Calculus 1, 4th and 5th lecture

Sequences

Definition: A sequence is an $a : \mathbb{N} \longrightarrow \mathbb{R}$ mapping. Usual notation: $a(n) = a_n$ is the nth term of the sequence. The notation of the sequence is (a_n) .

Definition: A sequence (a_n) is **monotonically increasing** if $\forall n \in \mathbb{N}$ $(a_n \le a_{n+1})$. A sequence (a_n) is **monotonically decreasing** if $\forall n \in \mathbb{N}$ $(a_n \ge a_{n+1})$.

Definition: A sequence (a_n) is **bounded below (above)** if the set $\{a_n : n \in \mathbb{N}\}$ is bounded below (above).

Convergent sequences

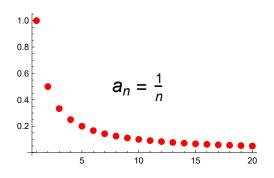
Definition: A sequence $(a_n): \mathbb{N} \longrightarrow \mathbb{R}$ is **convergent**, and it tends to the limit $A \in \mathbb{R}$ if for all $\varepsilon > 0$ there exists a threshold index $N(\varepsilon) \in \mathbb{N}$ such that for all $n > N(\varepsilon)$, $|a_n - A| < \varepsilon$.

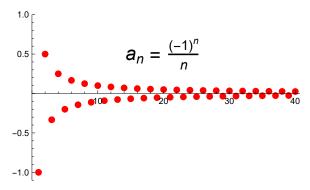
Notation: $\lim_{n\to\infty} a_n = A$ or $a_n \xrightarrow{n\to\infty} A$.

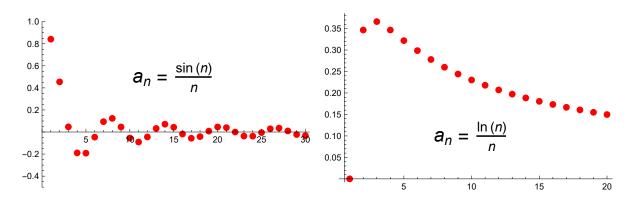
If a sequence if not convergent then it is **divergent**.

Remark: It is equivalent with the definition that for all $\varepsilon > 0$, the sequence has only finitely many terms outside of the interval $(A - \varepsilon, A + \varepsilon)$. (And the sequence has infinitely many terms in the interval.)

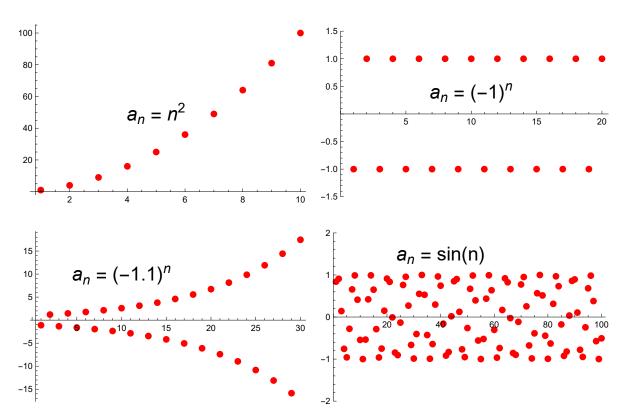
Examples for convergent sequences: 1) $a_n = \frac{1}{n}$ 2) $a_n = \frac{(-1)^n}{n}$ 3) $a_n = \frac{\sin(n)}{n}$ 4) $a_n = \frac{\ln(n)}{n}$







Examples for divergent sequences: 5) $a_n = n^2$ 6) $a_n = (-1)^n$ 7) $a_n = (-1.1)^n$ 8) $a_n = \sin(n)$



Exercises

1) Using the definition of the limit, show that a) $\lim_{n\to\infty} \frac{1}{n} = 0$ b) $\lim_{n\to\infty} \frac{(-1)^n}{n} = 0$. **Solution.** Let $\varepsilon > 0$ be fixed. In both cases $|a_n - A| = \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$ so with the choice $N(\varepsilon) \ge \left[\frac{1}{n}\right]$ the definition holds. For example, if $\varepsilon = 0.001$, then N = 1000

so with the choice $N(\varepsilon) \ge \left[\frac{1}{\varepsilon}\right]$ the definition holds. For example, if $\varepsilon = 0.001$, then N = 1000 is a suitable threshold index.

2) Using the definition of the limit, show that $\lim_{n\to\infty}\frac{6+n}{5.1-n}=-1$

Solution. Let
$$\varepsilon > 0$$
 be fixed. Then $|a_n - A| = \left|\frac{6+n}{5.1-n} - (-1)\right| = \left|\frac{11.1}{5.1-n}\right|^{\text{if } n > 5} \frac{11.1}{n-5.1} < \varepsilon \implies n > 5.1 + \frac{11.1}{\varepsilon},$ so $N(\varepsilon) \ge \left[5.1 + \frac{11.1}{\varepsilon}\right]$.

3) Using the definition of the limit, show that $\lim_{n\to\infty} \frac{n^2-1}{2n^5+5n+8} = 0$

Solution. Let
$$\varepsilon > 0$$
 be fixed. Then $|a_n - A| = \left| \frac{n^2 - 1}{2n^5 + 5n + 8} \right| = \frac{n^2 - 1}{2n^5 + 5n + 8} < \varepsilon$.

This equation cannot be solved for n. However, it is not necessary to find the least possible threshold index, it is enough to show that a threshold index exists. So for the solution we use the transitive property of the inequalities, for example in the following way:

$$|a_n - A| = \left| \frac{n^2 - 1}{2n^5 + 5n + 8} \right| = \frac{n^2 - 1}{2n^5 + 5n + 8} < \frac{n^2 - 0}{2n^5 + 0 + 0} < \frac{1}{2n^3} < \varepsilon \iff n > \sqrt[3]{\frac{1}{2\varepsilon}}, \text{ so } N(\varepsilon) \ge \left[\sqrt[3]{\frac{1}{2\varepsilon}}\right].$$

Here we estimated the fraction from above in such a way that we increased the numerator and decreased the denominator.

4) Using the definition of the limit, show that $\lim_{n\to\infty} \frac{8n^4 + 3n + 20}{2n^4 - n^2 + 5} = 4$.

Solution. Let
$$\varepsilon > 0$$
 be fixed. Then $|a_n - A| = \left| \frac{8n^4 + 3n + 20}{2n^4 - n^2 + 5} - 4 \right| = \left| \frac{4n^2 + 3n}{2n^4 - n^2 + 5} \right| = \frac{4n^2 + 3n}{2n^4 - n^2 + 5} < \frac{4n^2 + 3n^2}{2n^4 - n^4 + 0} = \frac{7}{n^2} < \varepsilon \iff n > \sqrt{\frac{7}{\varepsilon}}, \text{ so } N(\varepsilon) \ge \left[\sqrt{\frac{7}{\varepsilon}} \right].$

Divergent sequences

If a sequence if not convergent then it is **divergent**.

Example: Show that $a_n = (-1)^n$ is divergent.

Solution: Since the terms of the sequence are -1, 1, -1, 1, ... then the possible limits are only 1 and -1. We show that A = 1 is not the limit.

For example for $\varepsilon = 1$, the interval $(A - \varepsilon, A + \varepsilon) = (0, 2)$ contains infinitely many terms (the terms a_{2n}), however, there are infinitely many terms outside of this interval (the terms a_{2n-1}). It means that there is no suitable threshold index $N(\varepsilon)$ for for $\varepsilon = 1$, so A = 1 is not the limit. Similarly, A = -1 is not the limit either, so the sequence is divergent.

Definition: The sequence $(a_n): \mathbb{N} \longrightarrow \mathbb{R}$ tends to ∞ if for all P > 0 there exists a threshold index $N(P) \in \mathbb{N}$ such that for all n > N(P), $a_n > P$.

Notation:
$$\lim_{n\to\infty} a_n = \infty$$
 or $a_n \xrightarrow{n\to\infty} \infty$.

Definition: The sequence $(a_n): \mathbb{N} \longrightarrow \mathbb{R}$ tends to $-\infty$ if for all M < 0 there exists a threshold index $N(M) \in \mathbb{N}$ such that for all n > N(M), $a_n < M$.

Notation: $\lim a_n = -\infty$ or $a_n \xrightarrow{n \to \infty} -\infty$.

Remark: $\lim_{n\to\infty} a_n = -\infty$ if and only if $\lim_{n\to\infty} (-a_n) = \infty$.

Example: Let $a_n = 2n^3 + 3n + 5$. Show that $\lim a_n = \infty$.

Solution: Let P > 0 be fixed. Then $a_n = 2n^3 + 3n + 5 > 2n^3 > P \iff n > \sqrt[3]{\frac{P}{2}}$, so $N(P) \ge \left[\sqrt[3]{\frac{P}{2}}\right]$.

For example, if $P = 10^6$ then N(P) = 80 is a suitable threshold index.

Examples

Using the above definitions, the following statements can easily be proved:

$$\mathbf{1)} \lim_{n \to \infty} n^{\alpha} = \begin{cases} \infty & \text{if } \alpha > 0 \\ 1 & \text{if } \alpha = 0 \\ 0 & \text{if } \alpha < 0 \end{cases} \qquad \mathbf{2)} \lim_{n \to \infty} a^{n} = \begin{cases} \infty & \text{if } a > 1 \\ 1 & \text{if } a = 1 \\ 0 & \text{if } |a| < 1 \\ \text{does not exist} & \text{if } a \leq -1 \end{cases}$$

Theorems about the limit

Theorem (uniqueness of the limit): If $\lim a_n = A$ and $\lim a_n = B$ then A = B.

Proof. We assume indirectly that $A \neq B$, for example A < B. Let d = B - A and let

$$\varepsilon = \frac{d}{3} > 0.$$

$$d = B - A$$

$$A - \varepsilon \quad A \quad A + \varepsilon \quad B - \varepsilon \quad B \quad B + \varepsilon$$

Then because of the convergence of (a_n) , there exist threshold indexes $N_1 \in \mathbb{N}$ and $N_2 \in \mathbb{N}$ such that if $n > N_1$ then $A - \varepsilon < a_n < A + \varepsilon$ and

if $n > N_2$ then $B - \varepsilon < a_n < B + \varepsilon$.

But in this case if $n > \max\{N_1, N_2\}$ then $a_n < A + \varepsilon < B - \varepsilon < a_n$. This is a contradiction, so A = B.

Theorem: If (a_n) is convergent, then it is bounded.

Proof. Denote A the limit of (a_n) . Then for $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that if n > N then $A - \varepsilon < a_n < A + \varepsilon$. It means that the set $\{a_1, a_2, ..., a_N\}$ is finite, so the smallest element of $\{A - \varepsilon, a_1, ..., a_N\}$ is a lower bound and the largest element of $\{a_1, ..., a_N, A + \varepsilon\}$ of the set $\{a_n : n \in \mathbb{N}\}$. Therefore for all *n*

$$\min \{A - \varepsilon, a_1, ..., a_N\} \le a_n \le \max \{a_1, ..., a_N, A + \varepsilon\}.$$

Remark. The converse of the statement is false, for example $a_n = (-1)^n$ is bounded but not convergent.

Operations with convergent sequences

Theorem 1. If
$$a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$$
 and $b_n \xrightarrow{n \to \infty} B \in \mathbb{R}$ then $a_n + b_n \xrightarrow{n \to \infty} A + B$. (Sum Rule)

Proof. Let $\varepsilon > 0$ be fixed. Since $a_n \xrightarrow{n \to \infty} A$ and $b_n \xrightarrow{n \to \infty} B$, then for $\frac{\varepsilon}{2}$ there exists $N_1 \in \mathbb{N}$ and $N_2 \in \mathbb{N}$ such that if $n > N_1$, then $\left| a_n - A \right| < \frac{\varepsilon}{2}$ and if $n > N_2$, then $\left| b_n - B \right| < \frac{\varepsilon}{2}$. Thus, if $n > N = \max\{N_1, N_2\}$ then

$$\left| (a_n + b_n) - (A + B) \right| \le \left| a_n - A \right| + \left| b_n - B \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Here we used the triangle inequality: $|a+b| \le |a| + |b|$.

Theorem 2. If $a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$ and $c \in \mathbb{R}$ then $c a_n \xrightarrow{n \to \infty} c A$. (Constant Multiple Rule)

Proof. Let $\varepsilon > 0$ be fixed.

- (i) If c = 0 then the statement is trivial.
- (ii) If $c \neq 0$ then because of the convergence of a_n , for $\frac{\varepsilon}{|c|}$ there exists $N \in \mathbb{N}$ such that if n > N then

$$\left| a_n - A \right| < \frac{\varepsilon}{\left| c \right|}$$
. Thus, if $n > N$ then

$$|ca_n-cA|=|c(a_n-A)|=|c|\cdot |a_n-A|<|c|\cdot \frac{\varepsilon}{|c|}=\varepsilon.$$

Here we used that |ab| = |a| |b|.

Consequence. (i) If $a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$ then $-a_n \xrightarrow{n \to \infty} -A$. (Here c = -1.)

(ii) If
$$a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$$
 and $b_n \xrightarrow{n \to \infty} B \in \mathbb{R}$ then $a_n - b_n = a_n + (-b_n) \xrightarrow{n \to \infty} A + (-B) = A - B$. (Difference Rule)

Theorem 3. (i) If $a_n \xrightarrow{n \to \infty} 0$ and $b_n \xrightarrow{n \to \infty} 0$ then $a_n b_n \xrightarrow{n \to \infty} 0$.

(ii) If
$$a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$$
 and $b_n \xrightarrow{n \to \infty} B \in \mathbb{R}$ then $a_n b_n \xrightarrow{n \to \infty} AB$. (Product Rule)

Proof. Let $\varepsilon > 0$ be fixed.

(i) Since $a_n \xrightarrow{n \to \infty} 0$ and $b_n \xrightarrow{n \to \infty} 0$, then

for
$$\frac{\varepsilon}{2}$$
 there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $\left| a_n - 0 \right| < \frac{\varepsilon}{2}$ and

for 2 there exists $N_2 \in \mathbb{N}$ such that if $n > N_2$ then $|b_n - 0| < 2$.

Thus, if
$$n > N = \max\{N_1, N_2\}$$
 then $|a_n b_n - 0| = |a_n| \cdot |b_n| < \frac{\varepsilon}{2} \cdot 2 = \varepsilon$.

(ii) It is obvious that if $c_n \equiv A$ for all $n \in \mathbb{N}$ (constant sequence) then $c_n \xrightarrow{n \to \infty} A$.

Thus $a_n - A \xrightarrow{n \to \infty} A - A = 0$ and $b_n - B \xrightarrow{n \to \infty} B - B = 0$.

Applying part (i) we get that $(a_n - A)(b_n - B) \xrightarrow{n \to \infty} 0$, that is, $a_n b_n - A b_n - B a_n + A B \xrightarrow{n \to \infty} 0$. Then

$$a_n b_n = (a_n b_n - A b_n - B a_n + A B) + (A b_n + B a_n - A B) \xrightarrow{n \to \infty} 0 + (A B + A B - A B) = A B.$$

Theorem 4. If $a_n \xrightarrow{n \to \infty} 0$ and (b_n) is bounded then $a_n b_n \xrightarrow{n \to \infty} 0$.

Proof. Let $\varepsilon > 0$ be fixed.

Since (b_n) is bounded then there exists K > 0 such that $|b_n| < K$ for all $n \in \mathbb{N}$.

Since
$$a_n \xrightarrow{n \to \infty} 0$$
 then for $\frac{\varepsilon}{\kappa}$ there exists $N \in \mathbb{N}$ such that if $n > N$ then $|a_n - 0| = |a_n| < \frac{\varepsilon}{\kappa}$.

Thus, if
$$n > N$$
 then $|a_n b_n - 0| = |a_n| \cdot |b_n| < \frac{\varepsilon}{\kappa} \cdot \kappa = \varepsilon$.

Theorem 5. If
$$a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$$
 then $|a_n| \xrightarrow{n \to \infty} |A|$.

Proof.
$$| a_n - A| \le |a_n - A| < \varepsilon \text{ if } n > N(\varepsilon).$$

Remark. The converse of the statement is not true. For example, $a_n = (-1)^n$ is divergent but $|a_n| = 1^n = 1 \xrightarrow{n \to \infty} 1.$

However, the following statement is true: $\begin{vmatrix} a_n \end{vmatrix} \xrightarrow{n \to \infty} 0 \implies a_n \xrightarrow{n \to \infty} 0$.

Since $| a_n | -0 | = | a_n | = | a_n -0 | < \varepsilon$ if $n > N(\varepsilon)$.

Theorem 6. (i) If
$$b_n \xrightarrow{n \to \infty} B \neq 0$$
 then $\frac{1}{b_n} \xrightarrow{n \to \infty} \frac{1}{B}$.

(ii) If
$$a_n \xrightarrow{n \to \infty} A \in \mathbb{R}$$
 and $b_n \xrightarrow{n \to \infty} B \neq 0$ then $\frac{a_n}{b_n} \xrightarrow{n \to \infty} \frac{A}{B}$. (Quotient Rule)

Proof. (i) First, by the convergence of (b_n) and by theorem 5, $b_n \mid b_n \mid A \rightarrow B \mid A \rightarrow$ exists $N_1 = N_1 \left(\frac{|B|}{2} \right) \in \mathbb{N}$ such that if $n > N_1$ then $|b_n| - |B| < \frac{|B|}{2} \iff$

$$\left| B \right| - \frac{\left| B \right|}{2} < \left| b_n \right| < \left| B \right| + \frac{\left| B \right|}{2}$$
. Then $\left| b_n \right| > \frac{\left| B \right|}{2}$ for all $n > N_1$.

Second, for a fixed $\varepsilon > 0$ there exists $N_2 = N_2 \left(\frac{|B|^2 \varepsilon}{2} \right) \in \mathbb{N}$ such that if $n > N_2$ then

$$|b_n-B|<\frac{|B|^2\varepsilon}{2}.$$

Therefore, if $n > N = \max\{N_1, N_2\}$ then

$$\left|\frac{1}{b_n} - \frac{1}{B}\right| = \left|\frac{B - b_n}{B \cdot b_n}\right| = \frac{\left|B - b_n\right|}{\left|B\right| \cdot \left|b_n\right|} < \frac{1}{\left|B\right| \cdot \frac{\left|B\right|}{2}} \cdot \frac{\left|B\right|^2 \varepsilon}{2} = \varepsilon.$$

(ii) By theorem 3 and theorem 6, part (i): $\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n} \xrightarrow{n \to \infty} A \cdot \frac{1}{B} = \frac{A}{B}$

Remark. By induction it can be proved that Theorem 1 and Theorem 3 can be generalized to the

sum and product of finitely many convergent sequences. However, they are not true for infinitely many terms, as the following examples show.

Examples. $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{10} = 1^{10} = 1$ or $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^k = 1^k = 1$, where $k \in \mathbb{N}^+$ is a fixed constant, independent dent of *n*. However, $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \neq 1^n = 1$. Later we will see that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$.

Example.
$$a_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{500}{n^2} \longrightarrow 0 + 0 + \dots + 0 = 0$$

The number of the terms is 500 which is independent of n and thus applying Theorem 1 finitely many times, the correct result is 0.

Example.
$$b_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2} \longrightarrow 0 + 0 + \dots + 0 = 0$$
 is a WRONG SOLUTION!
Since $b_1 = \frac{1}{1^2}$, $b_2 = \frac{1}{2^2} + \frac{2}{2^2}$, $b_3 = \frac{1}{3^2} + \frac{2}{3^2} + \frac{3}{3^2}$, $b_4 = \frac{1}{4^2} + \frac{2}{4^2} + \frac{3}{4^2} + \frac{4}{4^2}$, ...,

it can be seen that the number of the terms depends on n, so b_n is not the sum of finitely many sequences and thus Theorem 1 cannot be generalized to this case. The correct solution is:

$$b_n = \frac{1+2+\ldots+n}{n^2} = \frac{(1+n)\cdot\frac{n}{2}}{n^2} = \frac{1+n}{2n} = \frac{\frac{1}{n}+1}{2} \longrightarrow \frac{0+1}{2} = \frac{1}{2}$$

Theorem 7. If $a_n \ge 0$ and $a_n \xrightarrow{n \to \infty} A \ge 0$ then $\sqrt{a_n} \xrightarrow{n \to \infty} \sqrt{A}$.

Proof. Let $\varepsilon > 0$ be fixed.

(i) If $a_n \xrightarrow{n \to \infty} A = 0$ then there exists $N_1 = N_1(\varepsilon^2) \in \mathbb{N}$ such that if $n > N_1$ then $|a_n - 0| = a_n < \varepsilon^2$. Therefore, if $n > N_1$ then $\left| \sqrt{a_n} - 0 \right| = \sqrt{a_n} < \varepsilon$.

(ii) If $a_n \xrightarrow{n \to \infty} A > 0$ then there exists $N_2 = N_2(\varepsilon \sqrt{A}) \in \mathbb{N}$ such that if $n > N_2$ then $|a_n - A| < \varepsilon \sqrt{A}$. Therefore, if $n > N_2$ then

$$\left| \sqrt{a_n} - \sqrt{A} \right| = \left| \frac{a_n - A}{\sqrt{a_n} + \sqrt{A}} \right| = \frac{\left| a_n - A \right|}{\sqrt{a_n} + \sqrt{A}} \le \frac{\left| a_n - A \right|}{0 + \sqrt{A}} < \frac{\varepsilon \sqrt{A}}{\sqrt{A}} = \varepsilon.$$

Remark. If $a_n \xrightarrow{n \to \infty} A \ge 0$ then $\sqrt[k]{a_n} \xrightarrow{n \to \infty} \sqrt[k]{A}$ for all $k \in \mathbb{N}^+$.

It can be proved by using the following identity: $a^k - b^k = (a - b)(a^{k-1} + a^{k-2}b + ... + ab^{k-1} + b^{k-1}).$

Example.
$$\frac{2^{2n} + \cos(n^2)}{4^{n+1} - 5} = \frac{4^n}{4^n} \cdot \frac{1 + \left(\frac{1}{4}\right)^n \cdot \cos(n^2)}{4 - 5 \cdot \left(\frac{1}{4}\right)^n} \longrightarrow \frac{1 + 0}{4 - 0} = \frac{1}{4}.$$

Additional theorems about the limit

Theorem. If
$$a_n \xrightarrow{n \to \infty} \infty$$
 then $\frac{1}{a_n} \xrightarrow{n \to \infty} 0$.

Proof. Let $\varepsilon > 0$ be fixed. Since $a_n \xrightarrow{n \to \infty} \infty$, then for $P = \frac{1}{2}$ there exists $N \in \mathbb{N}$ such that if n > N then

$$a_n > \frac{1}{\varepsilon}$$
,
so $\left| \frac{1}{a_n} - 0 \right| = \frac{1}{a_n} < \varepsilon$.

Question: Is it true that if $a_n \xrightarrow{n \to \infty} 0$ then $\frac{1}{a_n} \xrightarrow{n \to \infty} \infty$?

Answer: No, for example, if $a_n = -\frac{2}{n} \longrightarrow 0$ then $\frac{1}{a_n} = -\frac{n}{2} \longrightarrow -\infty$.

Or, if $a_n = \left(-\frac{1}{2}\right)^n \longrightarrow 0$ then for $b_n = \frac{1}{a_n} = (-2)^n$, $b_{2k} \longrightarrow \infty$ and $b_{2k} \longrightarrow -\infty$, so $\lim_{n \to \infty} \frac{1}{a_n} \neq \infty$.

However, the following statements hold.

Theorem. a) If $a_n > 0$ and $a_n \xrightarrow{n \to \infty} 0$ then $\frac{1}{a_n} \xrightarrow{n \to \infty} \infty$. Notation: $\frac{1}{a_n} \xrightarrow{n \to \infty} +\infty$.

- **b)** If $a_n < 0$ and $a_n \xrightarrow{n \to \infty} 0$ then $\frac{1}{a_n} \xrightarrow{n \to \infty} -\infty$. Notation: $\frac{1}{0} \longrightarrow -\infty$.
- c) If $a_n \xrightarrow{n \to \infty} 0$ then $\frac{1}{|a_n|} \xrightarrow{n \to \infty} \infty$.

Proof. a) Let P > 0 be fixed. Since $0 < a_n \xrightarrow{n \to \infty} 0$, then for $\varepsilon = \frac{1}{n}$ there exists $N \in \mathbb{N}$ such that if n > N then

$$a_n = \left| a_n - 0 \right| < \frac{1}{P}, \text{ so } \frac{1}{a_n} > P.$$

b), c): homework.

Theorem. If $a_n \xrightarrow{n \to \infty} \infty$ and $b_n \ge a_n$ for n > N, then $b_n \longrightarrow \infty$.

Proof. Let P > 0 be fixed. Since $a_n \xrightarrow{n \to \infty} \infty$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $a_n > P$. So if $n > \max\{N, N_1\}$ then $b_n > P$.

Consequence. Suppose that $a_n \xrightarrow{n \to \infty} \infty$, $b_n \xrightarrow{n \to \infty} \infty$, $c_n \xrightarrow{n \to \infty} c > 0$ and $|d_n| \le K$ for all $n > \in \mathbb{N}$. Then

- a) $a_n + b_n \xrightarrow{n \to \infty} \infty$
- **b)** $a_n \cdot b_n \xrightarrow{n \to \infty} \infty$
- **c)** $c_n \cdot a_n \xrightarrow{n \to \infty} \infty$
- **d)** $a_n + d_n \xrightarrow{n \to \infty} \infty$

Proof. a) Since $a_n \xrightarrow{n \to \infty} \infty$, it may be assumed that there exists $N \in \mathbb{N}$ such that $a_n \ge 0$ for n > N.

Then $a_n + b_n \ge b_n \xrightarrow{n \to \infty} \infty$, so $a_n + b_n \xrightarrow{n \to \infty} \infty$.

b) Since $a_n \xrightarrow{n \to \infty} \infty$ and $b_n \xrightarrow{n \to \infty} \infty$, it may be assumed that there exists $N \in \mathbb{N}$ such that $a_n \ge 1$ and $b_n \ge 0$ for n > N.

Then $a_n \cdot b_n \ge b_n \xrightarrow{n \to \infty} \infty$, so $a_n \cdot b_n \xrightarrow{n \to \infty} \infty$.

c) Let P > 0 be fixed.

Since $c_n \xrightarrow{n \to \infty} c > 0$ then there exists $N_1 = N_1 \binom{c}{2} N \in \mathbb{N}$ such that $c_n > \frac{c}{2}$ if $n > N_1$.

Since $a_n \xrightarrow{n \to \infty} \infty$ then there exists $N_2 = N_2 \left(\frac{2P}{C}\right) N \in \mathbb{N}$ such that $a_n > \frac{2P}{C}$ if $n > N_2$.

So if $n > \max\{N_1, N_2\}$ then $c_n \cdot a_n > \frac{2P}{c_n} \cdot \frac{c_n}{c_n} = P$.

d) Let P > 0 be fixed. $a_n + d_n \ge a_n - K > P$ if and only if $a_n > K + P$.

Since $a_n \xrightarrow{n \to \infty} \infty$ then for K + P there exists $N \in \mathbb{N}$ such that $a_n > K + P$ if n > N.

Then for n > N, $a_n + d_n > P$ also holds, so $a_n + d_n \xrightarrow{n \to \infty} \infty$.

Example. $5 n^2 + 2^n \cdot n - (-1)^n \xrightarrow{n \to \infty} \infty$.

Remark. The above statements can be denoted in the following way:

a)
$$\infty + \infty \longrightarrow \infty$$
 b) $\infty \cdot \infty \longrightarrow \infty$ **c)** $c \cdot \infty \longrightarrow \infty$ (where $c > 0$) **d)** $\infty +$ bounded $\longrightarrow \infty$.

Similar statements can be proved, for example, $\frac{0}{\infty} \to 0$, $\frac{\text{bounded}}{\infty} \to 0$, $\frac{\infty}{+0} \to \infty$, $\frac{\infty}{-0} \to -\infty$.

The meaning of $\frac{0}{n} \longrightarrow 0$ is that if $a_n \xrightarrow{n \to \infty} 0$ and $b_n \xrightarrow{n \to \infty} \infty$ then $\frac{a_n}{b_n} \longrightarrow 0$.

Such statements are summarized in the following tables where $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty, -\infty\}$ denotes the extended set of real numbers.

Addition:

Out[=]=

	$\text{lim}(a_n)$	$\text{lim}(b_n)$	$\text{lim}(a_n\!+\!b_n)$
	$a\in\mathbb{R}$	$b\in \mathbb{R}$	a + b
_	ω	$b\in \mathbb{R}$	∞
. {	- ∞	$b\in \mathbb{R}$	- ∞
(∞	∞	∞
	- ∞	- ∞	- ∞
	8	- &	?

Subtraction:

$\text{lim}(a_n)$	$\text{lim}(b_n)$	$\text{lim}(a_n\!-\!b_n)$	Ī
$a \in \mathbb{R}$	$b\in \mathbb{R}$	a – b	1
∞	$b\in \mathbb{R}$	∞	١.
- ∞	$b\in \mathbb{R}$	- ∞	
∞	- ∞	∞	
8	ω	;	l
- ∞	- ∞	?	

Multiplication

Division:

	$\text{lim}(a_n)$	$\text{lim}(b_n)$	$\text{lim}(a_nb_n)$
	$a \in \mathbb{R}$	$b\in \mathbb{R}$	ab
	∞	b > 0	∞
	∞	b < 0	- ∞
	- ∞	b > 0	- ∞
Out[•]=	- ∞	b < 0	∞
	∞	∞	8
	∞	- ∞	- ∞
	- ∞	- ∞	8
	8	0	,
	- ∞	0	;
Į.			

lim(a _n)	$lim(b_n)$	$\text{lim}(\frac{a_n}{b_n})$
$a\in\mathbb{R}$	$b \in \mathbb{R} \setminus \{0\}$	a b
∞	b > 0	∞
∞	b < 0	- ∞
- ∞	b > 0	- ∞
- ∞	b < 0	ω
$a\in\mathbb{R}$	±∞	0
0	$b \in \overline{\mathbb{R}}, b\neq 0$	0
$a \in \overline{\mathbb{R}}, a \neq 0$	0	. =∞
0	0	?
±∞	±∞	?

The meaning of $|\cdot|$ is that $\lim_{n\to\infty} \left|\frac{a_n}{b_n}\right| = \infty$.

Undefined forms: $\infty - \infty$, $0 \cdot \infty$, $\frac{\infty}{-}$, $\frac{0}{-}$, 1^{∞} , ∞^{0} , 0^{0}

Examples:

1) Limit of the form $\infty - \infty$:

$$a_n = n^2$$
, $b_n = n$, $a_n - b_n = n^2 - n \to \infty$
 $a_n = n$, $b_n = n$, $a_n - b_n = n - n = 0 \to 0$
 $a_n = n$, $b_n = n^2$, $a_n - b_n = n - n^2 \to -\infty$

2) Limit of the form 0 · ∞:

$$\frac{1}{n} \cdot n^2 = n \to \infty, \ \frac{1}{n} \cdot n = 1 \to 1, \ \frac{1}{n^2} \cdot n = \frac{1}{n} \to 0, \ \frac{(-1)^n}{n} \cdot n = (-1)^n \text{ (it doesn't have a limit)}$$

3) Limit of the form $\stackrel{\infty}{-}$:

$$\frac{n}{n^2} = \frac{1}{n} \to 0, \ \frac{n^2}{n} = n \to \infty, \ \frac{n^2}{n^2} = 1 \to 1$$

4) Limit of the form $\frac{0}{2}$:

$$\frac{\frac{1}{n}}{\frac{1}{n^2}} = n \to \infty, \quad \frac{\frac{1}{n^2}}{\frac{1}{n}} = \frac{1}{n} \to 0, \quad \frac{\frac{1}{n}}{\frac{1}{n}} = 1 \to 1, \quad \frac{(-1)^n \frac{1}{n}}{\frac{1}{n^2}} = (-1)^n \cdot n \text{ (it doesn't have a limit)}$$

Wolframalpha

Some examples:

$$\lim_{n\to\infty} \frac{n^2 + 5n}{3n^2 - 7}$$

https://www.wolframalpha.com/input/?i=limit+%28n%5E2%2B5n%29%2F%283n%5E2-7%29+as+n -%3Einfinity

$$\lim_{n\to\infty} \left(\sqrt{n^2 - 3n} - \sqrt{n^2 + 1} \right)$$

https://www.wolframalpha.com/input/?i=limit+sqrt%28n%5E2-3n%29sqrt%28n%5E2%2B1%29+as+n-%3Einfinity

$$\lim_{n\to\infty} \left(\sqrt[3n]{2n} \right)$$

https://www.wolframalpha.com/input/?i=limit+%282n%29%5E%281%2F%283n%29%29+as+n-%3Einfinity

$$\lim_{n\to\infty} \frac{\binom{n}{2}}{\binom{n}{3}}$$

https://www.wolframalpha.com/input/?i=limit+%28n+choose+2%29%2F%28n+choose+3%29+as+n -%3Einfinity

$$\lim_{n\to\infty} \sqrt[n]{1+\frac{1}{2}+\ldots+\frac{1}{n}}$$

https://www.wolframalpha.com/input/?i=limit+%28sum+1%2Fk%2C+k%3D1+to+n%29%5E%281%2Fn%29+as+n-%3Einfinity