Calculus 1, 10th and 11th lecture

Comparison test

Theorem. Assume that $0 \le c_n \le a_n \le b_n$ for n > N where N is some fixed integer. Then

(1) If $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent. (2) If $\sum_{n=1}^{\infty} c_n$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof. Denote by s_n^a , s_n^b , s_n^c the *n*th partial sums of the numerical series $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} c_n$ respectively.

tively.

(1) **1st proof.** We use the Cauchy criterion. Let $\varepsilon > 0$ be fixed, then by the convergence of $\sum_{n=1}^{\infty} b_n$ there exists $N(\varepsilon) \in \mathbb{N}$ such that if $m > n > N(\varepsilon)$, then $|s_m^b - s_n^b| < \varepsilon$, so if $m > n > \max\{N, N(\varepsilon)\}$ then

$$|s_m^a - s_n^a| = \sum_{k=n+1}^m a_k \le \sum_{k=n+1}^m b = |s_m^b - s_n^b| < \varepsilon,$$

so $\sum_{n=1}^{\infty} a_n$ is convergent.

2nd proof. Changing finitely many terms does not affect the convergence or divergence of a series, so it may be assumed that $0 \le a_n \le b_n$ holds for all $n \in \mathbb{N}$. (If the series does not start at n = 1 then it can be reindexed.)

From the condition $a_1 \le b_1$, $a_2 \le b_2$, ..., $a_n \le b_n$, so

 $s_n^a = a_1 + a_2 + ... + a_n \le b_1 + b_2 + ... + b_n = s_n^b$. Assume that $\sum_{n=1}^{\infty} b_n$ is convergent $\implies (s_n^b)$ is bounded $\implies (s_n^a)$ is bounded

 \Rightarrow (s_n^a) is convergent since it is monotonically increasing $\Rightarrow \sum_{n=1}^{\infty} a_n$ is convergent.

(2) (s_n^c) is monotonically increasing if n > N and not bounded, so $s_n^a - s_N^a > s_n^c - s_N^c \longrightarrow \infty$ and thus $s_n^a \longrightarrow \infty$.

Example

The convergence of the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ can be investigated easily with the comparison test for $p \le 1$

and $p \ge 2$.

If
$$p \le 1$$
 then $0 < \frac{1}{n} \le \frac{1}{n^p}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent so $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is divergent.
If $p = 2$ then $\frac{1}{n^2} \le \frac{2}{n(n+1)}$ for all $n \in \mathbb{N}^+$ and $\sum_{n=1}^{\infty} \frac{2}{n(n+1)} = 2 \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent, so $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

gent.

If
$$p > 2$$
 then $0 < \frac{1}{n^p} \le \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent so $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent.
Remark: Leonhard Euler proved in 1734 that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Error estimation for series with nonnegative terms

Remark. Usually we don't know the limit $s = \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k = \lim_{n \to \infty} s_n$ but if *n* is large then s_n gives an estimation of *s*. The error for the approximation $s \approx s_n$ is $|E| = |s - s_n|$. If $0 \le a_k \le b_k$ for $k \ge n$ then the error can be estimated with the comparison test:

$$|E| = |s - s_n| = s - s_n = \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{n} a_k = \sum_{k=n+1}^{\infty} a_k \le \sum_{k=n+1}^{\infty} b_k$$

Here $s_n \leq s$, since (s_n) is monotonically increasing.

Example. Since $\frac{1}{n!} \le \frac{1}{n(n-1)} \le \frac{2}{n^2}$, then by the comparison test $\sum_{n=0}^{\infty} \frac{1}{n!}$ is convergent (by definition

$$| s - s_n | = \sum_{k=n+1}^{\infty} a_k = \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \frac{1}{(n+2)(n+3)(n+4)} + \ldots \right) \le$$

$$\le \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{(n+2)^2} + \frac{1}{(n+2)^3} + \ldots \right) = \frac{1}{(n+1)!} \sum_{k=0}^{\infty} \left(\frac{1}{n+2} \right)^k =$$

$$= \frac{1}{(n+1)!} \cdot \frac{1}{1 - \frac{1}{n+2}} = \frac{1}{(n+1)!} \cdot \frac{n+2}{n+1}$$

For example $| s - s_n | \approx 0.000173611$ and $s_6 = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} \approx 2.718 \dots \approx e$ (here 3 digits are accurate). The convergence of the series $\sum_{n=0}^{\infty} \frac{1}{n!}$ is very fast, for example $e \approx 2.718281828459045235360287$ $\sum_{n=0}^{10} \frac{1}{n!} \approx 2.7182818 \dots$ (7 digits are accurate) $\sum_{n=0}^{15} \frac{1}{n!} \approx 2.71828182845 \dots$ (11 digits are accurate) $\sum_{n=0}^{20} \frac{1}{n!} \approx 2.7182818284590452353 \dots$ (11 digits are accurate)

Absolute convergence

Definition. We say that the numerical series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

Example. $\sum_{n=1}^{\infty} a_1 q^{n-1}$ is absolutely convergent if |q| < 1.

Theorem. If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent then it is convergent.

Proof. Let $\varepsilon > 0$ be fixed. If $\sum_{n=1}^{\infty} |a_n|$ is convergent then by the Cauchy criterion there exists $N \in \mathbb{N}$ such that if m > n > N then $||a_{n+1}| + |a_{n+2}| \dots + |a_m|| < \varepsilon$. Then for all m > n > N

$$\mid s_m - s_n \mid = \mid a_{n+1} + a_{n+2} \dots + a_m \mid \leq \mid \mid a_{n+1} \mid + \mid a_{n+2} \mid \dots + \mid a_m \mid \mid < \varepsilon$$

also holds, so by the Cauchy criterion $\sum_{n=1}^{\infty} a_n$ is convergent.

Consequence. If $|a_n| \le b_n$ for n > N and $\sum_{n=1}^{\infty} b_n$ is convergent then $\sum_{n=1}^{\infty} a_n$ is absolutely convergent and therefore also convergent.

Definition. If $\sum_{n=1}^{\infty} a_n$ is convergent but not absolutely convergent then it is **conditionally convergent**. **Example.** $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} \left(\frac{1}{2n-1} - \frac{1}{2n}\right) = \sum_{n=1}^{\infty} \frac{1}{2n(2n-1)}$ is convergent, since

 $0 < \frac{1}{2n(2n-1)} \le \frac{1}{2n \cdot n} \le \frac{1}{n^2}.$ On the other hand $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ which is divergent, so the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally

convergent.

Rearrangements

Definition. If $\pi : \mathbb{N} \to \mathbb{N}$ is a permutation of the natural numbers (that is, every natural number appears exactly once in this sequence) then we say that $\sum_{n=1}^{\infty} a_{\pi(n)}$ is a rearrangement of $\sum_{n=1}^{\infty} a_n$.

Theorem (Riemann rearrangement theorem). Suppose that $\sum_{n=1}^{\infty} a_n$ is conditionally convergent and $-\infty \le \alpha \le \beta \le \infty$. Then there exists a rearrangement $\sum_{n=1}^{\infty} a_n$ ' with partial sums s_n ' such that $\liminf s_n = \alpha$, $\limsup s_n = \beta$.

Theorem. If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent then every rearrangement of $\sum_{n=1}^{\infty} a_n$ converges and they all converge to the same sum.

Proof: See W. Rudin: Principles of Mathematical Analysis, page 75: https://web.math.ucsb.edu/~agboola/teaching/2021/winter/122A/rudin.pdf

Alternating series

Definition. $\sum_{n=1}^{\infty} a_n$ is an alternating series if $a_n a_{n+1} < 0$ for all $n \in \mathbb{N}$.

Definition. The series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + a_5 - a_6 + \dots$ is a **Leibniz series** if $0 < a_{n+1} < a_n$ for all $n \in \mathbb{N}$ and $a_n \xrightarrow{n \to \infty} 0$.

Theorem. Every Leibniz series is convergent.

Proof. Since $0 < a_{n+1} < a_n$ for all $n \in \mathbb{N}$ then

$$\mathbf{s_{2n}} \le \mathbf{s_{2n}} + (a_{2n+1} - a_{2n+2}) = \mathbf{s_{2n+2}} = \mathbf{s_{2n+1}} - a_{2n+2} \le \mathbf{s_{2n+1}} = \mathbf{s_{2n-1}} - (a_{2n} - a_{2n+1}) \le \mathbf{s_{2n-1}},$$

that is, $0 \le s_2 \le s_4 \le s_6 \le s_8 \le \dots \le s_7 \le s_5 \le s_3 \le s_1 = a_1$.

So (s_{2n}) is monotonically increasing and bounded above \implies it is convergent, and (s_{2n+1}) is monotonically decreasing and bounded below \implies it is convergent.

Since $s_{2n+1} - s_{2n} = a_{2n+1} \xrightarrow{n \to \infty} 0$ then $\lim_{n \to \infty} s_{2n} = \lim_{n \to \infty} s_{2n+1} = \lim_{n \to \infty} s_n \implies$ the series is convergent. (Or, by the Cantor axiom $\bigcap_{n=1}^{\infty} [s_{2n}, s_{2n-1}]$ is not empty and since $s_{2n-1} - s_{2n} = a_{2n} \xrightarrow{n \to \infty} 0$ then is has only one element which is the limit of (s_n) .)

Error estimation:

Let $s = \lim_{n \to \infty} s_n$. If *n* is odd then $s_{n+1} \le s \le s_n$ and if *n* is even then $s_n \le s \le s_{n+1}$.

In both cases the error for the approximation $s \approx s_n$ is

 $|E| = |s - s_n| \le |s_{n+1} - s_n| = a_{n+1}.$ **Example:** The alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent, since $a_n = \frac{1}{n}$ is monotonically decreasing and $a_n \rightarrow 0$.

Root test (Cauchy)

Theorem (Root test): Assume that $a_n > 0$ and $\limsup \sqrt[n]{a_n} = R$. Then (1) if R < 1, then $\sum_{n=1}^{\infty} a_n$ is convergent; (2) if R > 1, then $\sum_{n=1}^{\infty} a_n$ is divergent. **Proof.** (1) Suppose R < 1, then there exists $\varepsilon > 0$ such that $R + \varepsilon < 1$.

By the definition of the limsup, for this ε there exists $N \in \mathbb{N}$ such that if n > N then $\sqrt[n]{a_n} < R + \varepsilon$, since if

 $\sqrt[n]{a_n} \ge R + \varepsilon$ would hold for infinitely many *n* then this subsequence would have a limit point greater than *R*.

Thus $a_n \le (R + \varepsilon)^n$ if n > N, and since $\sum_{n=1}^{\infty} (R + \varepsilon)^n$ is a convergent geometric series

then by the comparison test, $\sum_{n=1}^{\infty} a_n$ is also convergent.

(2) Suppose R > 1, then there exists $\varepsilon > 0$ and a subsequence of $\sqrt[n]{a_n}$ such that

 $\sqrt[n_k]{a_{n_k}} \ge R - \varepsilon > 1$, so $a_{n_k} \ge (R - \varepsilon)^{n_k} > 1$, and thus $\lim_{n \to \infty} a_n \ne 0$ and the series is divergent by the

nth term test.

Consequence. Assume $\limsup \sqrt[n]{|a_n|} = R$. Then

(1) if R < 1, then $\sum_{n=1}^{\infty} a_n$ is convergent, since it is absolutely convergent; (2) if R > 1, then $\sum_{n=1}^{\infty} a_n$ is divergent, since if $\lim_{n \to \infty} |a_n| \neq 0$, then $\lim_{n \to \infty} a_n \neq 0$.

Remark. If *R* = 1 then we don't know anything about the convergence of the series, for example

1)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 is divergent and $\sqrt[n]{\frac{1}{n}} \longrightarrow 1$
2) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent and $\sqrt[n]{\frac{1}{n^2}} \longrightarrow 1$

Ratio test (D'Alambert)

Theorem (Ratio test): Assume that $a_n > 0$. Then (1) if $\limsup \frac{a_{n+1}}{a_n} < 1$, then $\sum_{n=1}^{\infty} a_n$ is convergent; (2) if $\liminf \frac{a_{n+1}}{a_n} > 1$, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof. (1) Suppose $R = \limsup \frac{a_{n+1}}{a_n} < 1$, then similarly as in the previous proof, there exists $\varepsilon > 0$

and $N \in \mathbb{N}$ such that if $n \ge N$ then $\frac{a_{n+1}}{a_n} < R + \varepsilon < 1$. Thus $a_{N+1} < (R + \varepsilon) a_N$ $a_{N+2} < (R + \varepsilon) a_{N+1} < (R + \varepsilon)^2 a_N$... $a_{n+1} < (R + \varepsilon) a_n = (R + \varepsilon)^{n-N} a_N = \frac{a_N}{(R + \varepsilon)^N} \cdot (R + \varepsilon)^n$

so we can apply the comparison test similarly as in the proof of the root test.

(2) Suppose $\liminf \frac{a_{n+1}}{a_n} > 1$, then there exists $\varepsilon > 0$ and $N \in \mathbb{N}$ such that if $n \ge N$ then $\frac{a_{n+1}}{a_n} > R - \varepsilon > 1$. Since $a_n > 0$ and (a_n) is monotonic increasing then $\lim_{n \to \infty} a_n \neq 0$.

Consequence. Assume $a_n \neq 0$ for all $n \in \mathbb{N}$. Then

(1) if $\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1$, then $\sum_{n=1}^{\infty} a_n$ is convergent, since it is absolutely convergent; (2) if $\lim \inf \left| \frac{a_{n+1}}{a_n} \right| > 1$, then $\sum_{n=1}^{\infty} a_n$ is divergent, since if $\lim_{n \to \infty} |a_n| \neq 0$, then $\lim_{n \to \infty} a_n \neq 0$.

Remark. If $\limsup \frac{a_{n+1}}{a_n} = 1$ or $\liminf \frac{a_{n+1}}{a_n} = 1$ then we don't know anything about the convergence of the series, for example

1)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 is divergent and $\frac{a_{n+1}}{a_n} = \frac{1}{\frac{n+1}{n}} = \frac{n}{n+1} \longrightarrow 1$
2) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent and $\frac{a_{n+1}}{a_n} = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \longrightarrow 1$

Remark. The ratio test is a consequence of the root test and the following theorem.

Theorem. Assume that $a_n > 0$. Then $\liminf \frac{a_{n+1}}{a_n} \le \liminf \sqrt[n]{a_n} \le \limsup \sqrt[n]{a_n} \le \limsup \frac{a_{n+1}}{a_n}$

Proof. 1) We prove that $\limsup \sqrt[n]{a_n} \le \limsup \frac{a_{n+1}}{a_n}$. Let $\limsup \frac{a_{n+1}}{a_n} = C$ and let B > C be an arbitrary real number. Then by the definition of the lim sup, there exists $N \in \mathbb{N}$ such that if $k \ge N$ then $\frac{a_{k+1}}{a_k} < B$. $\Rightarrow a_{N+1} < B a_N$, $a_{N+2} < B a_{N+1} < B^2 a_N$, ... So if n > N then $a_n < B^{n-N} a_N \Rightarrow \sqrt[n]{a_n} < \sqrt[n]{B^{n-N}} \sqrt[n]{a_N} = B \cdot \sqrt[n]{\frac{a_N}{B^N}}$ $\Rightarrow \limsup \sqrt[n]{a_n} \le \limsup B \cdot \sqrt[n]{\frac{a_N}{B^N}} = B$. We obtained that the following implication holds for all B > C: $\limsup \frac{a_{n+1}}{a_n} < B \Rightarrow \limsup \sqrt[n]{a_n} \le B$. From this it follows that $\limsup \sqrt[n]{a_n} \le B$. 2) $\limsup \sqrt[n]{a_n} \le \limsup \sqrt[n]{a_n} \le \operatorname{obj}{a_n}$ is obvious.

3) The proof of
$$\liminf \frac{a_{n+1}}{a_n} \le \liminf \sqrt[n]{a_n}$$
 is similar to case 1).

Consequence. If
$$a_n > 0$$
 for all n and $\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \alpha \in \mathbb{R}$ then $\exists \lim_{n \to \infty} \sqrt[n]{a_n} = \alpha$.

Remark. It is a consequence of the previous inequalities that the root test is "stronger" than the ratio test. Consider the series

$$\sum_{n=1}^{\infty} a_n = \frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \dots, \text{ where } a_{2k-1} = \frac{1}{2^k} \text{ and } a_{2k} = \frac{1}{3^k}, k \ge 1.$$

With the root test:

If *n* is odd, then
$$\sqrt[n]{a_n} = \sqrt[2^{k-1}]{a_{2k-1}} = \sqrt[2^{k-1}]{\frac{1}{2^k}} \longrightarrow \frac{1}{\sqrt{2}}$$
 and if *n* is even, then
 $\sqrt[n]{a_n} = \sqrt[2^k]{a_{2k}} = \sqrt[2^k]{\frac{1}{3^k}} = \frac{1}{\sqrt{3}}.$
 $\implies \lim \sup \sqrt[n]{a_n} = \frac{1}{\sqrt{2}} < 1 \implies \text{the series is convergent.}$

With the ratio test:

If *n* is even, then
$$\frac{a_{n+1}}{a_n} = \frac{a_{2k+1}}{a_{2k}} = \frac{\frac{1}{2^{k+1}}}{\frac{1}{3^k}} = \frac{3^k}{2^{k+1}} \longrightarrow \infty$$
 and if *n* is odd, then $\frac{a_{n+1}}{a_n} = \frac{a_{2k}}{a_{2k-1}} = \frac{\frac{1}{3^k}}{\frac{1}{2^k}} = \frac{2^k}{3^k} \longrightarrow 0.$

$$\implies \limsup \frac{a_{n+1}}{a_n} = \infty > 1 \text{ and } \limsup \frac{a_{n+1}}{a_n} = 0 < 1 \implies \text{the ratio test cannot be used here.}$$

Cauchy product

Definition: The Cauchy product of the series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ is the series $\sum_{n=0}^{\infty} c_n$

where

$$c_{n} = a_{0} b_{n} + a_{1} b_{n-1} + \dots + a_{n} b_{0} = \sum_{k=0}^{n} a_{k} b_{n-k}$$

$$\frac{\begin{vmatrix} a_{0} & a_{1} & a_{2} & a_{3} & \dots \end{vmatrix}}{b_{0} & a_{0} b_{0} & a_{1} b_{0} & a_{2} b_{0} & a_{3} b_{0} \\ b_{1} & a_{0} b_{1} & a_{1} b_{1} & a_{2} b_{1} \\ b_{2} & a_{0} b_{2} & a_{1} b_{2} \\ b_{3} & a_{0} b_{3} \\ \dots \end{vmatrix}$$

Mertens' theorem

Theorem (Mertens). If $\sum_{n=0}^{\infty} a_n$ is absolutely convergent and $\sum_{n=0}^{\infty} b_n$ is convergent, then their Cauchy product is convergent and its sum is $\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right).$

Proof. Let $A = \sum_{n=0}^{\infty} a_n$, $B = \sum_{n=0}^{\infty} b_n$, $A_n = \sum_{k=0}^n a_k$, $B_n = \sum_{k=0}^n b_k$, $C_n = \sum_{k=0}^n c_k = \sum_{k=0}^n \sum_{i=0}^k a_i b_{k-i}$, $\beta_n = B_n - B$.

Then

 $C_{n} = a_{0} b_{0} + (a_{0} b_{1} + a_{1} b_{0}) + (a_{0} b_{2} + a_{1} b_{1} + a_{2} b_{0}) + \dots + (a_{0} b_{n} + a_{1} b_{n-1} + \dots + a_{n} b_{0}) =$ = $a_{0} B_{n} + a_{1} B_{n-1} + a_{n} B_{n-2} + \dots + a_{n} B_{0} =$ = $a_{0} (B + \beta_{n}) + a_{1} (B + \beta_{n-1}) + a_{2} (B + \beta_{n-2}) + \dots + a_{n} (B + \beta_{0}) =$ = $A_{n} B + (a_{0} \beta_{n} + a_{1} \beta_{n-1} + a_{2} \beta_{n-2} + \dots + a_{n} \beta_{0}).$

Let $\gamma_n = a_0 \beta_n + a_1 \beta_{n-1} + a_2 \beta_{n-2} + \dots + a_n \beta_0$. We have to show that $C_n \longrightarrow AB$. Since $A_n B \longrightarrow AB$, it is enough to show that $\lim_{n \to \infty} \gamma_n = 0$.

Let $\alpha = \sum_{n=0}^{\infty} |a_n|$. (Here we use that $\sum_{n=0}^{\infty} a_n$ is absolutely convergent.) Let $\varepsilon > 0$ be given. Since $B = \sum_{n=0}^{\infty} b_n$ then $\beta_n \longrightarrow 0$, so there exists $N \in \mathbb{N}$ such that $|\beta_n| \le \varepsilon$ if $n \ge N$. In this case

$$\begin{array}{l|l} |\gamma_n| \leq |\beta_0 a_n + \dots \beta_N a_{n-N}| + |\beta_{N+1} a_{n-N-1} + \dots + \beta_n a_0| \leq \\ \leq |\beta_0 a_n + \dots \beta_N a_{n-N}| + |\beta_{N+1}| \cdot |a_{n-N-1}| + \dots + |\beta_n| \cdot |a_0| \leq \\ \leq |\beta_0 a_n + \dots \beta_N a_{n-N}| + \varepsilon \cdot \sum_{n=0}^{n-N-1} |a_n| \leq \\ \leq |\beta_0 a_n + \dots \beta_N a_{n-N}| + \varepsilon \alpha. \end{array}$$

If *N* is fixed and $n \to \infty$ then $|\beta_0 a_n + ... \beta_N a_{n-N}| \to 0$ since $a_k \to \infty$ as $k \to \infty$. So we get that $\limsup |\gamma_n| \le \varepsilon \alpha$. Since ε is arbitrary, it follows that $\lim \gamma_n = 0$.

Remark. If both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are absolutely convergent then their Cauchy product is also absolutely convergent.

Theorem (Abel). Assume that $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are two convergent series and their Cauchy product is also convergent. Then its sum is $\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right).$ Remark. In general it is not true that the Cauchy-product of two convergent series is convergent.

For example let $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$. These are Leibniz series, so they are convergent.

Then
$$c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{k=0}^n \frac{(-1)^n}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{k+1} \cdot \sqrt{n-k+1}}$$

Using the AM-GM inequality $\frac{a+b}{2} \ge \sqrt{ab}$, we get that

$$|c_n| = \sum_{k=0}^n \frac{1}{\sqrt{k+1} \cdot \sqrt{n-k+1}} \ge \sum_{k=0}^n \frac{2}{(k+1) + (n-k+1)} = \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ since the terms are } \sum_{k=0}^n \frac{2}{n+2} = \frac{2}{n+2} (n+1), \text{ sinc$$

independent of k.

Therefore $\left| c_n \right| \ge 2 \cdot \frac{n+1}{n+2} \longrightarrow 2$, so $\lim_{n \to \infty} c_n \neq 0 \implies$ the Cauchy-product is divergent.

Examples

The Cauchy-product is $\sum_{n=0}^{\infty} \sum_{k=0}^{n} x^{k} (-x)^{n-k} = 1 + (x - x) + (x^{2} - x^{2} + x^{2}) + (x^{3} - x^{3} + x^{3} - x^{3}) + \dots =$

$$= 1 + 0 + x^{2} + 0 + x^{4} + 0 + x^{6} + \dots = \sum_{k=0}^{\infty} x^{2^{k}} = \sum_{k=0}^{\infty} (x^{2})^{k} = \frac{1}{1 - x^{2}} = \frac{1}{1 - x} \cdot \frac{1}{1 + x} = \left(\sum_{k=0}^{\infty} x^{k}\right) \left(\sum_{k=0}^{\infty} (-x)^{k}\right)$$

Example 2. Since $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ if |x| < 1 then $\frac{1}{(1-x)^2} = \left(\sum_{k=0}^{\infty} x^k\right)^2 = \sum_{n=0}^{\infty} \sum_{k=0}^n x^k x^{n-k} = \sum_{n=0}^{\infty} \sum_{k=0}^n x^n = \sum_{n=0}^{\infty} (n+1)x^n$ Example 3. $\left(\sum_{k=0}^{\infty} \frac{1}{2}\right)^2 - \sum_{n=0}^{\infty} \sum_{k=0}^n \frac{1}{2} - \sum_{n=0}^{\infty} \frac{1}{2} \sum_{k=0}^n \frac{n!}{2} - \sum_{n=0}^{\infty} \frac{1}{2} \sum_{k=0}^n \frac{n!}{2} - \sum_{k=0}^{\infty} \frac{1}{2} \sum_{k=0}^n \frac{n!}{2} = \sum_{k=0}^{\infty} \frac{1}{2} \sum_{k=0}^{\infty} \frac{n!}{2} = \sum_{k=0}^{\infty} \frac{1}{2} \sum_{k=0}^{\infty} \frac{n!}{2} = \sum_{k=0}^{\infty} \frac{1}{2} \sum_{k=0}^{\infty} \frac{n!}{2} \sum_{k=0}^{\infty} \frac{n!}{2} = \sum_{k=0}^{\infty} \frac{n!}{2} \sum_{k=0}^{\infty} \frac{n!$

Example 3.
$$\left(\sum_{k=0}^{\infty} \frac{n!}{n!}\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{k!(n-k)!}{k!(n-k)!} = \sum_{n=0}^{\infty} \frac{n!}{n!} \sum_{k=0}^{\infty} \frac{n!}{k!(n-k)!} = \sum_{n=0}^{\infty} \frac{n!}{n!} \sum_{k=0}^{\infty} \frac{n!}{k!} \sum_{k=0}^{\infty} \frac{n!}{k!(n-k)!} = \sum_{n=0}^{\infty} \frac{n!}{n!} \sum_{k=0}^{\infty} \frac{n!}{k!(n-k)!} = \sum_{n=0}^{\infty} \frac{n!}{n!} \sum_{k=0}^{\infty} \frac{n!}{k!} \sum_{k=0}^{\infty}$$

Power series

Definitions. The series $\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + ...$ is called a **power series** with center x_0 , where a_n is the coefficient of the *n*th term.

The domain of convergence of the power series is $H = \left\{ x \in \mathbb{R} : \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ converges} \right\}.$ The **radius of convergence** of the power series is $R = \frac{1}{\lim_{n \to \infty} \sup \sqrt[n]{|a_n|}}.$

Remarks. *H* is not empty, since the series converges for $x = x_0$.

Since $\sqrt[n]{|a_n|} \ge 0$, then $0 \le \limsup \sqrt[n]{|a_n|} \le \infty$. If $\limsup \sqrt[n]{|a_n|} = \infty$ then R = 0 and if $\limsup \sqrt[n]{|a_n|} = 0$ then $R = \infty$. If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists then $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$.

Theorem (Cauchy-Hadamard): Denote by R the radius of convergence of the power series

 $\sum_{n=0}^{\infty} a_n (x - x_0)^n$. Then (1) if $|x - x_0| < R$, then the series is absolutely convergent, and (2) if $|x - x_0| > R$, then the series is divergent.

Proof. We define $\frac{1}{+0} = +\infty$ and $\frac{1}{+\infty} = 0$. By the root test limsup $\sqrt[n]{|a_n| \cdot |x - x_0|^n} = |x - x_0| \cdot \text{limsup } \sqrt[n]{|a_n|} = \frac{|x - x_0|}{R}$ Then $\frac{|x - x_0|}{R} < 1 \iff |x - x_0| < R \implies$ the series is absolutely convergent and $\frac{|x - x_0|}{R} > 1 \iff |x - x_0| > R \implies$ the series is divergent.

Consequence. (1) If R = 0 then for all $x \neq x_0$, $|x - x_0| > 0 = R$, so the series diverges and if $x = x_0$ then it converges. Then $H = \{x_0\}$.

- (2) If $R = \infty$ then for all $x \in \mathbb{R}$, $|x x_0| < R$, so the series is absolutely convergent. Then $H = \mathbb{R}$.
- (3) If $0 < R < \infty$, then $(x_0 R, x_0 + R) \subset H \subset [x_0 R, x_0 + R]$ and the endpoints of the interval must be investigated separately.