Practice exercises 5.

1.* Let (a,) be a sequence of positive terms and let
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a) Prove thatif ima,=AeRor lima, =+ then lima, = limA, = limG, = limH,,.
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b) Using this result prove that lim =e.
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Numerical series

2. Evaluate the sum of the following series:
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3. Prove that Z— <2.
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4. Decide whether the following series are convergent or divergent (use the nth term test and the

comparison test).
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5. Prove that there exists no real sequence a, > 0 such that the series Zan and Z— both converge.
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6.* Using the Cauchy condensation test, investigate the convergence of the following series:
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7. Estimate the error if the sum of the series is approximated by the 10th partial sum:
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8.* Using the divergence of the harmonic series, prove that
a) there are infinitely many prime numbers;
b) the series of the reciprocals of the prime numbers is divergent.



