Calculus 1, 4th and 5th lecture

Sequences

Definition: A sequence is an $a: \mathbb{N} \longrightarrow \mathbb{R}$ mapping. Usual notation: $a(n)=a_{n}$ is the nth term of the sequence. The notation of the sequence is $\left(a_{n}\right)$.

Definition: A sequence $\left(a_{n}\right)$ is monotonically increasing if $\forall n \in \mathbb{N}\left(a_{n} \leq a_{n+1}\right)$.
A sequence $\left(a_{n}\right)$ is monotonically decreasing if $\forall n \in \mathbb{N}\left(a_{n} \geq a_{n+1}\right)$.

Definition: A sequence $\left(a_{n}\right)$ is bounded below (above) if the set $\left\{a_{n}: n \in \mathbb{N}\right\}$ is bounded below (above).

Convergent sequences

Definition: A sequence $\left(a_{n}\right): \mathbb{N} \longrightarrow \mathbb{R}$ is convergent, and it tends to the limit $A \in \mathbb{R}$ if for all $\varepsilon>0$ there exists a threshold index $N(\varepsilon) \in \mathbb{N}$ such that for all $n>N(\varepsilon), \quad\left|a_{n}-A\right|<\varepsilon$.
Notation: $\lim _{n \rightarrow \infty} a_{n}=A$ or $a_{n} \xrightarrow{n \rightarrow \infty} A$.
If a sequence if not convergent then it is divergent.

Remark: It is equivalent with the definition that for all $\varepsilon>0$, the sequence has only finitely many terms outside of the interval $(A-\varepsilon, A+\varepsilon)$. (And the sequence has infinitely many terms in the interval.)

Examples for convergent sequences: 1) $a_{n}=\frac{1}{n}$
2) $a_{n}=\frac{(-1)^{n}}{n}$
3) $a_{n}=\frac{\sin (n)}{n}$
4) $a_{n}=\frac{\ln (n)}{n}$

Examples for divergent sequences: 5) $a_{n}=n^{2} \quad$ 6) $a_{n}=(-1)^{n} \quad$ 7) $a_{n}=(-1.1)^{n} \quad$ 8) $a_{n}=\sin (n)$

Exercises

1) Using the definition of the limit, show that \quad a) $\lim _{n \rightarrow \infty} \frac{1}{n}=0 \quad$ b) $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0$.

Solution. Let $\varepsilon>0$ be fixed. In both cases $\left|a_{n}-A\right|=\frac{1}{n}<\varepsilon \Longleftrightarrow n>\frac{1}{\varepsilon}$ so with the choice $N(\varepsilon) \geq\left[\frac{1}{\varepsilon}\right]$ the definition holds. For example, if $\varepsilon=0.001$, then $N=1000$ is a suitable threshold index.
2) Using the definition of the limit, show that $\lim _{n \rightarrow \infty} \frac{6+n}{5.1-n}=-1$

Solution. Let $\varepsilon>0$ be fixed. Then $\left|a_{n}-A\right|=\left|\frac{6+n}{5.1-n}-(-1)\right|=\left|\frac{11.1}{5.1-n}\right| \stackrel{\text { if } n>5}{=} \frac{11.1}{n-5.1}<\varepsilon \Longrightarrow$ $n>5.1+\frac{11.1}{\varepsilon}$,
so $N(\varepsilon) \geq\left[5.1+\frac{11.1}{\varepsilon}\right]$.
3) Using the definition of the limit, show that $\lim _{n \rightarrow \infty} \frac{n^{2}-1}{2 n^{5}+5 n+8}=0$

Solution. Let $\varepsilon>0$ be fixed. Then $\left|a_{n}-A\right|=\left|\frac{n^{2}-1}{2 n^{5}+5 n+8}\right|=\frac{n^{2}-1}{2 n^{5}+5 n+8}<\varepsilon$.
This equation cannot be solved for n. However, it is not necessary to find the least possible threshold index, it is enough to show that a threshold index exists. So for the solution we use the transitive property of the inequalities, for example in the following way:
$\left|a_{n}-A\right|=\left|\frac{n^{2}-1}{2 n^{5}+5 n+8}\right|=\frac{n^{2}-1}{2 n^{5}+5 n+8}<\frac{n^{2}-0}{2 n^{5}+0+0}<\frac{1}{2 n^{3}}<\varepsilon \Longleftrightarrow n>\sqrt[3]{\frac{1}{2 \varepsilon}}$, so $N(\varepsilon) \geq\left[\sqrt[3]{\frac{1}{2 \varepsilon}}\right]$.
Here we estimated the fraction from above in such a way that we increased the numerator and decreased the denominator.
4) Using the definition of the limit, show that $\lim _{n \rightarrow \infty} \frac{8 n^{4}+3 n+20}{2 n^{4}-n^{2}+5}=4$.

Solution. Let $\varepsilon>0$ be fixed. Then $\left|a_{n}-A\right|=\left|\frac{8 n^{4}+3 n+20}{2 n^{4}-n^{2}+5}-4\right|=\left|\frac{4 n^{2}+3 n}{2 n^{4}-n^{2}+5}\right|=$ $=\frac{4 n^{2}+3 n}{2 n^{4}-n^{2}+5}<\frac{4 n^{2}+3 n^{2}}{2 n^{4}-n^{4}+0}=\frac{7}{n^{2}}<\varepsilon \Longleftrightarrow n>\sqrt{\frac{7}{\varepsilon}}$, so $N(\varepsilon) \geq\left[\sqrt{\frac{7}{\varepsilon}}\right]$.

Divergent sequences

If a sequence if not convergent then it is divergent.
Example: Show that $a_{n}=(-1)^{n}$ is divergent.
Solution: Since the terms of the sequence are $-1,1,-1,1, \ldots$ then the possible limits are only 1 and -1 . We show that $A=1$ is not the limit.
For example for $\varepsilon=1$, the interval $(A-\varepsilon, A+\varepsilon)=(0,2)$ contains infinitely many terms (the terms $a_{2 n}$), however, there are infinitely many terms outside of this interval (the terms $a_{2 n-1}$). It means that there is no suitable threshold index $N(\varepsilon)$ for for $\varepsilon=1$, so $A=1$ is not the limit. Similarly, $A=-1$ is not the limit either, so the sequence is divergent.

Definition: The sequence $\left(a_{n}\right): \mathbb{N} \longrightarrow \mathbb{R}$ tends to ∞ if for all $P>0$ there exists a threshold index $N(P) \in \mathbb{N}$ such that for all $n>N(P), a_{n}>P$.
Notation: $\lim _{n \rightarrow \infty} a_{n}=\infty$ or $a_{n} \xrightarrow{n \rightarrow \infty}$.

Definition: The sequence $\left(a_{n}\right): \mathbb{N} \longrightarrow \mathbb{R}$ tends to $-\infty$ if for all $M<0$ there exists a threshold index $N(M) \in \mathbb{N}$ such that for all $n>N(M), a_{n}<M$.
Notation: $\lim _{n \rightarrow \infty} a_{n}=-\infty$ or $a_{n} \xrightarrow{n \rightarrow \infty}-\infty$.

Remark: $\lim _{n \rightarrow \infty} a_{n}=-\infty$ if and only if $\lim _{n \rightarrow \infty}\left(-a_{n}\right)=\infty$.

Example: Let $a_{n}=2 n^{3}+3 n+5$. Show that $\lim _{n \rightarrow \infty} a_{n}=\infty$.
Solution: Let $P>0$ be fixed. Then $a_{n}=2 n^{3}+3 n+5>2 n^{3}>P \Longleftrightarrow n>\sqrt[3]{\frac{P}{2}}$, so $N(P) \geq\left[\sqrt[3]{\frac{P}{2}}\right]$.
For example, if $P=10^{6}$ then $N(P)=80$ is a suitable threshold index.

Examples

Using the above definitions, the following statements can easily be proved:

1) $\lim _{n \rightarrow \infty} n^{\alpha}= \begin{cases}\infty & \text { if } \alpha>0 \\ 1 & \text { if } \alpha=0 \\ 0 & \text { if } \alpha<0\end{cases}$
2) $\lim _{n \rightarrow \infty} a^{n}=\left\{\begin{array}{l}\infty \\ 1 \\ 0 \\ \text { doe }\end{array}\right.$

$$
\text { if } a>1
$$

does not exist
if $a=1$
if $|a|<1$

Theorems about the limit

Theorem (uniqueness of the limit): If $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} a_{n}=B$ then $A=B$.

Proof. We assume indirectly that $A \neq B$, for example $A<B$. Let $d=B-A$ and let $\varepsilon=\frac{d}{3}>0$.

Then because of the convergence of $\left(a_{n}\right)$, there exist threshold indexes $N_{1} \in \mathbb{N}$ and $N_{2} \in \mathbb{N}$ such that if $n>N_{1}$ then $A-\varepsilon<a_{n}<A+\varepsilon$ and
if $n>N_{2}$ then $B-\varepsilon<a_{n}<B+\varepsilon$.
But in this case if $n>\max \left\{N_{1}, N_{2}\right\}$ then $a_{n}<A+\varepsilon<B-\varepsilon<a_{n}$. This is a contradiction, so $A=B$.
Theorem: If $\left(a_{n}\right)$ is convergent, then it is bounded.
Proof. Denote A the limit of $\left(a_{n}\right)$. Then for $\varepsilon>0$ there exists $N=N(\varepsilon) \in \mathbb{N}$ such that if $n>N$ then $A-\varepsilon<a_{n}<A+\varepsilon$. It means that the set $\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$ is finite, so the smallest element of $\left\{A-\varepsilon, a_{1}, \ldots, a_{N}\right\}$ is a lower bound and the largest element of $\left\{a_{1}, \ldots, a_{N}, A+\varepsilon\right\}$ of the set $\left\{a_{n}: n \in \mathbb{N}\right\}$. Therefore for all n

$$
\min \left\{A-\varepsilon, a_{1}, \ldots, a_{N}\right\} \leq a_{n} \leq \max \left\{a_{1}, \ldots, a_{N}, A+\varepsilon\right\}
$$

Remark. The converse of the statement is false, for example $a_{n}=(-1)^{n}$ is bounded but not convergent.

Operations with convergent sequences

Theorem 1. If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $b_{n} \xrightarrow{n \rightarrow \infty} B \in \mathbb{R}$ then $a_{n}+b_{n} \xrightarrow{n \rightarrow \infty} A+B$. (Sum Rule)
Proof. Let $\varepsilon>0$ be fixed. Since $a_{n} \xrightarrow{n \rightarrow \infty} A$ and $b_{n} \xrightarrow{n \rightarrow \infty} B$, then for $\frac{\varepsilon}{2}$ there exists $N_{1} \in \mathbb{N}$ and $N_{2} \in \mathbb{N}$ such that if $n>N_{1}$, then $\left|a_{n}-A\right|<\frac{\varepsilon}{2}$ and if $n>N_{2}$, then $\left|b_{n}-B\right|<\frac{\varepsilon}{2}$. Thus, if $n>N=\max \left\{N_{1}, N_{2}\right\}$ then

$$
\left|\left(a_{n}+b_{n}\right)-(A+B)\right| \leq\left|a_{n}-A\right|+\left|b_{n}-B\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Here we used the triangle inequality: $|a+b| \leq|a|+|b|$.
Theorem 2. If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $c \in \mathbb{R}$ then $c a_{n} \xrightarrow{n \rightarrow \infty} c A$. (Constant Multiple Rule)
Proof. Let $\varepsilon>0$ be fixed.
(i) If $c=0$ then the statement is trivial.
(ii) If $c \neq 0$ then because of the convergence of a_{n}, for $\frac{\varepsilon}{|c|}$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $\left|a_{n}-A\right|<\frac{\varepsilon}{|c|}$. Thus, if $n>N$ then
$\left|c a_{n}-c A\right|=\left|c\left(a_{n}-A\right)\right|=|c| \cdot\left|a_{n}-A\right|<|c| \cdot \frac{\varepsilon}{|c|}=\varepsilon$.

Here we used that $|a b|=|a||b|$.
Consequence. (i) If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ then $-a_{n} \xrightarrow{n \rightarrow \infty}-A$. (Here $c=-1$.)
(ii) If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $b_{n} \xrightarrow{n \rightarrow \infty} B \in \mathbb{R}$ then $a_{n}-b_{n}=a_{n}+\left(-b_{n}\right) \xrightarrow{n \rightarrow \infty} A+(-B)=A-B$. (Difference Rule)

Theorem 3. (i) If $a_{n} \xrightarrow{n \rightarrow \infty} 0$ and $b_{n} \xrightarrow{n \rightarrow \infty} 0$ then $a_{n} b_{n} \xrightarrow{n \rightarrow \infty} 0$.
(ii) If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $b_{n} \xrightarrow{n \rightarrow \infty} B \in \mathbb{R}$ then $a_{n} b_{n} \xrightarrow{n \rightarrow \infty} A B$. (Product Rule)

Proof. Let $\varepsilon>0$ be fixed.
(i) Since $a_{n} \xrightarrow{n \rightarrow \infty} 0$ and $b_{n} \xrightarrow{n \rightarrow \infty} 0$, then for $\frac{\varepsilon}{2}$ there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|a_{n}-0\right|<\frac{\varepsilon}{2}$ and for 2 there exists $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|b_{n}-0\right|<2$. Thus, if $n>N=\max \left\{N_{1}, N_{2}\right\}$ then $\left|a_{n} b_{n}-0\right|=\left|a_{n}\right| \cdot\left|b_{n}\right|<\frac{\varepsilon}{2} \cdot 2=\varepsilon$.
(ii) It is obvious that if $c_{n} \equiv A$ for all $n \in \mathbb{N}$ (constant sequence) then $c_{n} \xrightarrow{n \rightarrow \infty} A$.

Thus $a_{n}-A \xrightarrow{n \rightarrow \infty} A-A=0$ and $b_{n}-B \xrightarrow{n \rightarrow \infty} B-B=0$.
Applying part (i) we get that $\left(a_{n}-A\right)\left(b_{n}-B\right) \xrightarrow{n \rightarrow \infty} 0$, that is, $a_{n} b_{n}-A b_{n}-B a_{n}+A B \xrightarrow{n \rightarrow \infty} 0$.
Then

$$
a_{n} b_{n}=\left(a_{n} b_{n}-A b_{n}-B a_{n}+A B\right)+\left(A b_{n}+B a_{n}-A B\right) \xrightarrow{n \rightarrow \infty} 0+(A B+A B-A B)=A B .
$$

Theorem 4. If $a_{n} \xrightarrow{n \rightarrow \infty} 0$ and $\left(b_{n}\right)$ is bounded then $a_{n} b_{n} \xrightarrow{n \rightarrow \infty} 0$.
Proof. Let $\varepsilon>0$ be fixed.
Since $\left(b_{n}\right)$ is bounded then there exists $K>0$ such that $\left|b_{n}\right|<K$ for all $n \in \mathbb{N}$.
Since $a_{n} \xrightarrow{n \rightarrow \infty} 0$ then for $\frac{\varepsilon}{K}$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $\left|a_{n}-0\right|=\left|a_{n}\right|<\frac{\varepsilon}{K}$.
Thus, if $n>N$ then $\left|a_{n} b_{n}-0\right|=\left|a_{n}\right| \cdot\left|b_{n}\right|<\frac{\varepsilon}{K} \cdot K=\varepsilon$.
Theorem 5. If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ then $\left|a_{n}\right| \xrightarrow{n \rightarrow \infty}|A|$.

Proof. $\left|a_{n}\right|-|A|\left|\leq\left|a_{n}-A\right|<\varepsilon\right.$ if $n>N(\varepsilon)$.

Remark. The converse of the statement is not true. For example, $a_{n}=(-1)^{n}$ is divergent but $\left|a_{n}\right|=1^{n}=1 \xrightarrow{n \rightarrow \infty} 1$.
However, the following statement is true: $\left|a_{n}\right| \xrightarrow{n \rightarrow \infty} 0 \Longrightarrow a_{n} \xrightarrow{n \rightarrow \infty} 0$.
Since $\left|\left|a_{n}\right|-0\right|=\left|a_{n}\right|=\left|a_{n}-0\right|<\varepsilon$ if $n>N(\varepsilon)$.
Theorem 6. (i) If $b_{n} \xrightarrow{n \rightarrow \infty} B \neq 0$ then $\frac{1}{b_{n}} \xrightarrow{n \rightarrow \infty} \frac{1}{B}$.
(ii) If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $b_{n} \xrightarrow{n \rightarrow \infty} B \neq 0$ then $\frac{a_{n}}{b_{n}} \xrightarrow[B]{n \rightarrow \infty} A$. (Quotient Rule)

Proof. (i) First, by the convergence of $\left(b_{n}\right)$ and by theorem $5,\left|b_{n}\right| \xrightarrow{n \rightarrow \infty}|B| \neq 0$ and thus there exists $N_{1}=N_{1}\left(\frac{|B|}{2}\right) \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|\left|b_{n}\right|-|B|\right|<\frac{|B|}{2} \Longleftrightarrow$ $|B|-\frac{|B|}{2}<\left|b_{n}\right|<|B|+\frac{|B|}{2}$. Then $\left|b_{n}\right|>\frac{|B|}{2}$ for all $n>N_{1}$.
Second, for a fixed $\varepsilon>0$ there exists $N_{2}=N_{2}\left(\frac{|B|^{2} \varepsilon}{2}\right) \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|b_{n}-B\right|<\frac{|B|^{2} \varepsilon}{2}$.
Therefore, if $n>N=\max \left\{N_{1}, N_{2}\right\}$ then

$$
\left|\frac{1}{b_{n}}-\frac{1}{B}\right|=\left|\frac{B-b_{n}}{B \cdot b_{n}}\right|=\frac{\left|B-b_{n}\right|}{|B| \cdot\left|b_{n}\right|}<\frac{1}{|B| \cdot \frac{|B|}{2}} \cdot \frac{|B|^{2} \varepsilon}{2}=\varepsilon .
$$

(ii) By theorem 3 and theorem 6, part (i): $\frac{a_{n}}{b_{n}}=a_{n} \cdot \frac{1}{b_{n}} \xrightarrow{n \rightarrow \infty} A \cdot \frac{1}{B}=\frac{A}{B}$

Remark. By induction it can be proved that Theorem 1 and Theorem 3 can be generalized to the
sum and product of finitely many convergent sequences. However, they are not true for infinitely many terms, as the following examples show.
Examples. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{10}=1^{10}=1$ or $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{k}=1^{k}=1$, where $k \in \mathbb{N}^{+}$is a fixed constant, independent of n. However, $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \neq 1^{n}=1$. Later we will see that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.

Example. $a_{n}=\frac{1}{n^{2}}+\frac{2}{n^{2}}+\ldots+\frac{500}{n^{2}} \rightarrow 0+0+\ldots+0=0$
The number of the terms is 500 which is independent of n and thus applying Theorem 1 finitely many times, the correct result is 0 .

Example. $b_{n}=\frac{1}{n^{2}}+\frac{2}{n^{2}}+\ldots+\frac{n}{n^{2}} \longrightarrow 0+0+\ldots+0=0$ is a WRONG SOLUTION!
Since $b_{1}=\frac{1}{1^{2}}, b_{2}=\frac{1}{2^{2}}+\frac{2}{2^{2}}, b_{3}=\frac{1}{3^{2}}+\frac{2}{3^{2}}+\frac{3}{3^{2}}, b_{4}=\frac{1}{4^{2}}+\frac{2}{4^{2}}+\frac{3}{4^{2}}+\frac{4}{4^{2}}, \ldots$,
it can be seen that the number of the terms depends on n, so b_{n} is not the sum of finitely many sequences and thus Theorem 1 cannot be generalized to this case. The correct solution is:
$b_{n}=\frac{1+2+\ldots+n}{n^{2}}=\frac{(1+n) \cdot \frac{n}{2}}{n^{2}}=\frac{1+n}{2 n}=\frac{\frac{1}{n}+1}{2} \rightarrow \frac{0+1}{2}=\frac{1}{2}$
Theorem 7. If $a_{n} \geq 0$ and $a_{n} \xrightarrow{n \rightarrow \infty} A \geq 0$ then $\sqrt{a_{n}} \xrightarrow{n \rightarrow \infty} \sqrt{A}$.
Proof. Let $\varepsilon>0$ be fixed.
(i) If $a_{n} \xrightarrow{n \rightarrow \infty} A=0$ then there exists $N_{1}=N_{1}\left(\varepsilon^{2}\right) \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|a_{n}-0\right|=a_{n}<\varepsilon^{2}$.

Therefore, if $n>N_{1}$ then $\left|\sqrt{a_{n}}-0\right|=\sqrt{a_{n}}<\varepsilon$.
(ii) If $a_{n} \xrightarrow{n \rightarrow \infty} A>0$ then there exists $N_{2}=N_{2}(\varepsilon \sqrt{A}) \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|a_{n}-A\right|<\varepsilon \sqrt{A}$. Therefore, if $n>N_{2}$ then

$$
\left|\sqrt{a_{n}}-\sqrt{A}\right|=\left|\frac{a_{n}-A}{\sqrt{a_{n}}+\sqrt{A}}\right|=\frac{\left|a_{n}-A\right|}{\sqrt{a_{n}}+\sqrt{A}} \leq \frac{\left|a_{n}-A\right|}{0+\sqrt{A}}<\frac{\varepsilon \sqrt{A}}{\sqrt{A}}=\varepsilon .
$$

Remark. If $a_{n} \xrightarrow{n \rightarrow \infty} A \geq 0$ then $\sqrt[k]{a_{n}} \xrightarrow{n \rightarrow \infty} \sqrt[k]{A}$ for all $k \in \mathbb{N}^{+}$.
It can be proved by using the following identity: $a^{k}-b^{k}=(a-b)\left(a^{k-1}+a^{k-2} b+\ldots+a b^{k-1}+b^{k-1}\right)$.
Example. $\frac{2^{2 n}+\cos \left(n^{2}\right)}{4^{n+1}-5}=\frac{4^{n}}{4^{n}} \cdot \frac{1+\left(\frac{1}{4}\right)^{n} \cdot \cos \left(n^{2}\right)}{4-5 \cdot\left(\frac{1}{4}\right)^{n}} \rightarrow \frac{1+0}{4-0}=\frac{1}{4}$.

Additional theorems about the limit

Theorem. If $a_{n} \xrightarrow{n \rightarrow \infty} \infty$ then $\frac{1}{a_{n}} \xrightarrow{n \rightarrow \infty} 0$.

Proof. Let $\varepsilon>0$ be fixed. Since $a_{n} \xrightarrow{n \rightarrow \infty} \infty$, then for $P=\frac{1}{\varepsilon}$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $a_{n}>\frac{1}{\varepsilon}$,
so $\left|\frac{1}{a_{n}}-0\right|=\frac{1}{a_{n}}<\varepsilon$.

Question: Is it true that if $a_{n} \xrightarrow{n \rightarrow \infty} 0$ then $\frac{1}{a_{n}} \xrightarrow{n \rightarrow \infty} \infty$?
Answer: No, for example, if $a_{n}=-\frac{2}{n} \longrightarrow 0$ then $\frac{1}{a_{n}}=-\frac{n}{2} \longrightarrow-\infty$.
Or, if $a_{n}=\left(-\frac{1}{2}\right)^{n} \rightarrow 0$ then for $b_{n}=\frac{1}{a_{n}}=(-2)^{n}, b_{2 k} \rightarrow \infty$ and $b_{2 k} \longrightarrow-\infty$, so $\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \neq \infty$.
However, the following statements hold.
Theorem. a) If $a_{n}>0$ and $a_{n} \xrightarrow{n \rightarrow \infty} 0$ then $\frac{1}{a_{n}} \xrightarrow{n \rightarrow \infty} \infty$. Notation: $\frac{1}{0+} \longrightarrow+\infty$.
b) If $a_{n}<0$ and $a_{n} \xrightarrow{n \rightarrow \infty} 0$ then $\frac{1}{a_{n}} \xrightarrow{n \rightarrow \infty}-\infty$. Notation: $\frac{1}{0-} \longrightarrow-\infty$.
c) If $a_{n} \xrightarrow{n \rightarrow \infty} 0$ then $\frac{1}{\left|a_{n}\right|} \xrightarrow{n \rightarrow \infty} \infty$.

Proof. a) Let $P>0$ be fixed. Since $0<a_{n} \xrightarrow{n \rightarrow \infty} 0$, then for $\varepsilon=\frac{1}{P}$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $a_{n}=\left|a_{n}-0\right|<\frac{1}{P}$, so $\frac{1}{a_{n}}>P$.
b), c): homework.

Theorem. If $a_{n} \xrightarrow{n \rightarrow \infty} \infty$ and $b_{n} \geq a_{n}$ for $n>N$, then $b_{n} \rightarrow \infty$.
Proof. Let $P>0$ be fixed. Since $a_{n} \xrightarrow{n \rightarrow \infty} \infty$, then there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $a_{n}>P$. So if $n>\max \left\{N, N_{1}\right\}$ then $b_{n}>P$.

Consequence. Suppose that $a_{n} \xrightarrow{n \rightarrow \infty} \infty, b_{n} \xrightarrow{n \rightarrow \infty} \infty, c_{n} \xrightarrow{n \rightarrow \infty} c>0$ and $\left|d_{n}\right| \leq K$ for all $n>\in \mathbb{N}$. Then
a) $a_{n}+b_{n} \xrightarrow{n \rightarrow \infty} \infty$
b) $a_{n} \cdot b_{n} \xrightarrow{n \rightarrow \infty} \infty$
c) $c_{n} \cdot a_{n} \xrightarrow{n \rightarrow \infty} \infty$
d) $a_{n}+d_{n} \xrightarrow{n \rightarrow \infty} \infty$

Proof. a) Since $a_{n} \xrightarrow{n \rightarrow \infty}$, it may be assumed that there exists $N \in \mathbb{N}$ such that $a_{n} \geq 0$ for $n>N$.
Then $a_{n}+b_{n} \geq b_{n} \xrightarrow{n \rightarrow \infty} \infty$, so $a_{n}+b_{n} \xrightarrow{n \rightarrow \infty} \infty$.
b) Since $a_{n} \xrightarrow{n \rightarrow \infty}$ and $b_{n} \xrightarrow{n \rightarrow \infty} \infty$, it may be assumed that there exists $N \in \mathbb{N}$ such that $a_{n} \geq 1$ and $b_{n} \geq 0$ for $n>N$.
Then $a_{n} \cdot b_{n} \geq b_{n} \xrightarrow{n \rightarrow \infty} \infty$, so $a_{n} \cdot b_{n} \xrightarrow{n \rightarrow \infty} \infty$.
c) Let $P>0$ be fixed.

Since $c_{n} \xrightarrow{n \rightarrow \infty} c>0$ then there exists $N_{1}=N_{1}\left(\frac{c}{2}\right) N \in \mathbb{N}$ such that $c_{n}>\frac{c}{2}$ if $n>N_{1}$.
Since $a_{n} \xrightarrow{n \rightarrow \infty}$ then there exists $N_{2}=N_{2}\left(\frac{2 P}{c}\right) N \in \mathbb{N}$ such that $a_{n}>\frac{2 P}{c}$ if $n>N_{2}$.
So if $n>\max \left\{N_{1}, N_{2}\right\}$ then $c_{n} \cdot a_{n}>\frac{2 P}{c} \cdot \frac{c}{2}=P$.
d) Let $P>0$ be fixed. $a_{n}+d_{n} \geq a_{n}-K>P$ if and only if $a_{n}>K+P$.

Since $a_{n} \xrightarrow{n \rightarrow \infty}$ then for $K+P$ there exists $N \in \mathbb{N}$ such that $a_{n}>K+P$ if $n>N$.
Then for $n>N, a_{n}+d_{n}>P$ also holds, so $a_{n}+d_{n} \xrightarrow{n \rightarrow \infty} \infty$.
Example. $5 n^{2}+2^{n} \cdot n-(-1)^{n} \xrightarrow{n \rightarrow \infty} \infty$.
Remark. The above statements can be denoted in the following way:
a) $\infty+\infty \rightarrow \infty$ b) $\infty \cdot \infty \rightarrow \infty$ c) $c \cdot \infty \rightarrow \infty$ (where c>0) d) $\infty+$ bounded $\longrightarrow \infty$.

Similar statements can be proved, for example, $\underset{\infty}{0} \longrightarrow 0, \frac{\text { bounded }}{\infty} \rightarrow 0, \stackrel{\infty}{+0} \rightarrow \infty, \frac{\infty}{-0} \rightarrow-\infty$.
The meaning of $\frac{0}{\infty} \rightarrow 0$ is that if $a_{n} \xrightarrow{n \rightarrow \infty} 0$ and $b_{n} \xrightarrow{n \rightarrow \infty} \infty$ then $\frac{a_{n}}{b_{n}} \rightarrow 0$.
Such statements are summarized in the following tables where $\overline{\mathbb{R}}=\mathbb{R} \cup\{\infty,-\infty\}$ denotes the extended set of real numbers.

Addition:
Out $0 \cdot=\left\{\begin{array}{c|c|c|}\hline \lim \left(a_{n}\right) & \lim \left(b_{n}\right) & \lim \left(a_{n}+b_{n}\right) \\ \hline \mathrm{a} \in \mathbb{R} & \mathrm{b} \in \mathbb{R} & \mathrm{a}+\mathrm{b} \\ \infty & \mathrm{b} \in \mathbb{R} & \infty \\ -\infty & \mathrm{b} \in \mathbb{R} & -\infty \\ \infty & \infty & \infty \\ -\infty & -\infty & -\infty \\ \infty & -\infty & ?\end{array}\right.$,

Subtraction:

$\lim \left(a_{n}\right)$	$\lim \left(b_{n}\right)$	$\lim \left(a_{n}-b_{n}\right)$
$a \in \mathbb{R}$	$b \in \mathbb{R}$	$\mathrm{a}-\mathrm{b}$
∞	$\mathrm{b} \in \mathbb{R}$	∞
$-\infty$	$\mathrm{b} \in \mathbb{R}$	$-\infty$
∞	$-\infty$	∞
∞	∞	$?$
$-\infty$	$-\infty$	$?$

Division:

$\lim \left(a_{n}\right)$	$\lim \left(b_{n}\right)$	$\lim \left(\frac{a_{n}}{b_{n}}\right)$
$a \in \mathbb{R}$	$\mathrm{~b} \in \mathbb{R} \backslash\{0\}$	$\frac{a}{b}$
∞	$\mathrm{~b}>0$	∞
∞	$\mathrm{~b}<0$	$-\infty$
$-\infty$	$\mathrm{b}>0$	$-\infty$
$-\infty$	$\mathrm{b}<0$	∞
$\mathrm{a} \in \mathbb{R}$	$\pm \infty$	0
0	$\mathrm{~b} \in \overline{\mathbb{R}}, \mathrm{~b} \neq 0$	0
$\mathrm{a} \in \overline{\mathbb{R}}, \mathrm{a} \neq 0$	0	$\|\cdot\|=\infty$
0	0	$?$
$\pm \infty$	$\pm \infty$	$?$

The meaning of $|\cdot|$ is that $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|=\infty$.
Undefined forms: $\infty-\infty, 0 \cdot \infty, \frac{\infty}{\infty}, \frac{0}{0}, 1^{\infty}, \infty^{0}, 0^{0}$

Examples:

1) Limit of the form $\infty-\infty$:

$a_{n}=n^{2}, b_{n}=n, a_{n}-b_{n}=n^{2}-n \rightarrow \infty$
$a_{n}=n, b_{n}=n, a_{n}-b_{n}=n-n=0 \rightarrow 0$
$a_{n}=n, b_{n}=n^{2}, a_{n}-b_{n}=n-n^{2} \rightarrow-\infty$

2) Limit of the form $0 \cdot \infty$:

$\frac{1}{n} \cdot n^{2}=n \rightarrow \infty, \frac{1}{n} \cdot n=1 \rightarrow 1, \frac{1}{n^{2}} \cdot n=\frac{1}{n} \rightarrow 0, \frac{(-1)^{n}}{n} \cdot n=(-1)^{n}$ (it doesn't have a limit)
3) Limit of the form $\frac{\infty}{\infty}$:
$\frac{n}{n^{2}}=\frac{1}{n} \rightarrow 0, \frac{n^{2}}{n}=n \rightarrow \infty, \frac{n^{2}}{n^{2}}=1 \rightarrow 1$

4) Limit of the form $\frac{0}{0}$:

$\frac{\frac{1}{n}}{\frac{1}{n^{2}}}=n \rightarrow \infty, \frac{\frac{1}{n^{2}}}{\frac{1}{n}}=\frac{1}{n} \rightarrow 0, \frac{\frac{1}{n}}{\frac{1}{n}}=1 \rightarrow 1, \frac{(-1)^{n} \frac{1}{n}}{\frac{1}{n^{2}}}=(-1)^{n} \cdot n$ (it doesn't have a limit)

Wolframalpha

Some examples:
$\lim _{n \rightarrow \infty} \frac{n^{2}+5 n}{3 n^{2}-7}$
https://www.wolframalpha.com/input/?i=limit+\(n\^2\%2B5n\)\%2F\(3n\^2-7\)+as+n -\%3Einfinity
$\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}-3 n}-\sqrt{n^{2}+1}\right)$
https://www.wolframalpha.com/input/?i=limit+sqrt\(n\^2-3n\)-
sqrt\%28n\%5E2\%2B1\%29+as+n-\%3Einfinity
$\lim _{n \rightarrow \infty}(\sqrt[3 n]{2 n})$
https://www.wolframalpha.com/input/?i=limit+\(2n\)\^\(1\%2F\(3n\)\)+as+n\>infinity
$\lim _{n \rightarrow \infty} \frac{\binom{n}{2}}{\binom{n}{3}}$
https://www.wolframalpha.com/input/?i=limit+ $\% 28 n+$ choose $+2 \% 29 \% 2 F \% 28 n+$ choose $+3 \% 29+a s+n$ -\%3Einfinity
$\lim _{n \rightarrow \infty} \sqrt[n]{1+\frac{1}{2}+\ldots+\frac{1}{n}}$
https://www.wolframalpha.com/input/?i=limit+\(sum+1\%2Fk\%2C+k\%3D1+to+n\)\^\(1\% 2Fn\%29+as+n-\%3Einfinity

