
Calculus 1, 3rd lecture

Axioms for the real numbers

 is a set whose elements are called real numbers.
Two operations, called addition and multiplication are defined in  such that  is closed under 
these operations, that is, ∀ a, b ∈  (a + b ∈  and a ·b ∈ ).

Addition:
1) ∀ a, b ∈  (a + b = b + a)   (commutativity),
2) ∀ a, b, c ∈  ((a + b) + c) = a + (b + c))   (associativity),
3) ∃ 0 ∈  (∀ a ∈  (a + 0 = 0 + a = 0))   (existence of zero element),
4) ∀ a ∈  (∃ b ∈  (a + b = 0))   (existence of additive inverse, notation: b = -a).

Multiplication:
5) ∀ a, b ∈  (a ·b = b ·a)   (commutativity),
6) ∀ a, b, c ∈  ((a ·b) ·c = a · (b ·c))   (associativity),
7) ∃ 1 ∈  (∀ a ∈  (a ·1 = 1 ·a = a))    (existence of unit element),
8) ∀ a ∈  (∃ b ∈  \ {0} (a ·b = 1))   (existence of multiplicative inverse, notation: b = a-1).

For the two operations above:
9) ∀ a, b, c ∈  (a + b) ·c = a ·c + b ·c   (the multiplication is distributive with respect to the addition).

Axioms (1)–(9) are the axioms for a field.

Ordering:
10) Exactly one of the following is true: a < b, b < a, a = b    (trichotomy),
11) ∀ a, b, c ∈  ((a < b) ∧ (b < c)) ⟹ (a < c)    (transitivity),
12) ∀ a, b, c ∈  ((a < b) ∧ c > 0) ⟹ a ·c < b ·c
13) ∀ a, b, c ∈  (a < b) ⟹ a + c < b + c   (monotonicity)

Axioms (1)–(13) are the axioms for an ordered field.

Archimedian axiom:
14) ∀ a ∈  (∃ n ∈ (a < n))

So far we can substitute  with . But there is also:

Cantor axiom:
15) a1, b1, a2, b2, ... ∈ 
(∀ n ∈ (an ≤ an+1 ∧ bn+1 ≤ bn)) ⟹ (∃ x ∈  (∀ n ∈ (x ∈ [an, bn] )))

so 

n=1

∞

[an, bn] ≠ ∅ .



It states that any nested sequence of closed intervals has a non-empty intersection.

Example: Let a1 = 1.4 < a2 = 1.41 < a3 = 1.414 < a4 = 1.4142 < ...  and
b1 = 1.5 > b2 = 1.42 > b3 = 1.415 > b4 = 1.4143 > ...
an = 10n · 2  ·10-n, bn = 10n · 2  + 1 ·10-n, where [.]denotes the floor function.

Then 
n=1

∞

[an, bn] =  2  ∈ \.

Remark. Closeness is important, for example if In = 0,
1

n
 then 

n=1

∞

In = ∅.

Consequences

Some elementary laws of algebra and inequalities follow from the axioms.
For example:

1) For all a ∈ , exactly one of the following properties hold: a > 0, a = 0, a < 0.
(a > 0 ⟺ -a < 0)

2) (a < b) ∧ (c < d) ⟹ a + c < b + d
Specifically: (a > 0) ∧ (b > 0) ⟹ a + b > 0

3) (0 ≤ a < b) ∧ (0 ≤ c < d) ⟹ a c < b d
Specifically: (a > 0) ∧ (b > 0) ⟹ a b > 0

4) (a < b) ∧ (c < 0) ⟹ a c > b c
Specifically: a < b ⟹ -a > -b

5) (i) 0 < a < b ⟹
1

a
>

1

b

(ii) a < b < 0 ⟹
1

a
>

1

b

(iii) a < 0 < b ⟹
1

a
<

1

b

(i) and (ii): (a < b) ∧ (a b > 0) ⟹
1

a
>

1

b

(iii): (a < b) ∧ (a b < 0) ⟹
1

a
<

1

b

6) For all a, b ∈ ,  a + b ≤ a + b   and || a - b || ≤ a - b .

7) If n is a positive integer and 0 < a < b then an < bn.

8) ∀ x ∈  (x ·0 = 0)
9) ∀ x ∈  (x · y = 0 ⟹ x = 0 or y = 0)
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Proof of  8):
x ·0 = x ·0 + 0 = x ·0 + (x ·0 − x ·0) = (x ·0 + x ·0) − x ·0 = x · (0 + 0) − x ·0 = x ·0 − x ·0 = 0.

Proof of 9):
x ≠ 0 ⟹ y = 1 · y = ((1 / x) · x) · y = (1 / x) · (x · y) = (1 / x) ·0 = 0. 

Bounded subsets of real numbers

Definition. A⊂ is bounded above if there exists a K ∈  such that a ≤ K if a ∈ A. 
(∃ K ∈ (∀ a ∈ A(a ≤ K))).)  In this case K is an upper bound of A.

Definition. A⊂ is bounded below if there exists a k ∈  such that a ≥ k if a ∈ A. 
(∃ k ∈ (∀ a ∈ A(a ≥ k))).)  In this case k is a lower bound of A.

Definition. A ⊂  is bounded if it is has an upper bound and a lower bound. It
means that there exists a K > 0 such that a < K for all a ∈ A.

Examples: 1)  is bounded below
                 2) (0, 1] = {x ∈  : 0 < x ≤ 1} is bounded (for example, upper bounds are 
1, 3, π , ..., lower bounds are 0, -3, -100, ...)
                 3)  has no upper bound or lower bound 
                 
Remark: A bounded set has infinitely many lower and upper bounds.      

Definition. If a set A is bounded above, then the supremum of A is the
least upper bound of A (Notation: sup A). If A is not bounded above, then
sup A = ∞.

Definition. If a set A is bounded below then the infimum of A is the
greatest lower bound of A (Notation: inf A). If A is not bounded below, then
inf A = −∞.

Examples: 1) inf  = 1, sup =∞

2) inf(0, 1] = 0, sup(0, 1] = 1
3) inf  = −∞, sup =∞

Definition. The minimum of the set A is l if l ∈ A and l = inf A. 
The maximum of the set A is h if h ∈ A and h = sup A.

Examples: 1) The minimum of  is 1 and it has no maximum.
2) The maximum of (0, 1] is 1 and it has no minimum.
3)  has no minimum and no maximum.
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Least-upper-bound property

Theorem (Least-upper-bound property, Dedekind):
If a non-empty subset of  is bounded above then it has a least upper bound in .

Consequence. If a non-empty subset of  is bounded below then it has a greatest lower bound in .

Remarks. 1) In the above system of axioms, the axioms of Cantor and Archimedes can be replaced 
by this statement.

2) The set of rational numbers does not have the least-upper-bound property under the usual 

order. For example, x ∈ : x2 ≤ 2 =⋂ - 2 , 2  has an upper bound in  but does not have a 

least upper bound in  since 2  is irrational.

Complex numbers

Definition. The complex field  is the set of ordered pairs of real numbers:  =2 = {(a, b) : a, b ∈ } 
with addition and multiplication defined by

(a, b) + (c, d) = (a + c, b + d)
(a, b) (c, d) = (a c - b d, a d + b c).

Remark. Commutativity and associativity of addition and multiplication as well as distributivity 
(see  1), 2), 5), 6), 9) ) follow easily from the same properties of reals numbers.
3) the additive identity or zero element is (0, 0)
4) the additive inverse of (a, b) is (-a, -b)
7) the multiplicative identity or unit element is (1, 0)
8) the multiplicative inverse of (a, b) ≠ (0, 0) can be found in the following way:

(a, b) (x, y) = (1, 0)  ⟺  a x - b y = 1

b x + a y = 0

  ⟺  x =
a

a2 + b2
, y =

-b

a2 + b2

Thus the complex numbers form a field.

Remark. We associate the complex number of the form (a, 0) with the corresponding real number 
a. Then 

(a1, 0) + (a2, 0) = (a1 + a2, 0) corresponds to a1 + a2  and
(a1, 0) (a2, 0) = (a1 a2, 0) corresponds to a1 a2.

Since 
(0, 1) (0, 1) = (-1, 0) = -1,

we can say that (0, 1) is a square root of -1 and it will be denoted by i.

The algebraic form of complex numbers. We can rewrite any complex number in the following 
way:
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(a, b) = (a, 0) + (0, b) = a + b i

where a, b ∈  and i2 = -1. 

Addition: (a + b i) + (c + d i) = (a + b) + (c + d) i
Multiplication: (a + b i) (c + d i) = a c + b d i2 + a d i + b c i = (a c - b d) + (a d + b c) i

The complex plane. 
To each complex number z = a + b i we associate the point (a, b) in the Cartesian plane. Real 
numbers are thus associated with points on the x-axis, called the real axis and the purely imagi-
nary numbers b i  correspond to points on the y-axis, called the imaginary 
axis.

a=Re(z)=Re(z)

Im(z)=b

Im(z)=-b

z=a+bi

z=a-bi

r

-r

φ

-φ

Definitions. If z = a + b i then 
- the real part of z is  Re(z) = a ∈ 
- the imaginary part of z is  Im(z) = b ∈ 
- the conjugate of z is z = a - b i

- the absolute value or modulus of z is  z = a2 + b2 ≥ 0   (the length of the vector z)
- the argument of z, defined for z ≠ 0, is the angle which the vector originating from 0 to z makes 
with the positive x-axis. Thus arg(z) = φ (modulo 2π) for which

cosφ =
Re (z)

z
   and   cosφ =

Im (z)

z

Some identities:

Re(z) =
z + z

2
,   Im(z) =

z - z

2 i
, z = z,  

z z = (a + b i) (a - b i) = a2 - b2 i2 = a2 + b2 = z 2

calculus1-03.nb     5



z1 ± z2 = z1 ± z1,         z1 ·z2 = z1 ·z1,         
z1

z2
=
z1

z2

The trigonometric form (or polar form) of complex numbers.
Let  z = a + b i ≠ 0,  r = z   and   φ = arg(z). Then  a = r cosφ  and  b = r sinφ and

z = r(cosφ + i sinφ)

where r and φ are called the polar coordinates of z.

Multiplication and division: Let z1 = r1(cosφ1 + i sinφ1) and z2 = r2(cosφ2 + i sinφ2). Then

z1 z2 = r1 r2(cos (φ1 + φ2) + i sin (φ1 + φ2))

z1

z2
=
r1

r2
(cos (φ1 - φ2) + i sin (φ1 - φ2))     (if r2 ≠ 0) 

Reciprocal, conjugation, nth power: Let z = r(cosφ + i sinφ). Then

1

z
=

1

r
(cos(-φ) + i sin(-φ))   (if r ≠ 0)

z = r(cos(-φ) + i sin(-φ))

zn = rn(cos(nφ) + i sin (nφ))   (n ∈+)

If r ≠ 0 then it holds for n ∈.

nth root: If z ≠ 0 and n ∈+ then w ∈  is an nth root of z if wn = z. Then

w = r(cosφ + i sinφ)
n

= r
n

cos
φ + k ·2π

n
+ i sin

φ + k ·2π

n
   where  k = 0, 1, ..., n - 1.

Some identities:

z1 z2 = z1 · z2 ,   
1

z
=

1

z
,   

z1

z2
=

z1

z2
,   zn = z n,   z = z

Fundamental theorem of algebra: Every degree n polynomial with complex coefficients has 
exactly n complex roots, if counted with multiplicity.

Exercise

1. Using the field and ordering axioms prove that ∀ a ∈  a2 ≥ 0.
2. Show that no ordering can make the field of complex numbers into an ordered field.
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Solution: See exercises 1.1.8 and 1.1.9 here:

http://etananyag.ttk.elte.hu/FiLeS/downloads/4b_FeherKosToth_MathAnExII.pdf

Wolframalpha

Some examples:

1) -16
4

https://www.wolframalpha.com/input/?i=%28-16%29%5E%281%2F4%29

2) 
i

1 - i
https://www.wolframalpha.com/input/?i=sqrt%28i%29%2F%281-i%29

3) z2 = z
https://www.wolframalpha.com/input/?i=z%5E2%3Dconjugate%28z%29

4) Rez2 = 2 Im(z), Imz2 = 2 Re(z)

https://www.wolframalpha.com/input/?i=Re%28z%5E2%29%3D2Im%28z%29%2C+Im%28z%5E2%
29%3D2Re%28z%29
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