The Ratio Test and the Root Test, Exercises

Exercise 1: Decide whether the following series are convergent or divergent.
a) $\sum_{n=1}^{\infty} \frac{9^{n-2}}{n!}$
b) $\sum_{n=1}^{\infty} \frac{5^{3 n}}{n^{4}}$
c) $\sum_{n=1}^{\infty} \frac{(n+1)!}{n^{n}}$

Solution:

a) Let $a_{n}:=\frac{9^{n-2}}{n!}$ and let us apply the Ratio Test: $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{9^{(n+1)-2} n!}{(n+1)!9^{n-2}}=$ $\lim _{n \rightarrow \infty} \frac{9}{n+1}=0<1 \Longrightarrow \sum_{n=0}^{\infty} a_{n}$ is convergent
b) Let $a_{n}:=\frac{5^{3 n}}{n^{4}}$. The Ratio Test can be applied but the Root Test is more convenient: $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \frac{5^{3}}{\sqrt[n]{n^{4}}}=5^{3} \lim _{n \rightarrow \infty} \frac{1}{(\sqrt[n]{n})^{4}}=5^{3}>1 \Longrightarrow \sum_{n=0}^{\infty} a_{n}$ is divergent
c) Let $a_{n}:=\frac{(n+1)!}{n^{n}}$. Here we apply the Ratio Test:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+2)!n^{n}}{(n+1)^{n+1}(n+1)!}=\lim _{n \rightarrow \infty} \frac{(n+2) n^{n}}{(n+1)^{n+1}}= \\
& =\lim _{n \rightarrow \infty} \frac{n+2}{n+1}\left(\frac{n}{n+1}\right)^{n}==\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}}{1+\frac{1}{n}} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{\mathrm{e}}<1 \quad \Longrightarrow \sum_{n=0}^{\infty} a_{n} \text { is convergent }
\end{aligned}
$$

Exercise 2: Is the following series convergent?

$$
\sum_{n=1}^{\infty} \frac{(n+5) 3^{n-1}}{5^{n+1}}
$$

Solution:

Let $a_{n}:=\frac{(n+5) 3^{n-1}}{5^{n+1}}$. If we apply the Root Test, then the convergence of the sequence $\sqrt[n]{n+5}$ should be proved by the Sandwich Theorem, so it is more convenient to use the Ratio Test.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+6) 3^{n} 5^{n+1}}{5^{n+2}(n+5) 3^{n-1}}=\lim _{n \rightarrow \infty} \frac{3}{5} \frac{n+6}{n+5}= \\
& \quad=\lim _{n \rightarrow \infty} \frac{3}{5} \frac{1+\frac{6}{n}}{1+\frac{5}{n}}=\frac{3}{5}<1 \quad \Longrightarrow \quad \sum_{n=0}^{\infty} a_{n} \text { is convergent }
\end{aligned}
$$

Exercise 3: Is the following series convergent?

$$
\sum_{n=1}^{\infty} \frac{n^{4}(3 n+3)^{n^{2}}}{(3 n+1)^{n^{2}}}
$$

Solution:

Let $a_{n}:=\frac{n^{4}(3 n+3)^{n^{2}}}{(3 n+1)^{n^{2}}}$. By applying the Root Test, we get that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{n^{4}}\left(\frac{3 n+3}{3 n+1}\right)^{n}=\lim _{n \rightarrow \infty}(\sqrt[n]{n})^{4} \frac{\left(1+\frac{3 / 3}{n}\right)^{n}}{\left(1+\frac{1 / 3}{n}\right)^{n}}= \\
& \quad=1^{4} \frac{\mathrm{e}}{\mathrm{e}^{1 / 3}}=\mathrm{e}^{2 / 3}>1 \quad \Longrightarrow \quad \sum_{n=0}^{\infty} a_{n} \text { is divergent }
\end{aligned}
$$

Exercise 4: Is the following series convergent?

$$
\sum_{n=1}^{\infty}\left(\frac{3+n^{2}}{2+n^{2}}\right)^{n^{3}} \frac{n^{5}}{2^{2 n+1}}
$$

Solution:

Let $a_{n}:=\left(\frac{3+n^{2}}{2+n^{2}}\right)^{n^{3}} \frac{n^{5}}{2^{2 n+1}}$. By applying the Root Test, we get that
$\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\ldots=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{3}{n^{2}}\right)^{n^{2}}}{\left(1+\frac{2}{n^{2}}\right)^{n^{2}}} \frac{(\sqrt[n]{n})^{5}}{4 \cdot \sqrt[n]{2}}=\frac{\mathrm{e}^{3}}{\mathrm{e}^{2}} \frac{1^{5}}{4 \cdot 1}=\frac{\mathrm{e}}{4}<1 \quad \Longrightarrow \quad \sum_{n=0}^{\infty} a_{n}$ is convergent

Exercise 5: Decide whether the following series are convergent or divergent.
a) $\sum_{n=0}^{\infty}\left(\frac{n^{2}-2}{n^{2}+5}\right)^{n^{2}}$
b) $\sum_{n=0}^{\infty}\left(\frac{n^{2}-2}{n^{2}+5}\right)^{n}$
c) $\sum_{n=0}^{\infty}\left(\frac{n^{2}-2}{n^{2}+5}\right)^{n^{3}}$

Solution:

a) Let $a_{n}:=\left(\frac{n^{2}-2}{n^{2}+5}\right)^{n^{2}}$. Then $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{-2}{n^{2}}\right)^{n^{2}}}{\left(1+\frac{5}{n^{2}}\right)^{n^{2}}}=\frac{\mathrm{e}^{-2}}{\mathrm{e}^{5}}=\mathrm{e}^{-7} \neq 0$

Since the general term doesn't converge to 0 , then the series $\sum_{n=0}^{\infty} a_{n}$ is divergent by the nth Term Test.
b) Let $b_{n}:=\sum_{n=0}^{\infty}\left(\frac{n^{2}-2}{n^{2}+5}\right)^{n}=\sqrt[n]{a_{n}}$.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=\mathrm{e}^{-7} \Longrightarrow \mathrm{e}^{-7}-\frac{\mathrm{e}^{-7}}{2}<a_{n}<\mathrm{e}^{-7}+\frac{\mathrm{e}^{-7}}{2}, \text { if } n>N_{0} \\
& \Longrightarrow \underbrace{\sqrt[n]{\frac{1}{2} \mathrm{e}^{-7}}}_{\rightarrow 1}<\sqrt[n]{a_{n}}<\underbrace{\sqrt[n]{\frac{3}{2} \mathrm{e}^{-7}}}_{\rightarrow 1} \Longrightarrow \quad b_{n}=\sqrt[n]{a_{n}} \rightarrow 1
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} b_{n}=1 \neq 0$, then the series $\sum_{n=0}^{\infty} b_{n}$ as also divergent by the nth Term Test.
c) Let $c_{n}:=\sum_{n=0}^{\infty}\left(\frac{n^{2}-2}{n^{2}+5}\right)^{n^{3}}=a_{n}{ }^{n}$. By applying the Root Test, we get that $\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}}=\lim _{n \rightarrow \infty} a_{n}=\mathrm{e}^{-7}<1 \Longrightarrow \sum_{n=0}^{\infty} c_{n}$ is convergent

Exercise 6: Is the following series convergent?

$$
\sum_{n=0}^{\infty} \frac{2^{n}+3^{n+2}+\left(\frac{1}{2}\right)^{n}}{(2 n)!+3 n^{2}}
$$

Solution:

$$
c_{n}:=\frac{2^{n}+3^{n+2}+\left(\frac{1}{2}\right)^{n}}{(2 n)!+3 n^{2}}<\frac{3^{n}+9 \cdot 3^{n}+3^{n}}{(2 n)!}=11 \frac{3^{n}}{(2 n)!}:=d_{n}
$$

Using the Ratio Test, it can be proved that $\sum_{n=0}^{\infty} d_{n}$ is convergent (homework). Therefore, the series $\sum_{n=0}^{\infty} c_{n}$ is also convergent by the Comparison Test.

Exercise 7: Prove that the following series are convergent. Estimate the error if the sum of the series is approximated by the sum of the first 100 terms.
a) $\sum_{n=0}^{\infty} \frac{(n+2) 3^{n-1}}{(n+5) n!}$
b) $\sum_{n=1}^{\infty}\left(\frac{n+2}{6 n-1}\right)^{3 n}$

Solution:

a) Let $a_{n}:=\frac{(n+2) 3^{n-1}}{(n+5) n!}$, then $a_{n}<\frac{3^{n-1}}{n!}:=b_{n} \sum_{n=0}^{\infty} b_{n}$.

The convergence of $\sum_{n=0}^{\infty} b_{n}$ can be shown using the Ratio Test:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{3^{n} n!}{(n+1)!3^{n-1}}=\lim _{n \rightarrow \infty} \frac{3}{n+1}=0<1 \\
& \Longrightarrow \sum_{n=0}^{\infty} b_{n} \text { is convergent } \underbrace{\Longrightarrow}_{\text {Comparison Test }} \sum_{n=0}^{\infty} a_{n} \text { is convergent }
\end{aligned}
$$

The error for the approximation $s \approx_{100}$ is:

$$
\begin{aligned}
0 & <E=\sum_{n=0}^{\infty} a_{n}-\sum_{n=0}^{100} a_{n}=\sum_{n=101}^{\infty} \frac{(n+2) 3^{n-1}}{(n+5) n!}<\sum_{n=101}^{\infty} \frac{3^{n-1}}{n!}=\frac{3^{100}}{101!}+\frac{3^{101}}{102!}+\frac{3^{102}}{103!}+\cdots= \\
& =\frac{3^{100}}{101!}\left(1+\frac{3}{102}+\frac{3^{2}}{102 \cdot 103}+\cdots\right)<\frac{3^{100}}{101!}\left(1+\frac{3}{102}+\frac{3^{2}}{102^{2}}+\cdots\right)= \\
& =\frac{3^{100}}{101!} \frac{1}{1-\frac{3}{102}} \quad\left(\text { geometric series with } r=\frac{3}{102}\right)
\end{aligned}
$$

b) Let $a_{n}:=\left(\frac{n+2}{6 n-1}\right)^{3 n}$. Then
$\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+2}{6 n-1}\right)^{3}=\lim _{n \rightarrow \infty}\left(\frac{1+\frac{2}{n}}{6-\frac{1}{n}}\right)^{3}=\frac{1}{6^{3}}<1 \quad \Longrightarrow \quad \sum_{n=0}^{\infty} a_{n}$ is convergent
The error for the approximation $s \approx_{100}$ is:

$$
\begin{aligned}
0<E= & \sum_{n=101}^{\infty}\left(\frac{n+2}{6 n-1}\right)^{3 n}<\sum_{n=101}^{\infty}\left(\frac{n+2 n}{6 n-n}\right)^{3 n}=\sum_{n=101}^{\infty}\left(\left(\frac{3}{5}\right)^{3}\right)^{n}= \\
& =\left(\frac{3}{5}\right)^{303} \frac{1}{1-\left(\frac{3}{5}\right)^{3}} \quad\left(\text { geometric series with } r=\left(\frac{3}{5}\right)^{3}\right)
\end{aligned}
$$

Practice exercises

Exercise 8: Decide whether the following series are convergent or divergent.
а) $\sum_{n=1}^{\infty}\left(\frac{2 n+3}{2 n+1}\right)^{n^{2}+3 n}$
b) $\sum_{n=1}^{\infty} \frac{n!6^{n-1}}{(2 n)!}$
c) $\sum_{n=1}^{\infty} \frac{3^{n}}{\binom{2 n}{n}}$
d) $\sum_{n=1}^{\infty} \frac{4^{n}(n+3)}{(n)!}$
e) $\sum_{n=1}^{\infty} \frac{n}{(n+1)^{n+2}}$
f) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{3^{n}(2 n)!}$

Exercise 9: Prove that the following series is convergent. Estimate the error if the sum of the series is approximated by the sum of the first 200 terms.

$$
\sum_{n=1}^{\infty} \frac{2^{3 n+1}}{(n)!}
$$

Exercise 10:Prove that the following series is convergent. Estimate the error if the sum of the series is approximated by the sum of the first 100 terms.

$$
\sum_{n=1}^{\infty} \frac{n}{(n+3) 6^{n+1}}
$$

