The Ratio Test and the Root Test, Exercises

Exercise 1: Decide whether the following series are convergent or divergent.
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b) Let a, = — - The Ratio Test can be applied but the Root Test is more convenient:
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Exercise 2: Is the following series convergent?
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Let a, = et If we apply the Root Test, then the convergence of the sequence /n+5

should be proved by the Sandwich Theorem, so it is more convenient to use the Ratio Test.
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Exercise 3: Is the following series convergent?
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Exercise 4: Is the following series convergent?
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Exercise 5: Decide whether the following series are convergent or divergent.
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Since the general term doesn’t converge to 0, then the series Z a, is divergent by the nth Term
n=0
Test.
o 2 n
n‘—2
b) Let bn = Z <n2_’_5> = /0n-
n=0
e " e "’
im a, =’ = e '—"——<a,<e’ —|——,1fn>N0
n — 0o 2
= e7<(l/a < 7 e*7 = b, = a, — 1.

Since lim b, =1 0, then the series E b, as also divergent by the nth Term Test.
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Exercise 6: Is the following series convergent?

(2n)! + 3n?

n=0

on 3n+2 1\n n .an n n
Solution: Cp = - +(2) 37+49.3"+3 =11 3

(2n)! + 3n2 (2n)! @ = 0

Using the Ratio Test, it can be proved that Z d, is convergent (homework). Therefore, the series
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Exercise 7: Prove that the following series are convergent. Estimate the error if the sum of the series
is approximated by the sum of the first 100 terms.
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The convergence of Z b, can be shown using the Ratio Test:
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Comparison Test

The error for the approximation s /1qg is:
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Practice exercises

Exercise 8: Decide whether the following series are convergent or divergent.
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Exercise 9: Prove that the following series is convergent. Estimate the error if the sum of the se-
ries is approximated by the sum of the first 200 terms.
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Exercise 10:Prove that the following series is convergent. Estimate the error if the sum of the se-
ries is approximated by the sum of the first 100 terms.
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