Calculus 1, Repeated midterm test 1

11th December, 2023

N	lame: _							Neptun code:			
	1.	2.	3.	4.	5.	6.	7.	8.	9.	Σ	

1. (10 points) Let $a_n = \frac{2n^3 - 3n}{n^3 + n + 2}$. Find the limit of a_n and provide a threshold index *N* for $\varepsilon = 0.01$.

2. (10 points) Find the limit of the following sequence: $c_n = \sqrt{n^3 - 5n - 3} - \sqrt{n^3 - 2n + 6}$

3. (10+10 points) Find the limit of the following sequences:

a) $a_n = \sqrt[n]{\frac{7^n + 5^n}{n^3 + 2}}$ b) $b_n = \left(\frac{2n^2 - 3}{2n^2 + 4}\right)^{3n^2}$

4. (4+4+4 points) Let $a_1 = 5$ and $a_{n+1} = \sqrt{10 a_n - 21}$ for all $n \in \mathbb{N}$.

- a) Prove that $3 < a_n < 7$ for all $n \in \mathbb{N}$.
- b) Prove that the sequence is monotonically increasing.
- c) Calculate the limit of the sequence (a_n) .

5. (12 points) Find the limit and limsup of $a_n = \left(\frac{n + (-1)^n}{n+2}\right)^{n+3}$. Is the sequence convergent? 6. (6 points) Calculate the sum of the following series: $\sum_{n=1}^{\infty} \frac{2^{3n+1} + (-5)^{n-1}}{3^{2n+2}}.$

 $\frac{2}{n=1}$ 3²ⁿ⁺²

7. (10+10 points) Decide whether the following series are convergent or divergent:

a)
$$\sum_{n=1}^{\infty} \frac{(2n)! \cdot 5^{n-1}}{(3n)!}$$
 b) $\sum_{n=1}^{\infty} \left(\frac{n+3}{2n+3}\right)^n$

8. (10 points) For what values of $x \in \mathbb{R}$ does the following series converge? $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+3) \cdot 2^n} (x+5)^n$

9.* (10 points - BONUS): Let $a_0 = 1$ and $a_{n+1} = -\frac{1}{2} \cdot \sqrt[3]{a_n}$.

Find the limit points of this recursive sequence. (Help: Investigate the subsequences with odd and even indexes.)

Solutions

1. (10 points) Let $a_n = \frac{2n^3 - 3n}{n^3 + n + 2}$. Find the limit of a_n and provide a threshold index *N* for $\varepsilon = 0.01$.

Solution.
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^3}{n^3} \cdot \frac{2 - \frac{3}{n^2}}{1 + \frac{1}{n^2} + \frac{2}{n^3}} = \frac{2 - 0}{1 + 0 + 0} = 2$$
 (2p)

We have to find $N(\varepsilon) \in \mathbb{N}$, such that if n > N, then $|a_n - A| < \varepsilon$ (A = 2). (1p)

Let
$$\varepsilon > 0$$
. Then $\left| \frac{2n^3 - 3n}{n^3 + n + 2} - 2 \right| = \frac{5n + 4}{n^3 + n + 2} \le \frac{9n}{n^3} = \frac{9}{n^2} < \varepsilon$ (5p)

if
$$n > \sqrt{\frac{9}{\epsilon}}$$
, so with the choice $N(\epsilon) = \left[\sqrt{\frac{9}{\epsilon}}\right]$ the definition holds. (1p)
If $\epsilon = 0.01$, then $N \ge \left[\sqrt{\frac{9}{0.01}}\right] = 30$. (1p)

2. (10 points) Find the limit of the following sequence: $c_n = \sqrt{n^3 - 5n - 3} - \sqrt{n^3 - 2n + 6}$

Solution.

$$c_n \stackrel{(\mathbf{3p})}{=} \frac{n^3 - 5n - 3 - (n^3 - 2n + 6)}{\sqrt{n^3 - 5n - 3} + \sqrt{n^3 - 2n + 6}} \stackrel{(\mathbf{2p})}{=} \frac{-3n - 9}{\sqrt{n^3 - 5n - 3} + \sqrt{n^3 - 2n + 6}} \stackrel{(\mathbf{3p})}{=} \\ = \frac{n}{n^{3/2}} \cdot \frac{-3 - \frac{9}{n}}{\sqrt{1 - \frac{5}{n^2} - \frac{3}{n^3}} + \sqrt{1 - \frac{2}{n^2} + \frac{6}{n^3}}} \stackrel{(\mathbf{2p})}{\to} 0.$$

3. (10+10 points) Find the limit of the following sequences: a) $a_n = \sqrt[n]{\frac{7^n + 5^n}{n^3 + 2}}$ b) $b_n = \left(\frac{2n^2 - 3}{2n^2 + 4}\right)^{3n^2}$

Solution. a) Because of the Sandwich Theorem, $\lim_{n \to \infty} \sqrt[n]{\frac{7^n + 5^n}{n^3 + 2}} = 7$ (2p), since

$$7 \stackrel{(\mathbf{1p})}{\leftarrow} \frac{7}{\sqrt[n]{3} \left(\sqrt[n]{n}\right)^3} \stackrel{(\mathbf{1p})}{=} \sqrt[n]{\frac{7^n}{3n^3}} \stackrel{(\mathbf{2p})}{\leq} \sqrt[n]{\frac{7^n + 5^n}{n^3 + 2}} \stackrel{(\mathbf{2p})}{\leq} \sqrt[n]{\frac{2 \cdot 7^n}{n^3}} \stackrel{(\mathbf{1p})}{=} \frac{7\sqrt[n]{2}}{\left(\sqrt[n]{n}\right)^3} \stackrel{(\mathbf{1p})}{\to} 7$$

b)
$$b_n = \left(\frac{\left(1 - \frac{3}{2n^2}\right)^{n^2}}{\left(1 + \frac{4}{2n^2}\right)^{n^2}}\right)^3 \to \left(\frac{e^{-\frac{3}{2}}}{e^{\frac{4}{2}}}\right)^3 = e^{-\frac{21}{2}} (\mathbf{5} + \mathbf{4} + \mathbf{1p})$$

4. (4+4+4 points) Let $a_1 = 5$ and $a_{n+1} = \sqrt{10 a_n - 21}$ for all $n \in \mathbb{N}$.

- a) Prove that $3 < a_n < 7$ for all $n \in \mathbb{N}$.
- b) Prove that the sequence is monotonically increasing.
- c) Calculate the limit of the sequence (a_n) .

Solution. a) Boundedness: we prove by induction that $3 < a_n < 7$ for all $n \in \mathbb{N}$.

(1) $3 < a_1 = 5 < 7$

(2) Assume that $3 < a_n < 7$. We need to show that this implies $3 < a_{n+1} < 7$ ($n \in \mathbb{N}$). (3) Then $30 - 21 < 10 a_n - 21 < 70 - 21 \implies 9 < 10 a_n - 21 < 49 \implies 3 < \sqrt{10 a_n - 21} < 7$ So (a_n) is bounded above. **(4p)**

b) Monotonicity: we prove by induction that (a_n) is monotonically increasing, that is, $a_n < a_{n+1} \forall n \in \mathbb{N}$.

(1) $a_1 = 5 < a_2 = \sqrt{50 - 21} = \sqrt{29}$ (2) Assume that $a_n < a_{n+1}$ (3) Then $10 a_n - 21 < 10 a_{n+1} - 21 \implies a_{n+1} = \sqrt{10 a_n - 21} < \sqrt{10 a_{n+1} - 21} = a_{n+2} \implies a_{n+1} < a_{n+2}$ So (a_n) is monotonically increasing. **(4p)**

c) Since (a_n) is monotonically increasing and bounded above then it is convergent. Let $\lim_{n\to\infty} a_n = A$. Then $A = \sqrt{10A - 21} \iff A^2 - 10A + 21 = (A - 3)(A - 7) = 0 \iff A_1 = 3, A_2 = 7$. Since $a_1 = 5$ and the sequence is monotonically increasing then A = 3 cannot be the limit. So $\lim_{n \to \infty} a_n = 7$. (4p)

5. (12 points) Find the limit and limsup of $a_n = \left(\frac{n + (-1)^n}{n+2}\right)^{n+3}$. Is the sequence convergent?

Solution. If *n* is even, then
$$a_n = \left(\frac{n+1}{n+2}\right)^{n+3} = \frac{\left(1+\frac{1}{n}\right)^n}{\left(1+\frac{2}{n}\right)^n} \cdot \left(\frac{n+1}{n+2}\right)^3 \to \frac{1}{e}$$
 (5p)
If *n* is odd, then $a_n = \left(\frac{n-1}{n+2}\right)^{n+3} = \frac{\left(1-\frac{1}{n}\right)^n}{\left(1+\frac{2}{n}\right)^n} \cdot \left(\frac{n-1}{n+2}\right)^3 \to \frac{1}{e^3}$ (4p)

Therefore, the limit points of the sequence are $\frac{1}{e}$ and $\frac{1}{e^3}$, so liminf $a_n = \frac{1}{e^3}$, limsup $a_n = \frac{1}{e}$ (2p), Since liminf $a_n \neq \text{limsup } a_n$, then the sequence is divergent. (1p)

6. (6 points) Calculate the sum of the following series: $\sum_{n=1}^{\infty} \frac{2^{3n+1} + (-5)^{n-1}}{3^{2n+2}}.$

Solution.
$$\sum_{n=1}^{\infty} \frac{2^{3n+1} + (-5)^{n-1}}{3^{2n+2}} = \sum_{n=2}^{\infty} \frac{2 \cdot 8^n + \left(-\frac{1}{5}\right)(-5)^n}{9 \cdot 9^n} = \sum_{n=2}^{\infty} \left(\frac{2}{9} \cdot \left(\frac{8}{9}\right)^n - \frac{1}{45} \cdot \left(\frac{-5}{9}\right)^n\right) = (2p)$$
$$= \frac{2}{9} \frac{\frac{8}{9}}{1 - \frac{8}{9}} - \frac{1}{45} \frac{-\frac{5}{9}}{1 - \left(-\frac{5}{9}\right)} (4p) = \frac{16}{9} + \frac{1}{126} = \frac{25}{14}$$

7. (10+10 points) Decide whether the following series are convergent or divergent: a) $\sum_{n=1}^{\infty} \frac{(2n)! \cdot 5^{n-1}}{(3n)!}$ b) $\sum_{n=1}^{\infty} \left(\frac{n+3}{2n+3}\right)^{n^2}$

Solution.

a) Let
$$a_n = \frac{(2n)! \cdot 5^{n-1}}{(3n)!}$$
. By the ratio test:

$$\frac{a_{n+1}}{a_n} = \frac{(2n+2)! \cdot 5^n}{(3n+3)!} \cdot \frac{(3n)!}{(2n)! \cdot 5^{n-1}} \quad \textbf{(3p)}$$

$$= \frac{(2n+1)(2n+2) \cdot 5}{(3n+1)(3n+2)(3n+3)} = \frac{n^2}{n^3} \cdot \frac{\left(2 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right) \cdot 5}{\left(3 + \frac{1}{n}\right)\left(3 + \frac{2}{n}\right)\left(3 + \frac{3}{n}\right)} \longrightarrow 0 \cdot \frac{2 \cdot 2 \cdot 5}{3 \cdot 3 \cdot 3} = 0 < 1 \quad \textbf{(5p)}$$

$$\implies \text{the series } \sum_{n=1}^{\infty} a_n \text{ is convergent (1p)}$$

$$\textbf{b) Let } a_n = \left(\frac{n+3}{2n+3}\right)^{n^2}. \text{ By the root test:}$$

$$\sqrt[n]{a_n} = \left(\frac{n+3}{2n+3}\right)^n \quad \textbf{(3p)} = \left(\frac{n}{2n} \cdot \frac{1 + \frac{3}{n}}{1 + \frac{3}{2n}}\right)^n = \left(\frac{1}{2}\right)^n \cdot \frac{\left(1 + \frac{3}{n}\right)^n}{\left(1 + \frac{3}{2n}\right)^n} \longrightarrow 0 \cdot \frac{e^3}{e^{\frac{3}{2}}} = 0 < 1 \quad \textbf{(5p)}$$

$$\implies \text{the series } \sum_{n=1}^{\infty} a_n \text{ is convergent (1p)}$$

8. (10 points) For what values of $x \in \mathbb{R}$ does the following series converge? $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+3) \cdot 2^n} (x+5)^n$

Solution. The coefficients are $a_n = \frac{(-1)^n}{(n+3) \cdot 2^n}$ and the center is $x_0 = -5$. $\sqrt[n]{|a_n|} = \sqrt[n]{\frac{1}{(n+3) \cdot 2^n}} = \frac{1}{\sqrt[n]{n+3} \cdot 2} \longrightarrow \frac{1}{1 \cdot 2} = \frac{1}{2} = \frac{1}{R} \implies R = 2$

Here we used that $\sqrt[n]{n+3} \rightarrow 1$ by the Sandwich Theorem, since $1 \le \sqrt[n]{n+3} \le \sqrt[n]{n+3n} = \sqrt[n]{4} \cdot \sqrt[n]{n} \rightarrow 1 \cdot 1 = 1$. (5p)

Let *H* denote the domain of convergence. The endpoints of *H*:

If $x = x_0 - R = -5 - 2 = -7$ then the series is $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+3) \cdot 2^n} \cdot (-2)^n = \sum_{n=1}^{\infty} \frac{1}{n+3}$. Since $\frac{1}{n+3} \ge \frac{1}{n+3n} = \frac{1}{4n}$ and $\sum_{n=1}^{\infty} \frac{1}{4} \cdot \frac{1}{n}$ diverges, then by the comparison test, $\sum_{n=1}^{\infty} \frac{1}{n+3}$ also diverges. $\implies -7 \notin H$. (2p) If $x = x_0 + R = -5 + 2 = -3$ then the series is $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+3) \cdot 2^n} \cdot 2^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{(n+3)}$ This is a Leibniz series, so it is convergent $\implies -3 \in H$. (2p) The domain of convergence is H = (-7, -3]. (1p)

9.* (10 points - BONUS): Let $a_0 = 1$ and $a_{n+1} = -\frac{1}{2} \cdot \sqrt[3]{a_n}$.

Find the limit points of this recursive sequence. (Help: Investigate the subsequences with odd and even indexes.)

Solution. Using that n and n + 2 have the same parity, for the subsequences with odd and even indexes we have

$$a_{n+2} = -\frac{1}{2} \cdot \sqrt[3]{a_{n+1}} = -\frac{1}{2} \cdot \sqrt[3]{-\frac{1}{2} \cdot \sqrt[3]{a_n}} = \frac{1}{2 \cdot \sqrt[3]{2}} \cdot \sqrt[9]{a_n} = 2^{-\frac{4}{3}} \cdot \sqrt[9]{a_n}$$
(2p)

Solutions of $A = 2^{-\frac{4}{3}} \cdot \sqrt[9]{A}$ are $A_0 = 0$, $A_{\pm} = \pm 2^{-\frac{3}{2}} = \pm \frac{1}{2\sqrt{2}}$ (3p)

Observing that a_{2n} is monotonically decreasing and tends to A_+ : (2p) Observing that a_{2n+1} is monotonically increasing and tends to A_- : (2p) Therefore the limit points are A_+ and A_- . (1p)