Calculus 1, Midterm test 1

26th October, 2023

Name: \qquad Neptun code: \qquad

1.	2.	3.	4.	5.	6.	7.	8.	9.	\sum

1. (9 points) Let $a_{n}=\frac{4 n^{2}+3 n-1}{2 n^{2}-n+17}$. Find the limit of a_{n} and provide a threshold index N for $\varepsilon=0.01$.
2. (9 points) Find the limit of the following sequence: $a_{n}=\frac{1}{3 n+1-\sqrt{9 n^{2}+5 n}}$
3. (9+9 points) Find the limit of the following sequences:
a) $a_{n}=\left(\frac{3 n^{2}+4}{3 n^{2}+1}\right)^{n}$
b) $b_{n}=\left(\frac{3 n+2}{4 n+3}\right)^{n+3}$
4. (12 points) Let $a_{1}=2$ and $a_{n+1}=5-\frac{4}{a_{n}}$ for all $n \in \mathbb{N}$.
(Then $a_{2}=3, a_{3} \approx 3.67, \ldots$). Prove that $\left(a_{n}\right)$ is convergent and calculate its limit.
5. (9 points) Find the liminf and limsup of $a_{n}=(-1)^{n} \cdot \sqrt[n]{\frac{10 n^{3}-n}{n^{4}+5}}$.
6. (6 points) Calculate the sum of the following series: $\sum_{n=2}^{\infty} \frac{10+(-6)^{n}}{3 \cdot 2^{3 n+1}}$.
7. (9+9+9 points) Decide whether the following series are convergent or divergent:
a) $\sum_{n=1}^{\infty} \frac{3 n^{2}+2 n-7}{4 n^{3} \cdot \sqrt{n}+9 n^{2}-n+1}$
b) $\sum_{n=1}^{\infty} \frac{(2+n)^{n}}{(n+1)!}$
c) $\sum_{n=1}^{\infty}\left(\frac{n^{2}+6}{n^{2}+4}\right)^{n^{3}} \cdot \frac{n^{2}}{9^{n+1}}$
8. (10 points) Find the interval of convergence of the following power series: $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2} \cdot 4^{n}} \cdot(x+3)^{n}$

9.* (10 points - BONUS):

Let $\left(b_{n}\right)$ be the following periodic sequence: $3,4,5,3,4,5,3,4,5, \ldots$.
Let $\left(c_{n}\right)$ be the following sequence: $c_{n}=\frac{\left(b_{n}-3+\frac{1}{n}\right)^{n}}{2^{n}}$.
Find the accumulations points and the liminf and limsup of the sequences $\left(b_{n}\right)$ and $\left(c_{n}\right)$.

Solutions

1. (9 points) Let $a_{n}=\frac{4 n^{2}+3 n-1}{2 n^{2}-n+17}$. Find the limit of a_{n} and provide a threshold index N for $\varepsilon=0.01$.

Solution. $a_{n}=\frac{4 n^{2}+3 n-1}{2 n^{2}-n+17}=\frac{4+\frac{3}{n}-\frac{1}{n^{2}}}{2-\frac{1}{n}+\frac{17}{n^{2}}} \rightarrow \frac{4+0-0}{2-0+0}=2$ (1p)
Let $\varepsilon>0$. We have to find $N(\varepsilon) \in \mathbb{N}$ such that if $n>N$ then $\left|a_{n}-A\right|<\varepsilon$. $(A=2)$ (1p)

$$
\begin{aligned}
& \left|a_{n}-A\right|=\mid \\
& \quad \frac{4 n^{2}+3 n-1}{2 n^{2}-n+17}-2\left|=\left|\frac{4 n^{2}+3 n-1-2 \cdot\left(2 n^{2}-n+17\right)}{2 n^{2}-n+17}\right|=\left|\frac{5 n-35}{2 n^{2}-n+17}\right| \stackrel{i f n \geq 7}{=} \frac{5 n-35}{2 n^{2}-n+17}\right. \\
& \frac{5 n-35}{2 n^{2}-n+17} \leq \frac{5 n+0}{2 n^{2}-n^{2}+0}=\frac{5 n}{n^{2}}=\frac{5}{n}<\varepsilon \Longleftrightarrow n>\frac{5}{\varepsilon} \text { (3p) }
\end{aligned}
$$

so with the choice $N(\varepsilon) \geq \max \left\{7,\left[\frac{5}{\varepsilon}\right]\right\}$ the definition holds. (1p)
If $\varepsilon=0.01$ then $N \geq\left[\frac{5}{0.01}\right]=500$. (1p)
2. (9 points) Find the limit of the following sequence: $a_{n}=\frac{1}{3 n+1-\sqrt{9 n^{2}+5 n}}$

Solution. $a_{n}=\frac{1}{3 n+1-\sqrt{9 n^{2}+5 n}} \cdot \frac{3 n+1+\sqrt{9 n^{2}+5 n}}{3 n+1+\sqrt{9 n^{2}+5 n}}=\mathbf{(2 p)}$

$$
\begin{aligned}
& =\frac{3 n+1+\sqrt{9 n^{2}+5 n}}{(3 n+1)^{2}-\left(9 n^{2}+5 n\right)}=\frac{3 n+1+\sqrt{9 n^{2}+5 n}}{9 n^{2}+6 n+1-\left(9 n^{2}+5 n\right)}=\frac{3 n+1+\sqrt{9 n^{2}+5 n}}{n+1} \\
& =\frac{n}{n} \cdot \frac{3+\frac{1}{n}+\sqrt{9+\frac{5}{n}}}{1+\frac{1}{n}} \mathbf{(5 p)} \rightarrow \frac{3+0+\sqrt{9+0}}{1+0}=6 \text { (2p) }
\end{aligned}
$$

3. (9+9 points) Find the limit of the following sequences:
a) $a_{n}=\left(\frac{3 n^{2}+4}{3 n^{2}+1}\right)^{n}$
b) $b_{n}=\left(\frac{3 n+2}{4 n+3}\right)^{n+3}$

Solution. a) $a_{n}^{n}=\left(\frac{3 n^{2}+4}{3 n^{2}+1}\right)^{n^{2}}=\frac{\left(1+\frac{4}{3 n^{2}}\right)^{n^{2}}}{\left(1+\frac{1}{3 n^{2}}\right)^{n^{2}}} \rightarrow \frac{e^{\frac{4}{3}}}{e^{\frac{1}{3}}}=e$. (4p)
Since $2<e<3$ then $2<a_{n}^{n}<3$ if n is large enough. (2p)
Then $\sqrt[n]{2}<a_{n}<\sqrt[n]{3}$, and since $\sqrt[n]{2} \rightarrow 1$ and $\sqrt[n]{3} \rightarrow 1$,
then by the sandwich theorem $a_{n} \longrightarrow 1$. (3p)
b) $b_{n}=\left(\frac{3 n+2}{4 n+3}\right)^{n+3}=\frac{\left(3 n\left(1+\frac{2}{3 n}\right)\right)^{n+3}}{\left(4 n\left(1+\frac{3}{4 n}\right)\right)^{n+3}}=\left(\frac{3}{4}\right)^{n+3} \cdot \frac{\left(1+\frac{2}{3 n}\right)^{n}}{\left(1+\frac{3}{4 n}\right)^{n}} \cdot \frac{\left(1+\frac{2}{3 n}\right)^{3}}{\left(1+\frac{3}{4 n}\right)^{3}}(6 \mathbf{p}) \rightarrow 0 \cdot \frac{e^{\frac{2}{3}}}{e^{\frac{3}{4}}} \cdot \frac{1}{1}=0$
(3p)
4. (12 points) Let $a_{1}=2$ and $a_{n+1}=5-\frac{4}{a_{n}}$ for all $n \in \mathbb{N}$.
(Then $a_{2}=3, a_{3} \approx 3.67, \ldots$). Prove that $\left(a_{n}\right)$ is convergent and calculate its limit.
Solution. If $\exists \lim _{n \rightarrow \infty} a_{n}=A$ then $A=5-\frac{4}{A} \Longleftrightarrow A^{2}-5 A+4=(A-1)(A-4)=0$
$\Longleftrightarrow A_{1}=1, A_{2}=4$ (3p).
Boundedness: we prove by induction that $1<a_{n}<4$ for all $n \in \mathbb{N}$.
(1) $1<a_{1}=2<4$
(2) Assume that $1<a_{n}<4$
(3) Then $1>\frac{1}{a_{n}}>\frac{1}{4} \Longrightarrow-4<-\frac{4}{a_{n}}<-1 \Longrightarrow 1<a_{n+1}=5-\frac{4}{a_{n}}<4$

So $\left(a_{n}\right)$ is bounded above. (3p)

Monotonicity: we prove by induction that (a_{n}) is monotonically increasing, that is, $a_{n}<a_{n+1} \forall n \in \mathbb{N}$.
(1) $a_{1}=2<a_{2}=3$
(2) Assume that $a_{n}<a_{n+1}$
(3) Then $\frac{1}{a_{n}}>\frac{1}{a_{n+1}}\left(\right.$ since $\left.a_{n}>1>0\right) \Longrightarrow \frac{-4}{a_{n}}<\frac{-4}{a_{n+1}} \Longrightarrow a_{n+1}=5-\frac{4}{a_{n}}<5-\frac{4}{a_{n+1}}=a_{n+2}$

So $\left(a_{n}\right)$ is monotonically increasing. (3p)

Since $\left(a_{n}\right)$ is monotonically increasing and bounded above then it is convergent.
Since $a_{1}=2$ and the sequence is monotonically increasing then $A=1$ cannot be the limit.
So $\lim _{n \rightarrow \infty} a_{n}=4$. (3p)
5. (9 points) Find the liminf and limsup of $a_{n}=(-1)^{n} \cdot \sqrt[n]{\frac{10 n^{3}-n}{n^{4}+5}}$.

Solution. Let $b_{n}=\sqrt[n]{\frac{10 n^{3}-n}{n^{4}+5}}$. An upper estima-
tion:
$b_{n}=\sqrt[n]{\frac{10 n^{3}-n}{n^{4}+5}} \leq \sqrt[n]{\frac{10 n^{3}+0}{n^{4}+0}}=\sqrt[n]{\frac{10}{n}}=\sqrt[n]{10} \cdot \frac{1}{\sqrt[n]{n}} \rightarrow 1 \cdot \frac{1}{1}=1(\mathbf{3 p})$
A lower estimation:
$a_{n}=\sqrt[n]{\frac{10 n^{3}-n}{n^{4}+5}} \geq \sqrt[n]{\frac{10 n^{3}-n^{3}}{n^{4}+5 n^{4}}}=\sqrt[n]{\frac{9}{6 n}}=\sqrt[n]{\frac{9}{6}} \cdot \frac{1}{\sqrt[n]{n}} \rightarrow 1 \cdot \frac{1}{1}=1$ (3p)
so by the sandwich theorem, $b_{n} \longrightarrow 1$. (1p)

If n is even, then $a_{n}=b_{n} \longrightarrow 1$ and if n is odd then $a_{n}=-b_{n} \longrightarrow-1$, so
$\lim \inf a_{n}=-1$ and $\limsup a_{n}=1$. (2p)
6. (6 points) Calculate the sum of the following series: $\sum_{n=2}^{\infty} \frac{10+(-6)^{n}}{3 \cdot 2^{3 n+1}}$.

Solution. $\sum_{n=2}^{\infty} \frac{10+(-6)^{n}}{3 \cdot 2^{3 n+1}}=\sum_{n=2}^{\infty} \frac{10+(-6)^{n}}{6 \cdot 8^{n}}=\sum_{n=2}^{\infty}\left(\frac{10}{6} \cdot\left(\frac{1}{8}\right)^{n}+\frac{1}{6} \cdot\left(\frac{-6}{8}\right)^{n}\right)=(\mathbf{2 p})$
$=\frac{10}{6} \frac{\left(\frac{1}{8}\right)^{2}}{1-\frac{1}{8}}+\frac{1}{6} \frac{\left(-\frac{3}{4}\right)^{2}}{1-\left(-\frac{3}{4}\right)}(\mathbf{4} \mathbf{p})=\frac{5}{168}+\frac{3}{56}=\frac{1}{12}$
7. (9+9+9 points) Decide whether the following series are convergent or divergent:
a) $\sum_{n=1}^{\infty} \frac{3 n^{2}+2 n-7}{4 n^{3} \cdot \sqrt{n}+9 n^{2}-n+1}$
b) $\sum_{n=1}^{\infty} \frac{(2+n)^{n}}{(n+1)!}$
c) $\sum_{n=1}^{\infty}\left(\frac{n^{2}+6}{n^{2}+4}\right)^{n^{3}} \cdot \frac{n^{2}}{9^{n+1}}$

Solution. a) Let $a_{n}=\frac{3 n^{2}+2 n-7}{4 n^{3} \cdot \sqrt{n}+9 n^{2}-n+1}$. Then for large enough n we have
$0<a_{n} \leq \frac{3 n^{2}+2 n^{2}+0}{4 n^{3} \cdot \sqrt{n}+0-n^{3} \cdot \sqrt{n}+0}=\frac{5 n^{2}}{3 n^{3} \cdot \sqrt{n}}=\frac{5}{3} \cdot \frac{1}{n^{3 / 2}} .(6 \mathbf{p})$
Since $\sum_{n=1}^{\infty} \frac{5}{3} \cdot \frac{1}{n^{3 / 2}}$ is convergent (p-series with $p=\frac{3}{2}>0$) then by the comparison test $\sum_{n=1}^{\infty} a_{n}$ is also convergent. (3p)
b) Let $a_{n}=\frac{(2+n)^{n}}{(n+1)!}$. By the ratio test:
$\frac{a_{n+1}}{a_{n}}=\frac{(3+n)^{n+1}}{(n+2)!} \cdot \frac{(n+1)!}{(2+n)^{n}} \mathbf{(3 p)}=\frac{(3+n)^{n+1}}{(n+2)} \cdot \frac{1}{(2+n)^{n}}=\frac{(n+3)^{n+1}}{(n+2)^{n+1}}=\frac{\left(1+\frac{3}{n}\right)^{n}}{\left(1+\frac{2}{n}\right)^{n}} \cdot \frac{1+\frac{3}{n}}{1+\frac{2}{n}} \rightarrow \frac{e^{3}}{e^{2}} \cdot \frac{1}{1}=e>1$ (5p)
\Longrightarrow the series $\sum_{n=1}^{\infty} a_{n}$ is divergent (1p)
c) Let $a_{n}=\left(\frac{n^{2}+6}{n^{2}+4}\right)^{n^{3}} \cdot \frac{n^{2}}{9^{n+1}}$. By the root test:
$\sqrt[n]{a_{n}}=\left(\frac{n^{2}+6}{n^{2}+4}\right)^{n^{2}} \cdot \frac{(\sqrt[n]{n})^{2}}{\sqrt[n]{9} \cdot 9}(\mathbf{3 p})=\frac{\left(1+\frac{6}{n^{2}}\right)^{n^{2}}}{\left(1+\frac{4}{n^{2}}\right)^{n^{2}}} \cdot \frac{(\sqrt[n]{n})^{2}}{\sqrt[n]{9} \cdot 9} \rightarrow \frac{e^{6}}{e^{4}} \cdot \frac{1^{2}}{1 \cdot 9}=\frac{e^{2}}{9}<1$ (5p)
\Longrightarrow the series $\sum_{n=1}^{\infty} a_{n}$ is convergent (1p)
8. (10 points) Find the interval of convergence of the following power series: $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2} \cdot 4^{n}} \cdot(x+3)^{n}$

Solution. The coefficients are $a_{n}=\frac{2 n+1}{n^{2} \cdot 4^{n}}$ and the center is $x_{0}=-3$.
$\sqrt[n]{a_{n}}=\sqrt[n]{\frac{2 n+1}{n^{2} \cdot 4^{n}}}=\frac{\sqrt[n]{2 n+1}}{(\sqrt[n]{n})^{2} \cdot 4} \rightarrow \frac{1}{1^{2} \cdot 4}=\frac{1}{4}=\frac{1}{R} \Rightarrow R=4$
Here we used that $\sqrt[n]{2 n+1} \rightarrow 1$ by the sandwich theorem, since
$1 \leq \sqrt[n]{2 n+1} \leq \sqrt[n]{2 n+n}=\sqrt[n]{3} \cdot \sqrt[n]{n} \longrightarrow 1 \cdot 1=1$.

Let H denote the domain of convergence. The endpoints of H :
If $x=x_{0}-R=-3-4=-7$ then the series is $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2} \cdot 4^{n}} \cdot(-4)^{n}=\sum_{n=1}^{\infty}(-1)^{n} \frac{2 n+1}{n^{2}}$.
This is a Leibniz series (or, the sum of two Leibniz series), so it is convergent
$\Rightarrow-7 \in H$.
If $x=x_{0}+R=-3+4=1$ then the series is $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2} \cdot 4^{n}} \cdot 4^{n}=\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}}$.
Since $\frac{2 n+1}{n^{2}} \geq \frac{n+0}{n^{2}}=\frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, then by the comparison test,
$\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}}$ also diverges. $\Longrightarrow 1 \notin H$.
The domain of convergence is $H=[-7,1)$

9.* (10 points - BONUS):

Let $\left(b_{n}\right)$ be the following periodic sequence: $3,4,5,3,4,5,3,4,5, \ldots$. Let $\left(c_{n}\right)$ be the following sequence: $c_{n}=\frac{\left(b_{n}-3+\frac{1}{n}\right)^{n}}{2^{n}}$.
Find the accumulations points and the liminf and limsup of the sequences $\left(b_{n}\right)$ and $\left(c_{n}\right)$.
Solution. $\left(b_{1}, b_{2}, b_{3}, \ldots\right)=(3,4,5,3,4,5, \ldots)$
Since $\left(b_{n}\right)$ is constructed from finitely many constant sequences then
its accumulation points are $3,4,5$ and thus $\liminf b_{n}=3$, limsup $b_{n}=5$. (2p)

If $n=3 k+1\left(k \in \mathbb{N}^{+}\right)$then $b_{n}=3$, so $c_{n}=\frac{\left(3-3+\frac{1}{n}\right)^{n}}{2^{n}}=\frac{1}{2^{n} \cdot n^{n}} \rightarrow 0$.
If $n=3 k+2\left(k \in \mathbb{N}^{+}\right)$then $b_{n}=4$, so $c_{n}=\frac{\left(4-3+\frac{1}{n}\right)^{n}}{2^{n}}=\frac{1}{2^{n}} \cdot\left(1+\frac{1}{n}\right)^{n} \rightarrow 0 \cdot e=0$. (2p)
If $n=3 k\left(k \in \mathbb{N}^{+}\right)$then $b_{n}=5$, so
$c_{n}=\frac{\left(5-3+\frac{1}{n}\right)^{n}}{2^{n}}=\frac{\left(2+\frac{1}{n}\right)^{n}}{2^{n}}=\frac{\left(2\left(1+\frac{1}{2 n}\right)\right)^{n}}{2^{n}}=\frac{2^{n}}{2^{n}} \cdot\left(1+\frac{1}{2 n}\right)^{n}=\left(1+\frac{1}{2 n}\right)^{n} \rightarrow e^{\frac{1}{2}}=\sqrt{e} .(\mathbf{2 p})$

The accumulation points of $\left(c_{n}\right)$ are 0 and \sqrt{e}, so liminf $c_{n}=0$ and limsup $c_{n}=\sqrt{e}$. (2p)

