Calculus 1, Midterm test 1

26th October, 2023

Name:	Neptun code:
-------	--------------

1.	2.	3.	4.	5.	6.	7.	8.	9.	Σ

1. (9 points) Let $a_n = \frac{4n^2 + 3n - 1}{2n^2 - n + 17}$. Find the limit of a_n and provide a threshold index *N* for $\varepsilon = 0.01$.

2. (9 points) Find the limit of the following sequence: $a_n = \frac{1}{3n+1-\sqrt{9n^2+5n}}$

3. (9+9 points) Find the limit of the following sequences:

a)
$$a_n = \left(\frac{3n^2 + 4}{3n^2 + 1}\right)^n$$
 b) $b_n = \left(\frac{3n + 2}{4n + 3}\right)^{n+3}$

4. (12 points) Let $a_1 = 2$ and $a_{n+1} = 5 - \frac{4}{a_n}$ for all $n \in \mathbb{N}$.

(Then $a_2 = 3$, $a_3 \approx 3.67$,...). Prove that (a_n) is convergent and calculate its limit.

5. (9 points) Find the limit and limsup of $a_n = (-1)^n \cdot \sqrt[n]{\frac{10n^3 - n}{n^4 + 5}}$.

6. (6 points) Calculate the sum of the following series: $\sum_{n=2}^{\infty} \frac{10 + (-6)^n}{3 \cdot 2^{3n+1}}.$

7. (9+9+9 points) Decide whether the following series are convergent or divergent:

a)
$$\sum_{n=1}^{\infty} \frac{3n^2 + 2n - 7}{4n^3 \cdot \sqrt{n} + 9n^2 - n + 1}$$
 b) $\sum_{n=1}^{\infty} \frac{(2+n)^n}{(n+1)!}$ c) $\sum_{n=1}^{\infty} \left(\frac{n^2 + 6}{n^2 + 4}\right)^{n^3} \cdot \frac{n^2}{9^{n+1}}$

8. (10 points) Find the interval of convergence of the following power series: $\sum_{n=1}^{\infty} \frac{2n+1}{n^2 \cdot 4^n} \cdot (x+3)^n$

9.* (10 points - BONUS):

Let (b_n) be the following periodic sequence: 3, 4, 5, 3, 4, 5, 3, 4, 5,

Let (c_n) be the following sequence: $c_n = \frac{\left(b_n - 3 + \frac{1}{n}\right)^n}{2^n}$.

Find the accumulations points and the liminf and limsup of the sequences (b_n) and (c_n) .

Solutions

1. (9 points) Let $a_n = \frac{4n^2 + 3n - 1}{2n^2 - n + 17}$. Find the limit of a_n and provide a threshold index *N* for $\varepsilon = 0.01$.

Solution.
$$a_n = \frac{4n^2 + 3n - 1}{2n^2 - n + 17} = \frac{4 + \frac{3}{n} - \frac{1}{n^2}}{2 - \frac{1}{n} + \frac{17}{n^2}} \longrightarrow \frac{4 + 0 - 0}{2 - 0 + 0} = 2$$
 (1p)

Let $\varepsilon > 0$. We have to find $N(\varepsilon) \in \mathbb{N}$ such that if n > N then $|a_n - A| < \varepsilon$. (A = 2) (1p)

$$|a_{n}-A| = |$$

$$\frac{4n^{2}+3n-1}{2n^{2}-n+17}-2| = \left|\frac{4n^{2}+3n-1-2\cdot(2n^{2}-n+17)}{2n^{2}-n+17}\right| = \left|\frac{5n-35}{2n^{2}-n+17}\right|^{\frac{5n-35}{2n^{2}-n+17}}$$

$$\frac{5n-35}{2n^{2}-n+17} \leq \frac{5n+0}{2n^{2}-n^{2}+0} = \frac{5n}{n^{2}} = \frac{5}{n} < \varepsilon \iff n > \frac{5}{\varepsilon} (3p)$$
so with the choice $N(\varepsilon) \geq \max\left\{7, \left[\frac{5}{\varepsilon}\right]\right\}$ the definition holds. (1p)
If $\varepsilon = 0.01$ then $N \ge \left[\frac{5}{0.01}\right] = 500.$ (1p)

2. (9 points) Find the limit of the following sequence: $a_n = \frac{1}{3n + 1 - \sqrt{9n^2 + 5n}}$

Solution.
$$a_n = \frac{1}{3n+1-\sqrt{9n^2+5n}} \cdot \frac{3n+1+\sqrt{9n^2+5n}}{3n+1+\sqrt{9n^2+5n}} = (2p)$$

$$=\frac{3n+1+\sqrt{9n^2+5n}}{(3n+1)^2-(9n^2+5n)} = \frac{3n+1+\sqrt{9n^2+5n}}{9n^2+6n+1-(9n^2+5n)} = \frac{3n+1+\sqrt{9n^2+5n}}{n+1}$$
$$=\frac{n}{n} \cdot \frac{3+\frac{1}{n}+\sqrt{9+\frac{5}{n}}}{1+\frac{1}{n}} \text{ (5p)} \longrightarrow \frac{3+0+\sqrt{9+0}}{1+0} = 6 \text{ (2p)}$$

3. (9+9 points) Find the limit of the following sequences:

a)
$$a_n = \left(\frac{3n^2 + 4}{3n^2 + 1}\right)^n$$
 b) $b_n = \left(\frac{3n + 2}{4n + 3}\right)^{n+3}$

Solution. a)
$$a_n^n = \left(\frac{3n^2+4}{3n^2+1}\right)^{n^2} = \frac{\left(1+\frac{4}{3n^2}\right)^{n^2}}{\left(1+\frac{1}{3n^2}\right)^{n^2}} \longrightarrow \frac{e^{\frac{4}{3}}}{e^{\frac{1}{3}}} = e.$$
 (4p)

Since 2 < e < 3 then $2 < a_n^n < 3$ if *n* is large enough. (**2p**) Then $\sqrt[n]{2} < a_n < \sqrt[n]{3}$, and since $\sqrt[n]{2} \longrightarrow 1$ and $\sqrt[n]{3} \longrightarrow 1$, then by the sandwich theorem $a_n \longrightarrow 1$. (**3p**)

b)
$$b_n = \left(\frac{3n+2}{4n+3}\right)^{n+3} = \frac{\left(3n\left(1+\frac{2}{3n}\right)\right)^{n+3}}{\left(4n\left(1+\frac{3}{4n}\right)\right)^{n+3}} = \left(\frac{3}{4}\right)^{n+3} \cdot \frac{\left(1+\frac{2}{3n}\right)^n}{\left(1+\frac{3}{4n}\right)^n} \cdot \frac{\left(1+\frac{2}{3n}\right)^3}{\left(1+\frac{3}{4n}\right)^3}$$
(6p) $\longrightarrow 0 \cdot \frac{e^2_3}{e^{\frac{3}{4}}} \cdot \frac{1}{1} = 0$ (3p)

4. (12 points) Let $a_1 = 2$ and $a_{n+1} = 5 - \frac{4}{a_n}$ for all $n \in \mathbb{N}$.

(Then $a_2 = 3$, $a_3 \approx 3.67$,...). Prove that (a_n) is convergent and calculate its limit.

Solution. If $\exists \lim_{n \to \infty} a_n = A$ then $A = 5 - \frac{4}{A} \iff A^2 - 5A + 4 = (A - 1)(A - 4) = 0$

$$\iff A_1 = 1, \ A_2 = 4 \ \textbf{(3p)}.$$

Boundedness: we prove by induction that $1 < a_n < 4$ for all $n \in \mathbb{N}$.

(1) $1 < a_1 = 2 < 4$ (2) Assume that $1 < a_n < 4$ (3) Then $1 > \frac{1}{a_n} > \frac{1}{4} \implies -4 < -\frac{4}{a_n} < -1 \implies 1 < a_{n+1} = 5 - \frac{4}{a_n} < 4$ So (a_n) is bounded above. **(3p)**

Monotonicity: we prove by induction that (a_n) is monotonically increasing, that is, $a_n < a_{n+1} \forall n \in \mathbb{N}$.

(1)
$$a_1 = 2 < a_2 = 3$$

(2) Assume that $a_n < a_{n+1}$
(3) Then $\frac{1}{a_n} > \frac{1}{a_{n+1}}$ (since $a_n > 1 > 0$) $\implies \frac{-4}{a_n} < \frac{-4}{a_{n+1}} \implies a_{n+1} = 5 - \frac{4}{a_n} < 5 - \frac{4}{a_{n+1}} = a_{n+2}$
So (a_n) is monotonically increasing. **(3p)**

Since (a_n) is monotonically increasing and bounded above then it is convergent. Since $a_1 = 2$ and the sequence is monotonically increasing then A = 1 cannot be the limit. So $\lim_{n \to \infty} a_n = 4$. (3p)

5. (9 points) Find the limit and limsup of $a_n = (-1)^n \cdot \sqrt[n]{\frac{10 n^3 - n}{n^4 + 5}}$.

Solution. Let
$$b_n = \sqrt[n]{\frac{10n^3 - n}{n^4 + 5}}$$
. An upper estima-

tion:

$$b_n = \sqrt[n]{\frac{10n^3 - n}{n^4 + 5}} \le \sqrt[n]{\frac{10n^3 + 0}{n^4 + 0}} = \sqrt[n]{\frac{10}{n}} = \sqrt[n]{10} \cdot \frac{1}{\sqrt[n]{n}} \longrightarrow 1 \cdot \frac{1}{1} = 1$$
(3p)

A lower estimation:

$$a_n = \sqrt[n]{\frac{10n^3 - n}{n^4 + 5}} \ge \sqrt[n]{\frac{10n^3 - n^3}{n^4 + 5n^4}} = \sqrt[n]{\frac{9}{6n}} = \sqrt[n]{\frac{9}{6}} \cdot \frac{1}{\sqrt[n]{n}} \longrightarrow 1 \cdot \frac{1}{1} = 1$$
(3p)

so by the sandwich theorem, $b_n \rightarrow 1$. (1p)

If *n* is even, then $a_n = b_n \longrightarrow 1$ and if *n* is odd then $a_n = -b_n \longrightarrow -1$, so lim inf $a_n = -1$ and limsup $a_n = 1$. (2p)

6. (6 points) Calculate the sum of the following series: $\sum_{n=2}^{\infty} \frac{10 + (-6)^n}{3 \cdot 2^{3n+1}}.$

Solution.
$$\sum_{n=2}^{\infty} \frac{10 + (-6)^n}{3 \cdot 2^{3n+1}} = \sum_{n=2}^{\infty} \frac{10 + (-6)^n}{6 \cdot 8^n} = \sum_{n=2}^{\infty} \left(\frac{10}{6} \cdot \left(\frac{1}{8}\right)^n + \frac{1}{6} \cdot \left(\frac{-6}{8}\right)^n\right) = (2p)$$
$$= \frac{10}{6} \frac{\left(\frac{1}{8}\right)^2}{1 - \frac{1}{8}} + \frac{1}{6} \frac{\left(-\frac{3}{4}\right)^2}{1 - \left(-\frac{3}{4}\right)} (4p) = \frac{5}{168} + \frac{3}{56} = \frac{1}{12}$$

7. (9+9+9 points) Decide whether the following series are convergent or divergent:

a)
$$\sum_{n=1}^{\infty} \frac{3 n^2 + 2 n - 7}{4 n^3 \cdot \sqrt{n} + 9 n^2 - n + 1}$$
 b) $\sum_{n=1}^{\infty} \frac{(2 + n)^n}{(n + 1)!}$ c) $\sum_{n=1}^{\infty} \left(\frac{n^2 + 6}{n^2 + 4}\right)^{n^3} \cdot \frac{n^2}{9^{n+1}}$

Solution. a) Let $a_n = \frac{3n^2 + 2n - 7}{4n^3 \cdot \sqrt{n} + 9n^2 - n + 1}$. Then for large enough *n* we have $0 < a_n \le \frac{3n^2 + 2n^2 + 0}{4n^3 \cdot \sqrt{n} + 0 - n^3 \cdot \sqrt{n} + 0} = \frac{5n^2}{3n^3 \cdot \sqrt{n}} = \frac{5}{3} \cdot \frac{1}{n^{3/2}}$. (6p) Since $\sum_{n=1}^{\infty} \frac{5}{3} \cdot \frac{1}{n^{3/2}}$ is convergent (*p*-series with $p = \frac{3}{2} > 0$) then by the comparison test $\sum_{n=1}^{\infty} a_n$ is also convergent. (3p)

b) Let
$$a_n = \frac{(2+n)^n}{(n+1)!}$$
. By the ratio test:

$$\frac{a_{n+1}}{a_n} = \frac{(3+n)^{n+1}}{(n+2)!} \cdot \frac{(n+1)!}{(2+n)^n} (3p) = \frac{(3+n)^{n+1}}{(n+2)} \cdot \frac{1}{(2+n)^n} = \frac{(n+3)^{n+1}}{(n+2)^{n+1}} = \frac{\left(1+\frac{3}{n}\right)^n}{\left(1+\frac{2}{n}\right)^n} \cdot \frac{1+\frac{3}{n}}{1+\frac{2}{n}} \longrightarrow \frac{e^3}{e^2} \cdot \frac{1}{1} = e > 1 (5p)$$

$$\implies \text{ the series } \sum_{n=1}^{\infty} a_n \text{ is divergent (1p)}$$
c) Let $a_n = \left(\frac{n^2+6}{n^2+4}\right)^{n^3} \cdot \frac{n^2}{9^{n+1}}$. By the root test:
 ${}^n\sqrt{a_n} = \left(\frac{n^2+6}{n^2+4}\right)^{n^2} \cdot \frac{\left(\frac{n}{\sqrt{n}}\right)^2}{\sqrt{9}\cdot 9} (3p) = \frac{\left(1+\frac{6}{n^2}\right)^{n^2}}{\left(1+\frac{4}{n^2}\right)^{n^2}} \cdot \frac{\left(\frac{n}{\sqrt{n}}\right)^2}{\sqrt{9}\cdot 9} \longrightarrow \frac{e^6}{e^4} \cdot \frac{1^2}{1\cdot 9} = \frac{e^2}{9} < 1 (5p)$

$$\implies \text{ the series } \sum_{n=1}^{\infty} a_n \text{ is convergent (1p)}$$

8. (10 points) Find the interval of convergence of the following power series: $\sum_{n=1}^{\infty} \frac{2n+1}{n^2 \cdot 4^n} \cdot (x+3)^n$

Solution. The coefficients are $a_n = \frac{2n+1}{n^2 \cdot 4^n}$ and the center is $x_0 = -3$.

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{2n+1}{n^2 \cdot 4^n}} = \frac{\sqrt[n]{2n+1}}{\left(\sqrt[n]{n}\right)^2 \cdot 4} \longrightarrow \frac{1}{1^2 \cdot 4} = \frac{1}{4} = \frac{1}{R} \implies R = 4$$

Here we used that $\sqrt[n]{2n+1} \longrightarrow 1$ by the sandwich theorem, since $1 \le \sqrt[n]{2n+1} \le \sqrt[n]{2n+n} = \sqrt[n]{3} \cdot \sqrt[n]{n} \longrightarrow 1 \cdot 1 = 1.$

Let *H* denote the domain of convergence. The endpoints of *H*:

If
$$x = x_0 - R = -3 - 4 = -7$$
 then the series is $\sum_{n=1}^{\infty} \frac{2n+1}{n^2 \cdot 4^n} \cdot (-4)^n = \sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n^2}$.

This is a Leibniz series (or, the sum of two Leibniz series), so it is convergent $\Rightarrow -7 \in H$.

If $x = x_0 + R = -3 + 4 = 1$ then the series is $\sum_{n=1}^{\infty} \frac{2n+1}{n^2 \cdot 4^n} \cdot 4^n = \sum_{n=1}^{\infty} \frac{2n+1}{n^2}$. Since $\frac{2n+1}{n^2} \ge \frac{n+0}{n^2} = \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, then by the comparison test, $\sum_{n=1}^{\infty} \frac{2n+1}{n^2}$ also diverges. $\Longrightarrow 1 \notin H$.

The domain of convergence is H = [-7, 1]

9.* (10 points - BONUS):

Let (b_n) be the following periodic sequence: 3, 4, 5, 3, 4, 5, 3, 4, 5,

Let (c_n) be the following sequence: $c_n = \frac{\left(b_n - 3 + \frac{1}{n}\right)^n}{2^n}$.

Find the accumulations points and the liminf and limsup of the sequences (b_n) and (c_n) .

Solution. $(b_1, b_2, b_3, ...) = (3, 4, 5, 3, 4, 5, ...)$

Since (b_n) is constructed from finitely many constant sequences then its accumulation points are 3, 4, 5 and thus liminf $b_n = 3$, limsup $b_n = 5$. (2p)

If
$$n = 3k + 1$$
 $(k \in \mathbb{N}^+)$ then $b_n = 3$, so $c_n = \frac{\left(3 - 3 + \frac{1}{n}\right)^n}{2^n} = \frac{1}{2^n \cdot n^n} \longrightarrow 0.$ (2p)
If $n = 3k + 2$ $(k \in \mathbb{N}^+)$ then $b_n = 4$, so $c_n = \frac{\left(4 - 3 + \frac{1}{n}\right)^n}{2^n} = \frac{1}{2^n} \cdot \left(1 + \frac{1}{n}\right)^n \longrightarrow 0 \cdot e = 0.$ (2p)
If $n = 3k$ $(k \in \mathbb{N}^+)$ then $b_n = 5$, so

$$c_n = \frac{\left(5 - 3 + \frac{1}{n}\right)^n}{2^n} = \frac{\left(2 + \frac{1}{n}\right)^n}{2^n} = \frac{\left(2\left(1 + \frac{1}{2n}\right)\right)^n}{2^n} = \frac{2^n}{2^n} \cdot \left(1 + \frac{1}{2n}\right)^n = \left(1 + \frac{1}{2n}\right)^n \longrightarrow e^{\frac{1}{2}} = \sqrt{e} .$$
(2p)

The accumulation points of (c_n) are 0 and \sqrt{e} , so liminf $c_n = 0$ and limsup $c_n = \sqrt{e}$. (2p)