Practice exercises 5.

1.* Let (a_n) be a sequence of positive terms and let

$$A_n = \frac{a_1 + a_2 + \dots + a_n}{n}, \quad G_n = \sqrt[n]{a_1 a_2 \dots a_n}, \quad H_n = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}.$$

- a) Prove that if $\lim_{n\to\infty} a_n = A \in \mathbb{R}$ or $\lim_{n\to\infty} a_n = +\infty$ then $\lim_{n\to\infty} a_n = \lim_{n\to\infty} A_n = \lim_{n\to\infty} G_n = \lim_{n\to\infty} H_n$. b) Using this result prove that $\lim_{n\to\infty} \frac{1}{\sqrt[n]{n!}} = 0$ and $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}} = e$.

Numerical series

2. Evaluate the sum of the following series:

a)
$$\sum_{n=1}^{\infty} \frac{1}{(3n+1)\cdot(3n+4)}$$
 b) $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$

c)
$$\sum_{n=1}^{\infty} \left(\sqrt{n+2} - 2 \sqrt{n+1} + \sqrt{n} \right)$$
 d) $\sum_{n=1}^{\infty} \ln \left(1 - \frac{1}{(n+1)^2} \right)$

e)
$$\sum_{n=0}^{\infty} \frac{2^{2n}}{(-5)^{n+1}}$$
 f) $\sum_{n=1}^{\infty} \frac{7 \cdot 2^{-n} + (-3)^{n+1}}{2^{2n+1}}$ g) $\sum_{n=2}^{\infty} \frac{3^{n+2} - (-2)^{n+2}}{6^n}$

3. Prove that $\sum_{n=2}^{\infty} \frac{1}{n^2} < 2$.

4. Decide whether the following series are convergent or divergent (use the nth term test and the comparison test).

a)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^3-1}$$
 b) $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2}\right)$ c) $\sum_{n=1}^{\infty} \frac{\sin^2(n\sqrt{n})}{n\sqrt{n}}$ d) $\sum_{n=1}^{\infty} \frac{\sqrt{n+100}}{n+2}$ e) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{2n+1}}$ f) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{2n+1}}$ g) $\sum_{n=1}^{\infty} \frac{n^2-3n+1}{n^3+2n+2}$ h) $\sum_{n=1}^{\infty} \frac{2n^3+n+7}{n^5-n^2+3}$ i) $\sum_{n=1}^{\infty} \frac{n^2+3n+2}{n^5-7n^3-1}$ j) $\sum_{n=1}^{\infty} \frac{7n^5-2n^3+1}{n^6+2n^2-\sqrt{n}}$ k) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{\sqrt{n}}$ l) $\sum_{n=1}^{\infty} \frac{2^n+3^n}{6^n+2^{n+1}}$

i)
$$\sum_{n=1}^{\infty} \frac{7 n^5 - 2 n^3 + 1}{n^6 + 2 n^2 - \sqrt{n}}$$
 k) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{\sqrt{n}}$ l) $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n + 2^{n+1}}$

m)
$$\sum_{n=1}^{\infty} \frac{2^n}{2^{n+2} - 3}$$
 n) $\sum_{n=1}^{\infty} \frac{3 + 7n}{5^n + n}$ o) $\sum_{n=1}^{\infty} \frac{\log n}{n}$

p)
$$\sum_{n=1}^{\infty} \frac{\log n}{n^3}$$
 q) $\sum_{n=1}^{\infty} \frac{\log n + \sqrt{n \log n}}{n^2 + 1}$ r) $\sum_{n=1}^{\infty} n \left(\sqrt[n]{e} - 1 \right)^2$

- 5. Prove that there exists no real sequence $a_n > 0$ such that the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} \frac{1}{a_n}$ both converge.
- 6.* Using the Cauchy condensation test, investigate the convergence of the following series:

$$a) \sum_{n=1}^{\infty} \frac{\log_2 n}{n} \qquad b) \sum_{n=1}^{\infty} \frac{\log_2 n}{n^2} \qquad c) \sum_{n=n_1}^{\infty} \frac{1}{n \cdot \log_2 n} \qquad d) \sum_{n=n_1}^{\infty} \frac{1}{n \cdot (\log_2 n)^p}$$

$$e) \sum_{n=n_1}^{\infty} \frac{1}{n \cdot \log_2 n \cdot \log_2 \log_2 n} \qquad f) \sum_{n=n_1}^{\infty} \frac{1}{n \cdot \log_2 n \cdot (\log_2 \log_2 n)^2}$$

7. Estimate the error if the sum of the series is approximated by the 10th partial sum:

a)
$$\sum_{n=1}^{\infty} \frac{3^n}{2^{2n} + n^2 + 3}$$
 b) $\sum_{n=1}^{\infty} \frac{n^2 \cdot 2^{2n+2}}{(n^2 + 1) \cdot (3^{2n+1} + 5^n)}$ c) $\sum_{n=1}^{\infty} \frac{1}{n! + \sqrt{2}}$ d) $\sum_{n=1}^{\infty} \frac{n!}{(2n)!}$

- 8.* Using the divergence of the harmonic series, prove that
- a) there are infinitely many prime numbers;
- b) the series of the reciprocals of the prime numbers is divergent.