
Calculus 1, 8th and 9th lecture

Bolzano-Weierstrass theorem

Theorem: Every sequence has a monotonic subsequence.

Proof. First we introduce the following concept: ak is called a peak element if an ≤ ak for all n > k. 
Then two cases are possible.
Case 1: There are infinitely many peak elements. If n1 < n2 < n3 < ... are indexes for which 
an1, an2, an3, ... are peak elements, then the sequence an1, an2, an3  is monotonically decreasing.

Case 2: There are finitely many peak elements (or none). It means that there exists an index n0 such 
that for all n ≥ n0,  an is not a peak element.
Since an0 is not a peak element, there exists n1 > n0 such that an1 > an0.
Since an1 is not a peak element, there exists n2 > n1 such that an2 > an1, etc.
In this case the sequence an0, an1, an2 is strictly monotonic increasing.

Case 1:                                                                                      Case 2:
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Theorem (Bolzano-Weierstrass): Every bounded sequence has a convergent subsequence.

Proof: Because of the previous theorem there exists a monotonic subsequence and since it is 
bounded then it is convergent.

Remark. The Bolzano-Weierstrass theorem is not true in the set of rational numbers.

Let (bn) = (1, 1.4, 1.41, 1.414, ...)⟶ 2 ∉, then bn ∈  and bn ∈ [1, 2]  for all n, that is, (bn) is 
bounded.

Each subsequence of (bn) converges to 2 , so (bn) does not have a subsequence converging to a 
rational number.

Cauchy sequences

Definition. (an) is a Cauchy sequence if for all ε > 0 there exists N(ε) ∈ such that if n, m > N then 
an - am < ε.



Statement: If (an) is a Cauchy sequence, then it is bounded, since for all ε > 0 and n ∈,

min {aN+1 - ε, a1, ..., aN} ≤ an ≤ max {aN+1 + ε, a1, ..., aN}.

Theorem. (an) is convergent if and only if it is a Cauchy sequence.

Proof. a) Let ε > 0 be fixed. If lim
n∞

an = A, then for 
ε

2
 there exists N ∈ such that if n > N then 

an - A <
ε

2
.

So if n, m > N then an - am = an - A + A - am ≤ an - A + A - am <
ε

2
+
ε

2
= ε.

b) If (an) is a Cauchy sequence then it is bounded. Define cn = inf {an, an+1, ...} and 
dn = sup {an, an+1, ...}.

Then cn ≤ cn+1 ≤ dn+1 ≤ dn, so by the Cantor-axiom 
n=1

∞

[cn, dn] ≠ ∅. Since for all ε > 0 there exists N ∈ 

such that if n > N then cn - dn < ε, it means that the intersection has only one element A, which 
is the limit of the sequence
( A - an < max { cn - an , dn - an } < ε).

Remark. The theorem expresses the fact that the terms of a convergent sequence are also arbitrar-
ily close to each other if their indexes are large enough. The theorem can be used to prove conver-
gence even if the limit is not known.

Example. an = (-1)n is not convergent, since an - an+1 = (-1)n - (-1)n+1 = 2 ≥ ε if ε ≤ 2.

Remark. A Cauchy sequence is not necessarily convergent in the set of rational numbers.

For example (an) = (1, 1.4, 1.41, 1.414, ...)⟶ 2 ∉.
(an) is a Cauchy sequence, since an+k - an < 10-N if n > N and k ∈ is arbitrary, but the limit of 

(an) is not rational.

An important example

Let sn =

k=1

n 1

k
= 1+

1

2
+

1

3
+ ... +

1

n
.  Prove that lim

n∞
sn =∞.

Solution. Let ε ≤
1

2
 and m = 2 n. Then with

sn = 1 +
1

2
+

1

3
+ ... +

1

n
   and   sm = s2 n = 1 +

1

2
+

1

3
+ ... +

1

n
+

1

n + 1
+

1

n + 2
+ ... +

1

2 n
,  

we get that

sm - sn = s2 n - sn =
1

n + 1
+

1

n + 2
+ ... +

1

2 n
>

1

2 n
+

1

2 n
+ ... +

1

2 n
= n ·

1

2 n
=

1

2
≥ ε,

so (sn) is not a Cauchy sequence. Since (sn) is monotonically increasing, it follows that sn⟶∞.
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Limit points or accumulation points of a sequence

Definition. For any P ∈ , the interval (P, ∞) is called a neighbourhood of +∞ and the interval 
(-∞, P) is called a neighbourhood of -∞.

Definition. A ∈  ⋃ {∞, -∞} is called a limit point or accumulation point of (an) if any neighbour-
hood of A contains infinitely many terms of (an). Or equivalently there exists a subsequence (ank) 

such that ank
n∞

A.

Theorem. Every sequence has at least one limit point. 

Proof. We proved that every sequence has a monotonic subsequence.
If it is bounded, then it has a finite limit, so it is a limit point of the sequence.
If the subsequence is not bounded, then it tends to ∞ or -∞, so ∞ or -∞ is a limit point of the 
sequence.

Definition. If the set of limit points of (an) is bounded above, then its supremum is called the limes 
superior of (an) (notation: lim supan), and if it is bounded below, then we call the infimum of the 
set the limes inferior of (an) (notation: lim inf an).
If (an) is not bounded above, we define lim supan =∞ and if (an) is not bounded below, then we 
define lim inf an = -∞.

Theorem. (an) is convergent if and only if lim supan = lim inf an = A ∈ .

Proof. 1) If (an) is convergent, then all of its subsequences tend to the same limit as (an), so the only 
element of the set of the limit points will be the limsup and the liminf of the sequence.
2) Let lim supan = lim inf an = A and let ε > 0 be fixed. If we assume indirectly that lim

n∞
an ≠ A then it 

means that there are infinitely many terms n1 < n2 < ... ∈ such that an - A ≥ ε. Then (ank) has a 
limit point which differs from A, so we arrived at a contradiction.

Numerical series

Definition

Definition. Suppose (an) is a sequence and define the sequence of partial sums as sn =

k=1

n

ak. If sn is 

convergent, then the numerical series 
n=1

∞

an is convergent, and its sum is 
n=1

∞

an = lim
n∞



k=1

n

ak = lim
n∞

sn. 
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The geometric series

Theorem.   1 + q + q2 + ... =

n=0

∞

qn =
1

1 - q
if q < 1 and the series is divergent otherwise.

Proof. If an = qn then sn =

k=0

n

qk =
qn+1 - 1

q - 1
if q ≠ 1

n + 1 if q = 1
If q = 1 then lim

n∞
sn =∞.

If q > 1 then lim
n∞

sn =∞, since lim
n∞

qn+1 =∞.

If -1 < q < 1 then lim
n∞

sn =
1

1 - q
, since lim

n∞
qn+1 = 0.

If q ≤ -1 then lim
n∞

sn does not exist, since lim
n∞

qn does not exist.

Similarly, 
n=0

∞

a ·qn =
a

1 - q
,  
n=k

∞

a ·qn =
a ·qk

1 - q
  if q < 1.

A telescoping series



k=1

∞ 1

k(k + 1)
= lim
n∞



k=1

n 1

k(k + 1)
= lim
n∞

1

1 ·2
+

1

2 ·3
+ ... +

1

n(n + 1)
=

= lim
n∞

1 -
1

2
+

1

2
-

1

3
+

1

3
-

1

4
... +

1

n
-

1

n + 1
= lim
n∞

1 -
1

n + 1
= 1

Cauchy criterion

Theorem: The numerical series 
n=1

∞

an converges if and only if for all ε > 0 there exists N ∈ such 

that if m > n > N  then sm - sn = 

k=n+1

m

ak = an+1 + an+2 + ... + am < ε.

Proof: It is trivially true, since the Cauchy criterion for number sequences can be applied for (sn).

The nth term test

Theorem: If 
n=1

∞

an is convergent then lim
n∞

an = 0.

1st proof: Apply the Cauchy criterion with the choice m = n + 1. Then

sn+1 - sn = an+1 < ε  if n > N(ε), so lim
n∞

an = 0.

2nd proof: Let lim
n∞

sn = s ∈ , then sn = sn-1 + an  ⟹  an = sn - sn-1⟶s - s = 0.
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Remark. The theorem can also be stated in the following form:

If lim
n∞

an ≠ 0 or if the limit doesn’t exist then 
n=1

∞

an diverges.

Remark. The condition lim
n∞

an = 0 is necessary but not sufficient for the convergence of 
n=1

∞

an, as the 

following example shows.

The harmonic series

Theorem. The harmonic series 
n=1

∞ 1

n
 diverges.

Proof.     s2n =

k=1

2n 1

k
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ ... +

1

2n-1 + 1
+ ... +

1

2n
≥

              ≥ 1 +
1

2
+ 2 ·

1

4
+ 4 ·

1

8
+ ... +2n-1 ·

1

2n
= 1+

n

2

n∞
∞.

Remark. The name of the harmonic series comes from the fact that for all n ≥ 2, an is the harmonic 
mean of an-1 and an+1, that is, 

an =
2

1

an-1
+

1

an+1

=
2

1

1

n - 1

+
1

1

n + 1

=
2

(n - 1) + (n + 1)
=

1

n
.

The divergence of the series is very slow, for example



n=1

100 1

n
≈ 5.18738,   

n=1

104 1

n
≈ 9.78761,   

n=1

105 1

n
≈ 12.0901,    

n=1

106 1

n
≈ 14.3927

Sum and constant multiple

Theorem: Assume 
n=1

∞

an and 
n=1

∞

bn are convergent, 
n=1

∞

dn is divergent, and c ∈ \{0}. Then

(1) 
n=1

∞

(an + bn) =

n=1

∞

an +

n=1

∞

bn

(2) 
n=1

∞

c an = c
n=1

∞

an

(3) 
n=1

∞

(an + dn) is divergent

(4) 
n=1

∞

c dn is divergent

Proof. All statements follow from the properties of the sequences.
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Series with nonnegative terms

Theorem. A series with nonnegative terms converges if and only if its partial sums form a 
bounded sequence.

Proof. If an ≥ 0 for all n ∈ then sn+1 = an+1 + sn ≥ sn for all n ∈, so (sn) is monotonically increasing.

If 
n=1

∞

an converges, then (sn) converges  ⟹  (sn) is bounded.

If (sn) is bounded, then (sn) converges since it is monotonically increasing.

Cauchy Condensation Test

Theorem. Suppose a1 ≥ a2 ≥ a3 ≥ ... ≥ 0. Then the series 
n=1

∞

an converges 

if and only if the series 
k=0

∞

2k a2k = a1 + 2a2 + 4a4 + 8a8 + ... converges.

Proof. Let sn = a1 + a2 + ... + an =

k=1

n

ak and 

    σn = a1 + 2a2 + 4a4 + 8a8 + ... + 2n a2n =

k=1

n

2k a2k

    
1) (sn) is monotonically increasing, since the terms of (an) are nonnegative and 
n ≤ 2n - 1 for all n ∈+ so sn ≤ s2n-1. Then
sn ≤ s2n-1 = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + ... + (a2n-1 + ... + a2n-1) ≤

                  ≤ a1 + (a2 + a2) + (a4 + a4 + a4 + a4) + ... + (a2n-1 + ... + a2n-1) =

                  = a1 + 2 a2 + 4 a4 + ... + 2n-1 a2n-1 =

                  =
1

2
(a1 + 2a2 + 4a4 + 8a8 + ... + 2n a2n) = σn-1

Assume that 
k=1

n

2k a2k  is convergent  ⟹   (σn) is convergent, so it is bounded ⟹  (sn) is bounded 

above since sn ≤ s2n-1 ≤ σn-1  ⟹  (sn) is convergent since it is monotonically increasing.

2) s2n = a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + ... + (a2n-1+1 + ... + a2n) ≥

                ≥
1

2
a1 + a2 + (a4 + a4) + (a8 + a8 + a8 + a8) + ... + (a2n + ... + a2n) =

                =
1

2
a1 + a2 + 2 a4 + 4 a8 + ... + 2n-1 a2n =

1

2
σn        

 Assume that 
n=1

∞

an is convergent  ⟹   (sn) is convergent, so it is bounded  ⟹  (σn) is bounded above 

since 
1

2
σn ≤ s2n   ⟹  (σn) is convergent since it is monotonically increasing  ⟹  

k=0

∞

2k a2k  is 

convergent.
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The p-series (or hyperharmonic series)

Theorem. 
n=1

∞ 1

np
  converges if p > 1 and diverges if p ≤ 1.

Proof. If p ≤ 0 then lim
n∞

an = lim
n∞

1

np
= lim
n∞

n p ≠ 0, so by the nth term test, the series diverges.

If p > 0 then an =
1

np
 is monotonically decreasing, so the Cauchy condensation theorem is applica-

ble, that is, 
n=1

∞ 1

np
 and 

k=1

∞

2k ·
1

2kp
 are both convergent or both divergent.



k=1

∞

2k ·
1

2kp
=

k=1

∞ 1

2-k
·

1

2k p
=

k=1

∞ 1

2(p-1) k
=

k=1

∞ 1

2

p-1 k

,

this is a geometric series with ratio r =
1

2

p-1

 and it is convergent if and only if

                       r =
1

2

p-1

< 1  ⟺  p - 1 > 0  ⟺  p > 1.
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