"
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Un+ . .
(2) Suppose liminf UL 1, then there exists £ >0 and N e N such that if n 2 N then
an
On+1

>R - ¢>1.Since a, >0 and (a,) is monotonic increasing then lima, # 0.

n-
ap b

Consequence. Assume a, #0 forallneN. Then

(1) if limsup | — | <1,then Zan is convergent, since it is absolutely convergent;
n=1
(2) if lim |nf| — |>1 then Za,, is divergent, since |fl|m | an | #0,then llman:to
n=1

Un+ L .
Remark. If lim sup 2 ~1orliminf—= = 1 then we don’t know anything about the convergence
an a,

of the series, for example

1
> 1. Onsl g1 n
1) > —isdivergentand — = = —1
o n an E n+1
n
1
1 (n+1)? n’
Z— is convergentand == —1
no1 an - (n+1)?
n2

Remark. The ratio test is a consequence of the root test and the following theorem.

Theorem. Assume that a, > 0. Then
ps n
lim inf —— < lim inf «/a_ limsup \/a_ lim sup—

ap an
an
Proof. 1) We prove that limsup Q/cT <limsup ey
an
Let lim sup —— =Cand let B> C be an arbitrary real number.
an

Oer
Then by the definition of the lim sup, there exists N e N such that if k = N then B
Qx

2
= apn+1 < B ap, ans2 < B ans1 < B an,

a
Soifn>Nthen a,<B"May = ya, < YB™" Yay =B ﬂf—z
B
= limsup Ya, <lim B » o _B.
n BN

We obtained that the following implication holds for all B > C:
On+1 n
limsup— <B = limsup Jast.

Qn
an+l

From this it follows that lim sup Q/a— <limsup
an

2) liminf {/a, <limsup 4 a, is obvious.
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An+
3) The proof of lim inf —= < liminf %/a, is similar to case 1).
an

Ons
Consequence. Ifa, >0 forallnand 3 lim L o geRthen3lim 4 a, =a.

N—oo an N—oo

Remark. It is a consequence of the previous inequalities that the root test is “stronger” than the
ratio test. Consider the series

had 1 1 1 1 1 1 1
Za,,:—+—+—+—+—+—+...,where02k_1=;andazk=

1
>1.
2 3 22 32 23 33 ’ k

3

n=1

With the root test:

. 1 1 o
If nis odd, then \"/a,, = 2K \llazk_l =2k-1 - _)T and if nis even, then
2 2

2k 1 1
Q/a;-= ‘/a;;-=2k g; =';ﬁ§-

. n l . .
= limsup 4a, =—— <1 = the series is convergent.
p g

2
With the ratio test:
1 1
One1 Ooks kel o Opy a k K
If nis even, then — Lo 27 o3 and if nis odd, then — L A LN}
1 Jk+1 17 3k
an a _ an azk-1 _
3k 2k
. an+l . . an+1 .
= limsup— =oo>1andliminf— =0<1 = the ratio test cannot be used here.
Qn an
Cauchy product

Definition: The Cauchy product of the series > a,and ) b, is the series > ¢,

n=0 n=0 n=0

where

n
Cn=0o by + a1 by + .+ Uy by = > by
k=0

dp ay a as

b@ dp ba dj b@ as ba as b@
by |agby aiby aby
b, |aeb, aib;

b; |agbs
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Mertens’ theorem

Theorem (Mertens). If Za,, is absolutely convergent and Zb,, is convergent, then their Cauchy

n=0 n=0

oo co N oo oo
productis convergentand its sumis » c,=> > axbpi= (Za,,) (an).
n=0 n=0

n=0 n=0k=0

Proof. Let A= ian, B= ibf"

n=0 n=0
n n n n k
Av=) i Bn=) bl Co=) k=) ) aibii, Br=By-B.
k=0 k=0 k=0 k=0i=0
Then

Ch=0a0bg+(agby+aybg)+(agby +ay by +a; bg) + ...+ (@g by +a1 by_q + ... + 0, bg) =
=aoB,+a1B.1+0,Bpo+...+0,By=

=0o(B + Bn) + a1(B + Bp-1) + 02(B + Bp2) + ... + (B + Bo) =

=A,B+ (ao Bn +a; pn—l +a ﬁn—z +...4+0, 130)

Lety,=ao Bn+ayBn1+0;Br2+...+0, Bo.
We have to show that C,— AB. Since A, B— AB, it is enough to show that limy, =0.

Nn-oco

Leta= Z | an |. (Here we use that Zan is absolutely convergent.) Let £ > 0 be given.
n=0 n=0

Since B = Zb,, then B,—0, so there exists Ne N such that | 8, | <€ifn=N.In this case

n=0

| Vol < | Boan+...BvCnn | + | Busr Gnn-r + oo+ BpGo | S

S| BoOn+Bnvlnn |+ | Brsr |~ | Gnencr |+ + | Bo | - | a0 | <
n-N-1

< Boan""--BNan—N | +£- Z |(]n <
n=0

S| Boln+..Bvany | +EQ.

If Nis fixed and n— o then | Byap, +... By ap_y | — 0 since ay—> o0 as k—> oo,
Sowegetthat limsup | y, | £€a.Since gis arbitrary, it follows that lim y, = 0.

N—>co

Remark. If both Za,, and Zb,, are absolutely convergent then their Cauchy product is also abso-

n=0 n=0

lutely convergent.

Theorem (Abel). Assume that Za,, and Zb,, are two convergent series and their Cauchy prod-

n=0 n=0

oo (=) n oo o
uctis also convergent. Thenits sumis > ¢,= > > ax by = (Zan) (an).
n=0 n=0

n=0 n=0k=0
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Remark. In general it is not true that the Cauchy-product of two convergent series is convergent.

=) o oo (_ n ) . .
Forexamplelet » a,=> b,= ) . These are Leibniz series, so they are convergent.
n=0 n=0 n=0 \n+1
(-1)" ("

n n n
Thenc,= ) axbyy = )
! l; S l;\jk+l \jn—k+l /; k+1- \jn k+1

ab,we get that

n l n n
| cn | = = (n+ 1), since the terms are
%1/;(_,_1.1/”_;(_,_1 ;(k+l Y+ (n-k+1) ,;n+2
independent of .
n+1 o
Therefore | | 22 —2,s0limc, #0 = the Cauchy-product is divergent.
n+2 e
Examples
< k 2 3 1
Example 1.If | x | <1then > x=1+x+x>+x>+..=—— and
=0 1-x
< k 2 3 1
Z(—x) =l-X+X"=X"+..= .
P 1+x

c© n
The Cauchy-product is ZZxk(—x)”'k =1+(x=X)+ (2 =2+ X))+ (P -+ - x3)+...=
n=0k=0

=1+0+xX2+0+x +0+x%+.. =i i - = Lo -[ixk)(i(—x)k]
k=0 k=0

1-x 1-x 1+x

k=0 k=0
Example 2. SII’]CGZX —|f|x| <1then
(5[ <5 S5 S=S e
(1- X)z k=0 n=0 k=0 n=0k=0  n=0
l = =10 p =12 = 2"
pamses. (53] 58 S a5
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Power series

Definitions. The series Zan(x - x0)" = ag + (X = Xp) + Az(X — Xo)? + ... is called a power series with

n=0
center Xy, where a,, is the coefficient of the nth term.

The domain of convergence of the power seriesis H = {x eR: Za,,(x - Xxo)" converges}.
n=0

1
The radius of convergence of the power seriesis R= ——— .
limsup \”/ | an |

Remarks. H is not empty, since the series converges for x = x,.

Since 4/ | a, | 20,then0<limsup 4 | a, | Sco.Iflimsup 4/ | @, | =oothen R=0and if
limsup A/ | @, | =0thenR=oo.

. dn+1 . .
If lim | —— | exists thenR=1lim
an

N->co N->co
On+1

Gn|

Theorem (Cauchy-Hadamard): Denote by R the radius of convergence of the power series

Zan(x - Xo)". Then

n=0

(1) if | x=xo | <R, then the series is absolutely convergent, and
(2)

2)if | x=xo | >R, thentheseriesis divergent.

1 1
Proof. We define — = +o0 and — =0. By the root test
+0 +00

| X=Xo |

limsup\’] lan] - | x=-x|" = |x—x0| “limsup \”/ | an | =T

X=X
Then Jx=xl <l & | x-x9| <R = theseriesis absolutely convergent

| x=Xo | C
and ———>1 & | x-xy | >R = theseriesis divergent.

Consequence. (1) IfR=0thenforallx*x,, | Xx-xy | >0=R,so the series diverges
and if x = xo then it converges. Then H = {x}.
(2)IfR=oothenforallxeR, | x-Xo | <R,so the seriesis absolutely convergent.
Then H=R.
(3) If 0 <R < oo, then (xg — R, Xo + R) € H c [Xg - R, X + R] and the endpoints of the

interval must be investigated separately.



