Calculus 1, Final exam, Part 2, 2018.12.18. 10.30-12.00
I indicated the number of points available at each problem.

1. Find the limit of the following sequence: $a_{n}=\left(\frac{2 n^{2}+7 n-1}{2 n^{2}-n+3}\right)^{3 n+1}$ (7 points)
2. Find the limit of the following sequence: $b_{n}=n^{3 / 2}\left(\frac{1}{\sqrt{n+3}}-\frac{1}{\sqrt{n+7}}\right)$ (7 points)
3. Decide whether the following series converges and if so, find its sum: $\sum_{n=2}^{\infty} \frac{3^{n+2}}{5^{n-1}}$ (8 points)
4. Decide whether the following series converges and if so, find its sum: $\sum_{n=1}^{\infty} \frac{n!}{3^{n} n^{6}}$ (8 points)
5. Give the Taylor polynomial of order 3 of the function $f(x)=\ln x$ around the point $x_{0}=1$. Approximate the value of $\ln 1.2$ accordingly, and give an error estimate of your approximation. (14 points)
6. Find the following limit: $\lim _{x \rightarrow 0} \frac{x^{2}}{e^{x^{2}}-\cos 6 x}$ (10 points)
7. A rectangle R is inscribed in a semi-circle S of radius 1 . What is the maximal possible area of R ? (10 points)
8. Calculate the following integral $\int_{1}^{\infty} \frac{1}{(x+2)(x+4)} d x$ (12 points)
9. Calculate the following integral $\int_{0}^{\infty} e^{-3 x}\left(x^{2}+1\right) d x$ (12 points)
10. Consider the function $f(x)=\frac{\sqrt{\sin x}}{\cos x}$ on the interval $x \in[0, \pi / 4]$. Rotate it around the x-axis, and find the volume of the arising body. (12 points)
