(1) Prove by induction that $1^{2}+3^{2}+\ldots+(2 n-1)^{2}=n(2 n-1)(2 n+1) / 3$.
(2) Prove by induction that $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
(3) Prove by induction that for every $n>1$ we have $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}>\sqrt{n}$.
(4) Prove by induction that for all $n>1$ we have $\frac{(2 n)!}{(n!)^{2}}>\frac{4^{n}}{n+1}$
(5) Let $a_{0}=1$ and $a_{n+1}=\sqrt{3 a_{n}+10}$. Prove that the sequence a_{n} is monotonically increasing.
(6) Let A, B, C be some sets. Using set operations (intersection, union, complement, etc.) define the following sets:
a; The set of elements of B which are not included in either A or C.
b ; The set of elements which belong to exactly two of the sets A, B, C.
c; The set of elements which are not included in all of the three sets.
d; Elements which belong to at most one of the sets.
(7) Write the following statements with logical formulas:
a; There exists an odd natural number larger than 10.
b; Every odd number, which is larger than one, is a prime number.
Write down also the negations of the above statements, both with words and with logical formulas.
(8) Put the following statements into words:
$\mathrm{a} ; \forall x \in \mathbb{R}\left((x>0) \Rightarrow\left(\exists k \in \mathbb{N}\left(2^{-k}<x\right)\right)\right)$
$\mathrm{b} ; \exists k \in \mathbb{N}\left(\forall x \in \mathbb{R}\left((x>0) \Rightarrow\left(2^{-k}<x\right)\right)\right)$.
Decide whether the statements are true or false. Write down also the negations of the above statements, both with words and with logical formulas.
(9) Let $P(x)$ mean that x is an even number, and let $H(x)$ mean that x is divisible by 6 . Put the following statements into words:
a; $P(4) \wedge H(12)$
b; $\forall x(P(x) \Rightarrow H(x))$
c; $\exists x(P(x) \Rightarrow H(x))$
$\mathrm{d} ; \exists x(H(x) \Rightarrow \neg P(x))$
Decide whether the statements are true or false. Write down also the negations of the above statements, both with words and with logical formulas.

