Calculus 1, 3rd lecture

Axioms for the real numbers

\mathbb{R} is a set whose elements are called real numbers.
Two operations, called addition and multiplication are defined in \mathbb{R} such that \mathbb{R} is closed under these operations, that is, $\forall a, b \in \mathbb{R}(a+b \in \mathbb{R}$ and $a \cdot b \in \mathbb{R})$.

Addition:

1) $\forall a, b \in \mathbb{R}(a+b=b+a)$ (commutativity),
2) $\forall a, b, c \in \mathbb{R}((a+b)+c)=a+(b+c))$ (associativity),
3) $\exists 0 \in \mathbb{R}(\forall a \in \mathbb{R}(a+0=0+a=0))$ (existence of zero element),
4) $\forall a \in \mathbb{R}(\exists b \in \mathbb{R}(a+b=0))$ (existence of additive inverse, notation: $b=-a)$.

Multiplication:

5) $\forall a, b \in \mathbb{R}(a \cdot b=b \cdot a) \quad$ (commutativity),
6) $\forall a, b, c \in \mathbb{R}((a \cdot b) \cdot c=a \cdot(b \cdot c))$ (associativity),
7) $\exists 1 \in \mathbb{R}(\forall a \in \mathbb{R}(a \cdot 1=1 \cdot a=a)) \quad$ (existence of unit element),
8) $\forall a \in \mathbb{R}(\exists b \in \mathbb{R} \backslash\{0\}(a \cdot b=1))$ (existence of multiplicative inverse, notation: $b=a^{-1}$).

For the two operations above:
9) $\forall a, b, c \in \mathbb{R}(a+b) \cdot c=a \cdot c+b \cdot c \quad$ (the multiplication is distributive with respect to the addition).

Axioms (1)-(9) are the axioms for a field.

Ordering:

10) Exactly one of the following is true: $a<b, b<a, a=b$ (trichotomy),
11) $\forall a, b, c \in \mathbb{R}((a<b) \wedge(b<c)) \Longrightarrow(a<c) \quad$ (transitivity),
12) $\forall a, b, c \in \mathbb{R}((a<b) \wedge c>0) \Longrightarrow a \cdot c<b \cdot c$
13) $\forall a, b, c \in \mathbb{R}(a<b) \Longrightarrow a+c<b+c$ (monotonicity)

Axioms (1)-(13) are the axioms for an ordered field.

Archimedian axiom:

14) $\forall a \in \mathbb{R}(\exists n \in \mathbb{N}(a<n))$

So far we can substitute \mathbb{R} with \mathbb{Q}. But there is also:

Cantor axiom:

15) $a_{1}, b_{1}, a_{2}, b_{2}, \ldots \in \mathbb{R}$
$\left(\forall n \in \mathbb{N}\left(a_{n} \leq a_{n+1} \wedge b_{n+1} \leq b_{n}\right)\right) \Longrightarrow\left(\exists x \in \mathbb{R}\left(\forall n \in \mathbb{N}\left(x \in\left[a_{n}, b_{n}\right]\right)\right)\right)$
$\left(\right.$ so $\left.\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \neq \varnothing\right)$.

It states that any nested sequence of closed intervals has a non-empty intersection.

Example: Let $a_{1}=1.4<a_{2}=1.41<a_{3}=1.414<a_{4}=1.4142<\ldots$ and $b_{1}=1.5>b_{2}=1.42>b_{3}=1.415>b_{4}=1.4143>\ldots$
$\left(a_{n}=\left[10^{n} \cdot \sqrt{2}\right] \cdot 10^{-n}, b_{n}=\left(\left[10^{n} \cdot \sqrt{2}\right]+1\right) \cdot 10^{-n}\right.$, where [.] denotes the floor function.)
Then $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]=\{\sqrt{2}\} \in \mathbb{R} \backslash \mathbb{Q}$.
Remark. Closeness is important, for example if $I_{n}=\left(0, \frac{1}{n}\right]$ then $\bigcap_{n=1}^{\infty} I_{n}=\varnothing$.

Consequences

Some elementary laws of algebra and inequalities follow from the axioms.
For example:

1) For all $a \in \mathbb{R}$, exactly one of the following properties hold: $a>0, a=0, a<0$.
($a>0 \Longleftrightarrow-a<0$)
2) $(a<b) \wedge(c<d) \Longrightarrow a+c<b+d$

Specifically: $(a>0) \wedge(b>0) \Longrightarrow a+b>0$
3) $(0 \leq a<b) \wedge(0 \leq c<d) \Longrightarrow a c<b d$

Specifically: $(a>0) \wedge(b>0) \Longrightarrow a b>0$
4) $(a<b) \wedge(c<0) \Longrightarrow a c>b c$

Specifically: $a<b \Longrightarrow-a>-b$
5) (i) $0<a<b \Rightarrow \frac{1}{a}>\frac{1}{b}$
(ii) $a<b<0 \Rightarrow \frac{1}{a}>\frac{1}{b}$
(iii) $a<0<b \Longrightarrow \frac{1}{a}<\frac{1}{b}$
(i) and (ii): $(a<b) \wedge(a b>0) \Longrightarrow \frac{1}{a}>\frac{1}{b}$
(iii): $(a<b) \wedge(a b<0) \Longrightarrow \frac{1}{a}<\frac{1}{b}$
6) For all $a, b \in \mathbb{R},|a+b| \leq|a|+|b|$ and $||a|-|b|| \leq|a-b|$.
7) If n is a positive integer and $0<a<b$ then $a^{n}<b^{n}$.
8) $\forall x \in \mathbb{R} \quad(x \cdot 0=0)$
9) $\forall x \in \mathbb{R} \quad(x \cdot y=0 \Longrightarrow x=0$ or $y=0)$

Proof of 8):
$x \cdot 0=x \cdot 0+0=x \cdot 0+(x \cdot 0-x \cdot 0)=(x \cdot 0+x \cdot 0)-x \cdot 0=x \cdot(0+0)-x \cdot 0=x \cdot 0-x \cdot 0=0$.

Proof of 9):
$x \neq 0 \Longrightarrow y=1 \cdot y=((1 / x) \cdot x) \cdot y=(1 / x) \cdot(x \cdot y)=(1 / x) \cdot 0=0$.

Bounded subsets of real numbers

Definition. $A \subset \mathbb{R}$ is bounded above if there exists a $K \in \mathbb{R}$ such that $a \leq K$ if $a \in A$.
$(\exists K \in \mathbb{R}(\forall a \in A(a \leq K)))$.) In this case K is an upper bound of A.

Definition. $A \subset \mathbb{R}$ is bounded below if there exists a $k \in \mathbb{R}$ such that $a \geq k$ if $a \in A$. $(\exists k \in \mathbb{R}(\forall a \in A(a \geq k)))$.) In this case k is a lower bound of A.

Definition. $A \subset \mathbb{R}$ is bounded if it is has an upper bound and a lower bound. It means that there exists a $K>0$ such that $|a|<K$ for all $a \in A$.

Examples: 1) \mathbb{N} is bounded below
2) $(0,1]=\{x \in \mathbb{R}: 0<x \leq 1\}$ is bounded (for example, upper bounds are
$1,3, \pi, \ldots$, lower bounds are $0,-3,-100, \ldots$)
3) \mathbb{Q} has no upper bound or lower bound

Remark: A bounded set has infinitely many lower and upper bounds.

Definition. If a set A is bounded above, then the supremum of A is the least upper bound of A (Notation: sup A). If A is not bounded above, then $\sup A=\infty$.

Definition. If a set A is bounded below then the infimum of A is the greatest lower bound of A (Notation: $\inf A$). If A is not bounded below, then $\inf A=-\infty$.

Examples: 1$) \inf \mathbb{N}=1, \sup \mathbb{N}=\infty$
2) $\inf (0,1]=0, \sup (0,1]=1$
3) $\inf \mathbb{Q}=-\infty, \sup \mathbb{Q}=\infty$

Definition. The minimum of the set A is l if $l \in A$ and $l=\inf A$.
The maximum of the set A is h if $h \in A$ and $h=\sup A$.

Examples: 1) The minimum of \mathbb{N} is 1 and it has no maximum.
2) The maximum of $(0,1]$ is 1 and it has no minimum.
3) \mathbb{Q} has no minimum and no maximum.

Least-upper-bound property

Theorem (Least-upper-bound property, Dedekind):
If a non-empty subset of \mathbb{R} is bounded above then it has a least upper bound in \mathbb{R}.

Consequence. If a non-empty subset of \mathbb{R} is bounded below then it has a greatest lower bound in \mathbb{R}.

Remarks. 1) In the above system of axioms, the axioms of Cantor and Archimedes can be replaced by this statement.
2) The set of rational numbers does not have the least-upper-bound property under the usual order. For example, $\left\{x \in \mathbb{Q}: x^{2} \leq 2\right\}=\mathbb{Q} \cap(-\sqrt{2}, \sqrt{2})$ has an upper bound in \mathbb{Q} but does not have a least upper bound in \mathbb{Q} since $\sqrt{2}$ is irrational.

Complex numbers

Definition. The complex field \mathbb{C} is the set of ordered pairs of real numbers: $\mathbb{C}=\mathbb{R}^{2}=\{(a, b): a, b \in \mathbb{R}\}$ with addition and multiplication defined by

$$
\begin{aligned}
& (a, b)+(c, d)=(a+c, b+d) \\
& (a, b)(c, d)=(a c-b d, a d+b c)
\end{aligned}
$$

Remark. Commutativity and associativity of addition and multiplication as well as distributivity (see 1), 2), 5), 6), 9)) follow easily from the same properties of reals numbers.
3) the additive identity or zero element is $(0,0)$
4) the additive inverse of (a, b) is $(-a,-b)$
7) the multiplicative identity or unit element is $(1,0)$
8) the multiplicative inverse of $(a, b) \neq(0,0)$ can be found in the following way:
$\begin{aligned} &(a, b)(x, y)=(1,0) \Longleftrightarrow a x-b y=1 \Longleftrightarrow x=\frac{a}{a^{2}+b^{2}}, y=\frac{-b}{a^{2}+b^{2}} \\ & b x+a y=0\end{aligned}$

Thus the complex numbers form a field.
Remark. We associate the complex number of the form $(a, 0)$ with the corresponding real number a. Then

$$
\begin{aligned}
& \left(a_{1}, 0\right)+\left(a_{2}, 0\right)=\left(a_{1}+a_{2}, 0\right) \text { corresponds to } a_{1}+a_{2} \text { and } \\
& \left(a_{1}, 0\right)\left(a_{2}, 0\right)=\left(a_{1} a_{2}, 0\right) \text { corresponds to } a_{1} a_{2} .
\end{aligned}
$$

Since

$$
(0,1)(0,1)=(-1,0)=-1
$$

we can say that $(0,1)$ is a square root of -1 and it will be denoted by i.

The algebraic form of complex numbers. We can rewrite any complex number in the following way:

$$
(a, b)=(a, 0)+(0, b)=a+b i
$$

where $a, b \in \mathbb{R}$ and $i^{2}=-1$.

Addition: $(a+b i)+(c+d i)=(a+b)+(c+d) i$
Multiplication: $(a+b i)(c+d i)=a c+b d i^{2}+a d i+b c i=(a c-b d)+(a d+b c) i$

The complex plane.

To each complex number $z=a+b i$ we associate the point (a, b) in the Cartesian plane. Real numbers are thus associated with points on the x-axis, called the real axis and the purely imaginary numbers bi correspond to points on the y-axis, called the imaginary
axis.

Definitions. If $z=a+b i$ then

- the real part of z is $\quad \operatorname{Re}(z)=a \in \mathbb{R}$
- the imaginary part of z is $\operatorname{Im}(z)=b \in \mathbb{R}$
- the conjugate of z is $\quad \bar{z}=a-b i$
- the absolute value or modulus of z is $|z|=\sqrt{a^{2}+b^{2}} \geq 0$ (the length of the vector z) - the argument of z, defined for $z \neq 0$, is the angle which the vector originating from 0 to z makes with the positive x-axis. Thus $\arg (z)=\varphi(\operatorname{modulo} 2 \pi)$ for which

$$
\cos \varphi=\frac{\operatorname{Re}(z)}{|z|} \text { and } \cos \varphi=\frac{\operatorname{Im}(z)}{|z|}
$$

Some identities:

$$
\begin{aligned}
& \operatorname{Re}(z)=\frac{z+\bar{z}}{2}, \quad \operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}, \quad \overline{\bar{z}}=z, \\
& z \bar{z}=(a+b i)(a-b i)=a^{2}-b^{2} i^{2}=a^{2}+b^{2}=|z|^{2}
\end{aligned}
$$

$$
\overline{z_{1} \pm z_{2}}=\overline{z_{1}} \pm \overline{z_{1}}, \quad \overline{z_{1} \cdot z_{2}}=\overline{z_{1}} \cdot \overline{z_{1}}, \quad \overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}}
$$

The trigonometric form (or polar form) of complex numbers.

Let $z=a+b i \neq 0, r=|z|$ and $\varphi=\arg (z)$. Then $a=r \cos \varphi$ and $b=r \sin \varphi$ and

$$
z=r(\cos \varphi+i \sin \varphi)
$$

where r and φ are called the polar coordinates of z.

Multiplication and division: Let $z_{1}=r_{1}\left(\cos \varphi_{1}+i \sin \varphi_{1}\right)$ and $z_{2}=r_{2}\left(\cos \varphi_{2}+i \sin \varphi_{2}\right)$. Then

$$
\begin{aligned}
& z_{1} z_{2}=r_{1} r_{2}\left(\cos \left(\varphi_{1}+\varphi_{2}\right)+i \sin \left(\varphi_{1}+\varphi_{2}\right)\right) \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\varphi_{1}-\varphi_{2}\right)+i \sin \left(\varphi_{1}-\varphi_{2}\right)\right) \quad\left(\text { if } r_{2} \neq 0\right)
\end{aligned}
$$

Reciprocal, conjugation, nth power: Let $z=r(\cos \varphi+i \sin \varphi)$. Then

$$
\begin{aligned}
& \frac{1}{z}=\frac{1}{r}(\cos (-\varphi)+i \sin (-\varphi)) \quad(\text { if } r \neq 0) \\
& \bar{z}=r(\cos (-\varphi)+i \sin (-\varphi)) \\
& z^{n}=r^{n}(\cos (n \varphi)+i \sin (n \varphi)) \quad\left(n \in \mathbb{N}^{+}\right)
\end{aligned}
$$

If $r \neq 0$ then it holds for $n \in \mathbb{Z}$.
nth root: If $z \neq 0$ and $n \in \mathbb{N}^{+}$then $w \in \mathbb{C}$ is an nth root of z if $w^{n}=z$. Then
$w=\sqrt[n]{r(\cos \varphi+i \sin \varphi)}=\sqrt[n]{r}\left(\cos \frac{\varphi+k \cdot 2 \pi}{n}+i \sin \frac{\varphi+k \cdot 2 \pi}{n}\right)$ where $k=0,1, \ldots, n-1$.

Some identities:
$\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|,\left|\frac{1}{z}\right|=\frac{1}{|z|}, \quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, \quad\left|z^{n}\right|=|z|^{n}, \quad|\bar{z}|=|z|$

Fundamental theorem of algebra: Every degree n polynomial with complex coefficients has exactly n complex roots, if counted with multiplicity.

Exercise

1. Using the field and ordering axioms prove that $\forall a \in \mathbb{R} a^{2} \geq 0$.
2. Show that no ordering can make the field of complex numbers into an ordered field.

Solution: See exercises 1.1.8 and 1.1.9 here:
http://etananyag.ttk.elte.hu/FiLeS/downloads/4b_FeherKosToth_MathAnExII.pdf

Wolframalpha

Some examples:

1) $\sqrt[4]{-16}$
https://www.wolframalpha.com/input/?i=\(-16\)\^\(1\%2F4\)
2) $\frac{\sqrt{i}}{1-i}$
https://www.wolframalpha.com/input/?i=sqrt\(i\)\%2F\(1-i\)
3) $z^{2}=\bar{z}$
https://www.wolframalpha.com/input/?i=z\^2\%3Dconjugate\(z\)
4) $\operatorname{Re}\left(z^{2}\right)=2 \operatorname{Im}(z), \operatorname{Im}\left(z^{2}\right)=2 \operatorname{Re}(z)$
https://www.wolframalpha.com/input/?i=Re\(z\^2\)\%3D2Im\(z\)\%2C+Im\(z\^2\% 29\%3D2Re\%28z\%29
