Practise exercises 2.

Supremum, infimum

1. Are the following sets bounded below or above? If so, determine their supremum and infimum. Do these sets have a minimum or a maximum?
a) $H=\left\{\frac{1}{n}+(-1)^{n}: n \in \mathbb{N}\right\} \subset \mathbb{R}$
b) $H=\left\{\frac{(-1)^{n}}{n}+1: n \in \mathbb{N}\right\} \subset \mathbb{R}$
c) $H=\left\{\frac{1}{2^{n}}+\frac{1}{2^{m}}: m, n \in \mathbb{N}\right\} \subset \mathbb{R}$
d) $H=\left\{\frac{x^{2}+1}{3 x^{2}+2}: x \in \mathbb{R}\right\} \subset \mathbb{R}$
e) $H=\left\{\frac{2 x+3}{3 x+1}: x \in \mathbb{Z}\right\} \subset \mathbb{R}$
f) $H=\left\{\frac{x}{y}: 0<x<1,0<y<1\right\} \subset \mathbb{R}$
g) $H=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, p^{2}<q^{2}\right\} \subset \mathbb{R}$
h) $H=\left\{r \in Q^{+}: r^{2}<2\right\} \subset \mathbb{R}$
2. Let $\omega \in \mathbb{R}$ be a positive irrational number. Let

$$
A=\{m+n \omega: m+n \omega>0, \quad m, n \in \mathbb{Z}\}
$$

Prove that $\inf A=0$.
3. Let $A \subset \mathbb{R}$ be a nonempty set that is bounded above. Show that the set $B=\{-a: a \in A\}$ is bounded below and $\inf B=-\sup A$.
4. Let $A, B \subset \mathbb{R}$ be nonempty bounded sets. Prove that
a) $\inf (A \cup B)=\min \{\inf A, \inf B\}$
b) $\sup (A \cup B)=\max \{\sup A, \sup B\}$
c) if $A \cap B \neq \varnothing$ then $\inf (A \cap B) \geq \max \{\inf A, \inf B\}$
d) if $A \cap B \neq \varnothing$ then $\sup (A \cap B) \leq \min \{\sup A$, $\sup B\}$
e) if $A \subset B$ then $\inf A \geq \inf B$ and $\sup A \leq \sup B$

Complex numbers

1. Find the algebraic form $(a+i b)$ of the following complex numbers:
a) $\frac{3-2 i}{-2+i}$
b) $\frac{2+i}{i(1-4 i)}$
c) $i^{2}, i^{3}, i^{4}, \ldots, i^{2021}$
d) $(2+i)^{37}(2-i)^{38}$
2. Find the trigonometric form $(r \cos \varphi+i r \sin \varphi)$ of the following complex numbers:
a) $\sqrt{6}-i \sqrt{2}$
b) $-4 i$
c) 8
3. Find the algebraic (or trigonometric) form of the following complex numbers:
a) $(1+i)^{8}$
b) $(1-i)^{4}$
c) $(1+i \sqrt{3})^{100}$
d) \sqrt{i}
e) $\sqrt[3]{1}$
f) $\sqrt[4]{-16}$
g) $\frac{\sqrt{i}}{1-i}$
h) $\sqrt{-5+12 i}$
4. Plot the following sets on the complex plane:
a) $\{z \in \mathbb{C}:|z-3| \leq 2\}$
b) $\left\{z \in \mathbb{C}:|z|^{2}=\operatorname{Re}(z)\right\}$
c) $\{z \in \mathbb{C}: \operatorname{Re}(z+1)=|z-1|\}$
d) $\{z \in \mathbb{C}:|z|>5, \operatorname{Im}(z) \geq \operatorname{Re}(z)\}$
e) $\{z \in \mathbb{C}:|z|<|z-2 i|,|z-i| \leq 1\}$
f) $\{z \in \mathbb{C}:|z+i|+|z+3|=7\}$
g) ${ }^{*}\left\{z \in \mathbb{C}:\left|\frac{z-1}{z+i}\right|=2\right\}$
5. Solve the following equations and equation systems on the set of complex numbers:
a) $z^{6}+16 z^{2}=0$
b) $(3-i) z^{2}+3 i z+6-i=0$
c) $|z|-z=1+2 i$
d) $z^{2}=\bar{z}$
e) $z^{2}+(1+i) \bar{z}+4 i=0$
f) $2 i z^{3}=(1+i)^{8}$
g) $\operatorname{Re}(z)+2 \operatorname{Im}(z)=0$ and $\operatorname{Re}\left(z^{2}\right)-2 \operatorname{Im}(z)=1$
h) $\operatorname{Re}\left(z^{2}\right)=2 \operatorname{Im}(z)$ and $\operatorname{Im}\left(z^{2}\right)=2 \operatorname{Re}(z)$
6. Assume that for the complex number $z, \operatorname{lm}(z) \neq 0$ and $\operatorname{lm}\left(z+\frac{1}{z}\right)=0$. Find $|z|$.
7. For which values of $n(n \in \mathbb{N})$ is the complex number $(\sqrt{3}-i)^{n}$ real?
8. How many complex roots can a seventh-order real-coefficient polynomial have?
9. One vertex of a regular hexagon is $2+i$, its center is $3+2 i$. Find the other vertices.
10.* Prove that the sum of the vectors pointing from the center of a regular n-sided polygon to its vertices is the zero vector.
11.* Without solving the following equations, decide how many solutions they have on the set of complex numbers. Give a reason for your answer.
a) $\frac{1+i}{(z+i)^{3}}=(\bar{z}-i)^{3}$
b) $(\bar{z}+1)^{7}=\frac{1}{(\bar{z})^{7}}-1$
12.* It is an interesting fact that a product of two sums of squares is itself a sum of squares. For example,
$\left(1^{2}+2^{2}\right) \cdot\left(3^{2}+4^{2}\right)=125=5^{2}+10^{2}=2^{2}+11^{2}$

Show that for any two pairs of integers $\{a, b\}$ and $\{c, d\}$, we can find integers u, v with
$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=u^{2}+v^{2}$

