Calculus 1, 6th and 7th lecture

Orders of magnitudes

Definition: Suppose that $a_n \xrightarrow{n \to \infty} \infty$ and $b_n \xrightarrow{n \to \infty} \infty$. Then the order of magnitude of (a_n) is smaller than the order of magnitude of (b_n) if $\frac{a_n}{b} \xrightarrow{n \to \infty} 0$.

Notation: $a_n \ll b_n$

Theorem: $n^n >> n! >> a^n >> n^k >> n^{\frac{1}{k}} >> \log n$, where a > 1 and $k \in \mathbb{N}^+$. That is,

a)
$$\lim_{n\to\infty} \frac{n^n}{n!} = \infty$$

b)
$$\lim_{n\to\infty}\frac{n!}{a^n}=\infty$$
, where $a>1$

a)
$$\lim_{n\to\infty} \frac{n^n}{n!} = \infty$$
 b) $\lim_{n\to\infty} \frac{n!}{a^n} = \infty$, where $a > 1$ **c)** $\lim_{n\to\infty} \frac{a^n}{n} = \infty$, where $a > 1$

d)
$$\lim_{n \to \infty} \frac{a^n}{n^k} = \infty$$
, where $a > 1$ and $k \in \mathbb{N}^+$ **e)** $\lim_{n \to \infty} \frac{n}{\log_2 n} = \infty$

e)
$$\lim_{n\to\infty} \frac{n}{\log_2 n} = \infty$$

Some proofs. a) $\frac{n^n}{n!} = \frac{n}{1} \cdot \frac{n}{2} \cdot \frac{n}{3} \cdot \dots \cdot \frac{n}{n-2} \cdot \frac{n}{n-1} \cdot \frac{n}{n} \ge n \cdot 1 \cdot 1 \cdot \dots \cdot 1 \cdot 1 \cdot 1 = n \longrightarrow \infty \implies \frac{n^n}{n!} \longrightarrow \infty$

b) For example, if a = 2, then $\frac{n!}{2^n} = \frac{n}{2} \cdot \frac{n-1}{2} \cdot \frac{n-2}{2} \cdot \dots \cdot \frac{3}{2} \cdot \frac{2}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \dots \cdot 1 \cdot 1 \cdot \frac{1}{2} = \frac{n}{4} \longrightarrow \infty \implies \frac{n!}{2^n} \longrightarrow \infty$

In general, if a > 1, then $\frac{n!}{a^n} = \frac{n}{a} \cdot \frac{n-1}{a} \cdot \dots \cdot \frac{[a]+1}{a} \cdot \frac{[a]}{a} \cdot \dots \cdot \frac{1}{a} \ge \frac{n}{a} \cdot \dots \cdot 1 \cdot c = \frac{c}{a} \cdot n \longrightarrow \infty \implies \frac{n!}{a^n} \longrightarrow \infty$, where $c = \frac{[a]}{} \cdot \dots \cdot \frac{1}{}$.

Remark: Binomial coefficients: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ where $k! = 1 \cdot 2 \cdot ... \cdot k$ and 0! = 1.

Meaning: the number of subsets with k elements of a set with n elements.

Binomial theorem: $(a + b)^n = (a + b)(a + b) \dots (a + b) = \sum_{k=0}^{n} {n \choose k} a^k b^{n-k}$.

c) We will prove that $\lim_{n\to\infty} \frac{a^n}{n} = \infty$, where $a = 1 + \delta$ and $\delta > 0$. By the binomial theorem,

$$(1+\delta)^n = \sum_{k=0}^n \binom{n}{k} \delta^k = \binom{n}{0} \delta^0 + \binom{n}{1} \delta^1 + \binom{n}{2} \delta^2 + \dots + \binom{n}{n} \delta^n \ge \binom{n}{2} \delta^2, \text{ so}$$

$$\frac{(1+\delta)^n}{n} \ge \frac{\binom{n}{2}\delta^2}{n} = \frac{n(n-1)}{2n}\delta^2 = \frac{n-1}{2}\delta^2 \longrightarrow \infty \implies \frac{a^n}{n} \longrightarrow \infty, \text{ where } a > 1.$$

d) We will prove that $\lim_{n\to\infty}\frac{a^n}{n^k}=\infty$, where a>1 and $k\in\mathbb{N}^+$. This is a consequence of case c), since if a>1

then
$$\sqrt[k]{a} > 1$$
 and $\frac{a^n}{n^k} = \left(\frac{\left(\sqrt[k]{a}\right)^n}{n}\right)^k$.

e) Let $a_n = \frac{n}{\log n}$. It can be shown that (a_n) is monotonic increasing (we can prove this later) and

$$a_{2^k} = \frac{2^k}{\log_2 2^k} = \frac{2^k}{k} \longrightarrow \infty.$$

From these two properties it follows that $a_n \rightarrow \infty$.

Example:
$$\frac{n^2 - 3^n}{n! + n^4} = \frac{3^n}{n!} \cdot \frac{\frac{n^2}{3^2} - 1}{1 + \frac{n^4}{n!}} \xrightarrow{n \to \infty} 0 \cdot \frac{0 - 1}{1 + 0} = 0.$$

Theorem. $\lim n^k a^n = 0$, if |a| < 1 and $k \in \mathbb{N}^+$.

1st proof. It is a consequence of the following statements:

a) If
$$a_n \xrightarrow{n \to \infty} \infty$$
 then $\frac{1}{a_n} \xrightarrow{n \to \infty} 0$.

b) If
$$a > 1$$
 and $k \in \mathbb{N}^+$ then $\frac{a^n}{n^k} \xrightarrow{n \to \infty} \infty$.

c) If
$$a_n \mid \xrightarrow{n \to \infty} 0$$
 then $a_n \xrightarrow{n \to \infty} 0$.

2nd proof. It is a consequence of the following statements:

(i)
$$\sqrt[n]{n} \xrightarrow{n \to \infty} 1$$

(ii) If
$$0 < \lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1$$
 then $a_n \xrightarrow{n \to \infty} 0$.

If $L \le q < 1$ then there exists $N \in \mathbb{N}$ such that for all n > N, $\sqrt[n]{\mid a_n \mid} < q$.

Then $0 < |a_n| < q^n \longrightarrow 0$ so by the Sandwich Theorem $a_n \stackrel{n \to \infty}{\longrightarrow} 0$.

Using this, if |a| < 1 then $\sqrt[n]{|n^k a^n|} = \left(\sqrt[n]{n}\right)^k \cdot |a| \longrightarrow 1^k \cdot |a| < 1 \Longrightarrow n^k a^n \longrightarrow 0$.

The Sandwich Theorem and two applications

Theorem (Sandwich Theorem). If $a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$, $c_n \xrightarrow{n \to \infty} A \in \mathbb{R}$ and $a_n \le b_n \le c_n$ for all n > N, then $b_n \xrightarrow{n \to \infty} A \in \mathbb{R}$

Proof. Let $\varepsilon > 0$ be fixed. Then

there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $A - \varepsilon < a_n < A + \varepsilon$ and

there exists $N_2 \in \mathbb{N}$ such that if $n > N_2$ then $A - \varepsilon < c_n < A + \varepsilon$.

So if $n > \max\{N, N_1, N_2\}$ then

$$A - \varepsilon < a_n \le b_n \le c_n < A + \varepsilon \implies |b_n - A| < \varepsilon$$

Theorem. $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

1st proof. Apply the AM-GM inequality for $a_1 = \dots a_{n-2} = 1$, $a_{n-1} = a_n = \sqrt{n}$.

$$1 \le \sqrt[n]{n} = \sqrt[n]{1 \cdot \dots \cdot 1 \cdot \sqrt{n} \cdot \sqrt{n}} \le \frac{(n-2)+2\sqrt{n}}{n} \le 1 + \frac{2}{\sqrt{n}} \longrightarrow 1 + 0 - 0 = 1,$$

so by the Sandwich Theorem, $\sqrt[n]{n} \longrightarrow 1$.

2nd proof. Since $\sqrt[n]{n} \ge 1$ then we can write $\sqrt[n]{n} = 1 + \delta_n$, where $\delta_n \ge 0$. Then by the binomial theorem,

n can be estimated from below:

$$n = (1 + \delta_n)^n = 1 + n \delta_n + \binom{n}{2} \delta_n^2 + \dots + \binom{n}{n} \delta_n^2 \ge \binom{n}{2} \delta_n^2 = \frac{n(n-1)}{2} \delta_n^2$$

from where

 $0 \le \delta_n \le \sqrt{\frac{2}{n-1}} \longrightarrow 0$, so by the Sandwich Theorem, $\delta_n \longrightarrow 0$ and thus $\sqrt[n]{n} \longrightarrow 1$.

Theorem. If p > 0 then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.

1st proof. Assume that $p \ge 1$ and apply the AM-GM inequality for $a_1 = \dots a_{n-2} = 1$, $a_{n-1} = a_n = \sqrt{p}$.

Then

$$1 \le \sqrt[n]{p} = \sqrt[n]{1 \cdot \dots \cdot 1 \cdot \sqrt{p} \cdot \sqrt{p}} \le \frac{(n-2)+2\sqrt{p}}{n} \le 1 + \frac{2\sqrt{p}}{n} \longrightarrow 1 + 0 = 1,$$

so by the Sandwich Theorem, $\sqrt[n]{p} \longrightarrow 1$.

If
$$0 , then $\frac{1}{p} > 1$, so $\sqrt[q]{p} = \frac{1}{\sqrt[q]{\frac{1}{p}}} \longrightarrow 1$.$$

2nd proof. If $p \ge 1$ then $\sqrt[n]{p} \ge 1$, so we can write $\sqrt[n]{p} = 1 + \delta_n$, where $\delta_n \ge 0$. Then by the binomial theorem, *n* can be estimated from below:

$$p=(1+\delta_n)^n=1+n\,\delta_n+\binom{n}{2}\,\delta_n^2+\ldots+\binom{n}{n}\,\delta_n^2\geq n\,\delta_n,$$

from where $0 \le \delta_n \le \frac{p}{n} \longrightarrow 0$, so by the Sandwich Theorem, $\delta_n \longrightarrow 0$ and thus $\sqrt[n]{p} \longrightarrow 1$.

The case 0 is the same as before.

3rd proof. If $p \ge 1$ then $\sqrt[n]{p} \ge 1$, so we can write $\sqrt[n]{p} = 1 + \delta_n$, where $\delta_n \ge 0$. We show that $\delta_n \longrightarrow 0$. By the Bernoulli inequality

$$p = (1 + \delta_n)^n \ge 1 + n \delta_n \implies \frac{p-1}{n} \ge \delta_n > 0$$

Since $\frac{p-1}{p} \longrightarrow 0$ then by the Sandwich Theorem $\delta_n \longrightarrow 0$, so $\sqrt[n]{p} \longrightarrow 1$.

The case 0 is the same as before.

Monotonic sequences

Theorem. If (a_n) is monotonically increasing and not bounded above, then $a_n \xrightarrow{n \to \infty} \infty$.

Proof. Let P > 0 be fixed. Since it is not an upper bound, there exists an $N \in \mathbb{N}$ such that $a_N > P$. By the monotonicity, if n > N then $a_n \ge a_N > P$.

Consequence. If (a_n) is monotonically decreasing and not bounded below, then $a_n \xrightarrow{n \to \infty} -\infty$.

Theorem. (1) If (a_n) is monotonically increasing and bounded above, then (a_n) is convergent and $\lim a_n = \sup \{a_n : n \in \mathbb{N}\}.$

(2) If (a_n) is monotonically decreasing and bounded below, then (a_n) is convergent and $\lim a_n = \inf \{a_n : n \in \mathbb{N}\}.$

Proof of part (1). Let $A = \sup \{a_k : k \in \mathbb{N}\}$, then $a_n \le A$ for all $n \in \mathbb{N}$.

Assume indirectly that $\lim_{n\to\infty} a_n \neq A$. Then there exists $\varepsilon > 0$, such that for all $N \in \mathbb{N}$ there exists n > N, such that $a_n \le A - \varepsilon$. By the monotonicity $a_N \le a_n$, so $a_N \le A - \varepsilon$ for all $N \in \mathbb{N}$. However, this is a contradiction, since A is the smallest upper bound of the sequence (so $A - \varepsilon$ is not an upper bound). Therefore for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if n > N then $A - \varepsilon < a_n \le A < A + \varepsilon$, so $\lim a_n = A$.

The sequence $a_n = (1 + \frac{1}{n})^n$

Theorem. The sequence $a_n = \left(1 + \frac{1}{n}\right)^n$ is monotonically increasing and bounded, so it is convergent.

1st proof. a) Monotonicity. We use the inequality between the arithmetic and geometric means: if $a_1, a_2, ..., a_k \ge 0$ then $\sqrt[k]{a_1 a_2 ... a_k} \le \frac{a_1 + a_2 + ... + a_k}{\iota}$.

Let
$$a_1 = \dots = a_n = 1 + \frac{1}{n}$$
 and $a_{n+1} = 1$. Then

$$\sqrt[n+1]{\left(1+\frac{1}{n}\right)^n \cdot 1} \le \frac{n\left(1+\frac{1}{n}\right)+1}{n+1} = 1+\frac{1}{n+1},$$

so
$$a_n = \left(1 + \frac{1}{n}\right)^n \le \left(1 + \frac{1}{n+1}\right)^{n+1} = a_{n+1}$$
 for all $n \in \mathbb{N}$.

b) Boundedness. We use the inequality between the arithmetic and geometric means for the num-

bers
$$a_1 = \dots = a_n = 1 + \frac{1}{n}$$
 and $a_{n+1} = a_{n+2} = \frac{1}{2}$. Then
$$\frac{n+2}{\sqrt{1+\frac{1}{n}^n \cdot \frac{1}{4}}} \le \frac{n(1+\frac{1}{n}) + 2 \cdot \frac{1}{2}}{n+2} = 1,$$

so
$$a_n = \left(1 + \frac{1}{n}\right)^n \le 4$$
 for all $n \in \mathbb{N}$.

2nd proof with the binomial theorem (homework).

a) Boundedness.
$$a_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n {n \choose k} \left(\frac{1}{n}\right)^k = 1 + 1 + \sum_{k=2}^n \frac{n(n-1) \dots (n-(k-1))}{k!} \cdot \frac{1}{n^k} = 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} \cdot \dots \cdot \frac{n-(k-1)}{n} < 1 + 1 + \sum_{k=2}^n \frac{1}{k!} \cdot 1 \cdot \dots \cdot 1 = \sum_{k=0}^n \frac{1}{k!} := s_n.$$

The sequence (s_n) is bounded above since the terms can be estimated from above by the terms of a geometric sequence with ratio -:

$$s_n = 1 + 1 + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \dots + \frac{1}{1 \cdot 2 \cdot \dots \cdot n} < \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \dots +$$

$$<1+\left(1+\frac{1}{2}+\frac{1}{\frac{2}{2}}+\frac{1}{\frac{2}{2}}+\dots+\frac{1}{\frac{2^{n-1}}{2}}\right)=1+\frac{1-\left(\frac{1}{2}\right)^n}{1-\frac{1}{2}}=3-\left(\frac{1}{2}\right)^{n-1}<3.$$

So
$$a_n = \left(1 + \frac{1}{n}\right)^n < s_n = \sum_{k=0}^n \frac{1}{k!} < 3.$$

$$a_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1} = \sum_{k=0}^{n+1} {n+1 \choose k} \left(\frac{1}{n+1}\right)^k = 2 + \sum_{k=2}^{n+1} \frac{1}{k!} \cdot \frac{n+1}{n+1} \cdot \frac{n}{n+1} \cdot \frac{n-1}{n+1} \cdot \dots \cdot \frac{(n+1)-(k-1)}{n+1} = 2 + \sum_{k=2}^{n+1} \frac{1}{k!} \left(1 - \frac{1}{n+1}\right) \left(1 - \frac{2}{n+1}\right) \dots \left(1 - \frac{k-1}{n+1}\right) = 2 + \sum_{k=2}^{n} \frac{1}{k!} \left(1 - \frac{1}{n+1}\right) \dots \left(1 - \frac{k-1}{n+1}\right) + {n+1 \choose n+1} \frac{1}{(n+1)^{n+1}} > 2 + \sum_{k=2}^{n} \frac{1}{k!} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{k-1}{n}\right) + 0 = a_n$$

Definition: The sequence $\left(1 + \frac{1}{n}\right)^n$ is convergent so denote its limit by e:

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

Remark: From the 2nd proof it follows that 2 < e < 3.

Theorems:

1) e is irrational

2)
$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!} = \sum_{k=0}^\infty \frac{1}{k!} = e$$

3)
$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$$
 for all $x \in \mathbb{R}$

4) If
$$x_n \xrightarrow{n \to \infty} \infty$$
, then $\lim_{n \to \infty} \left(1 + \frac{1}{x_n}\right)^{x_n} = e$.

Examples for monotonic and bounded sequences

Example 1. Let 0 < a < 1 and $b_n = a^n$, then $0 < b_{n+1} = a^{n+1} < a^n = b_n < 1$. Since (b_n) is bounded and monotonically decreasing then it is convergent, let $A = \lim b_n$. Then

$$A = \lim_{n \to \infty} b_{n+1} = \lim_{n \to \infty} a \cdot b_n = a \cdot A \iff A(1-a) = 0, \text{ so } A = 0.$$

Example 2. Let
$$a_1 = 4$$
 and $a_{n+1} = 8 - \frac{15}{a_n}$.

If
$$(a_n)$$
 is convergent then $A = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} = 8 - \frac{15}{A}$, so $A^2 - 8A + 15 = (A - 3)(A - 5) = 0$, therefore

$$A = 3 \text{ or } A = 5.$$

If we prove that (a_n) is bounded and monotonically increasing or decreasing, then (a_n) is convergent and its limit is the supremum or the infimum of the sequence.

- (i) First we prove boundedness by induction.
 - I. The statement is true for n = 1: $3 < a_1 = 4 < 5$.
 - II. Assume that $3 < a_n < 5$. Then

$$3 < a_n < 5 \Longrightarrow \frac{1}{5} < \frac{1}{a_n} < \frac{1}{3} \Longrightarrow 3 < \frac{15}{a_n} < 5 \Longrightarrow -3 > -\frac{15}{a_n} > -5$$

$$\Longrightarrow 3 < 8 - \frac{15}{a_n} = a_{n+1} < 5.$$

(ii) Next we prove monotonicity, also by induction.

I.
$$a_2 = \frac{17}{4} > a_1$$

II. $a_n < a_{n+1} \implies \frac{1}{a_n} > \frac{1}{a_{n+1}} \text{ (since } a_n > 0) \implies -\frac{15}{a_n} < -\frac{15}{a_{n+1}}$
 $\implies a_{n+1} = 8 - \frac{15}{a_n} < 8 - \frac{15}{a_{n+1}} = a_{n+2}.$

Since (a_n) is monotonic increasing and bounded then a_n is convergent. The limit of (a_n) cannot be A = 3, since $a_1 = 4$ and the sequence is monotonic increasing. Therefore $\lim a_n = 5$.

Subsequences

Definition. Suppose $(n_k): \mathbb{N} \to \mathbb{N}$ is a strictly monotonically increasing sequence of natural numbers. Then we call the sequence $(a_{n_{\nu}})$ a **subsequence** of (a_{n}) .

Examples: 1) The prime numbers are a subsequence of the positive integers.

2)
$$b_n = \frac{1}{1+n^2}$$
 is a subsequence of $a_n = \frac{1}{1+n}$ ($b_n = a_{n^2}$).

Remark. A subsequence can be obtained from a given sequence by deleting some or no elements without changing the order of the remaining elements.

Remark. If (n_k) is a strictly monotonically increasing sequence of natural numbers, then $n_k \xrightarrow{k \to \infty} \infty$ since $n_k \ge n_1 + k - 1$.

Theorem.
$$\lim_{n\to\infty} a_n = A$$
 if and only for all (a_{n_k}) subsequences $\lim_{k\to\infty} a_{n_k} = A$.

Proof. 1) If all subsequences tend to the same limit A, then the subsequence $(a_{n+1}) \xrightarrow{n \to \infty} A$ so for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if n > N then $|a_{n+1} - A| < \varepsilon$, so $|a_n - A| < \varepsilon$ if n > N + 1, so $a_n \xrightarrow{n \to \infty} A$. **2)** If (a_n) is convergent and (a_{n_k}) is a subsequence, then for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$, such that if n > N, then $|a_n - A| < \varepsilon$, and since $n_k \xrightarrow{k \to \infty} \infty$, thus there exists $K \in \mathbb{N}$ such that if k > K, then $n_k > N$, so $|a_{n_k} - A| < \varepsilon$, therefore $a_{n_k} \stackrel{\kappa \to \infty}{\longrightarrow} A$.