Calculus 1, Repeated midterm test 1

11th December, 2023

Name: \qquad Neptun code: \qquad

1.	2.	3.	4.	5.	6.	7.	8.	9.	\sum

1. (10 points) Let $a_{n}=\frac{2 n^{3}-3 n}{n^{3}+n+2}$. Find the limit of a_{n} and provide a threshold index N for $\varepsilon=0.01$.
2. (10 points) Find the limit of the following sequence: $c_{n}=\sqrt{n^{3}-5 n-3}-\sqrt{n^{3}-2 n+6}$
3. ($\mathbf{1 0 + 1 0}$ points) Find the limit of the following sequences:
a) $a_{n}=\sqrt[n]{\frac{7^{n}+5^{n}}{n^{3}+2}}$
b) $b_{n}=\left(\frac{2 n^{2}-3}{2 n^{2}+4}\right)^{3 n^{2}}$
4. (4+4+4 points) Let $a_{1}=5$ and $a_{n+1}=\sqrt{10 a_{n}-21}$ for all $n \in \mathbb{N}$.
a) Prove that $3<a_{n}<7$ for all $n \in \mathbb{N}$.
b) Prove that the sequence is monotonically increasing.
c) Calculate the limit of the sequence $\left(a_{n}\right)$.
5. (12 points) Find the liminf and limsup of $a_{n}=\left(\frac{n+(-1)^{n}}{n+2}\right)^{n+3}$. Is the sequence convergent?
6. (6 points) Calculate the sum of the following series: $\sum_{n=1}^{\infty} \frac{2^{3 n+1}+(-5)^{n-1}}{3^{2 n+2}}$.
7. (10+10 points) Decide whether the following series are convergent or divergent:
a) $\sum_{n=1}^{\infty} \frac{(2 n)!\cdot 5^{n-1}}{(3 n)!}$
b) $\sum_{n=1}^{\infty}\left(\frac{n+3}{2 n+3}\right)^{n^{2}}$
8. (10 points) For what values of $x \in \mathbb{R}$ does the following series converge?
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+3) \cdot 2^{n}}(x+5)^{n}$
9.* (10 points - BONUS): Let $a_{0}=1$ and $a_{n+1}=-\frac{1}{2} \cdot \sqrt[3]{a_{n}}$.

Find the limit points of this recursive sequence. (Help: Investigate the subsequences with odd and even indexes.)

Solutions

1. (10 points) Let $a_{n}=\frac{2 n^{3}-3 n}{n^{3}+n+2}$. Find the limit of a_{n} and provide a threshold index N for $\varepsilon=0.01$.

Solution. $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{3}} \cdot \frac{2-\frac{3}{n^{2}}}{1+\frac{1}{n^{2}}+\frac{2}{n^{3}}}=\frac{2-0}{1+0+0}=2 \quad$ (2p)
We have to find $N(\varepsilon) \in \mathbb{N}$, such that if $n>N$, then $\left|a_{n}-A\right|<\varepsilon(A=2)$. (1p)
Let $\varepsilon>0$. Then $\left|\frac{2 n^{3}-3 n}{n^{3}+n+2}-2\right|=\frac{5 n+4}{n^{3}+n+2} \leq \frac{9 n}{n^{3}}=\frac{9}{n^{2}}<\varepsilon$ (5p)
if $n>\sqrt{\frac{9}{\varepsilon}}$, so with the choice $N(\varepsilon)=\left[\sqrt{\frac{9}{\varepsilon}}\right]$ the definition holds. (1p)
If $\varepsilon=0.01$, then $N \geq\left[\sqrt{\frac{9}{0.01}}\right]=30$. (1p)
2. (10 points) Find the limit of the following sequence: $c_{n}=\sqrt{n^{3}-5 n-3}-\sqrt{n^{3}-2 n+6}$

Solution.

$$
\begin{gathered}
c_{n} \stackrel{(\mathbf{3 p})}{=} \frac{n^{3}-5 n-3-\left(n^{3}-2 n+6\right)}{\sqrt{n^{3}-5 n-3}+\sqrt{n^{3}-2 n+6}} \stackrel{(2 \mathbf{p})}{=} \frac{-3 n-9}{\sqrt{n^{3}-5 n-3}+\sqrt{n^{3}-2 n+6}} \stackrel{(\mathbf{3} \mathbf{p})}{=} \\
=\frac{n}{n^{3 / 2}} \cdot \frac{-3-\frac{9}{n}}{\sqrt{1-\frac{5}{n^{2}}-\frac{3}{n^{3}}}+\sqrt{1-\frac{2}{n^{2}}+\frac{6}{n^{3}}}} \stackrel{(\mathbf{2} \mathbf{p})}{\rightarrow} 0 .
\end{gathered}
$$

3. ($\mathbf{1 0 + 1 0}$ points) Find the limit of the following sequences:
a) $a_{n}=\sqrt[n]{\frac{7^{n}+5^{n}}{n^{3}+2}}$
b) $b_{n}=\left(\frac{2 n^{2}-3}{2 n^{2}+4}\right)^{3 n^{2}}$

Solution. a) Because of the Sandwich Theorem, $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{7^{n}+5^{n}}{n^{3}+2}}=7$ (2p), since
$7 \stackrel{(\mathbf{1} \mathbf{p})}{\leftarrow} \frac{7}{\sqrt[n]{3}(\sqrt[n]{n})^{3}} \stackrel{(\mathbf{1} \mathbf{p})}{=} \sqrt[n]{\frac{7^{n}}{3 n^{3}}} \stackrel{(\mathbf{2} \mathbf{p})}{\leq} \sqrt[n]{\frac{7^{n}+5^{n}}{n^{3}+2}} \stackrel{(\mathbf{2} \mathbf{p})}{\leq} \sqrt[n]{\frac{2 \cdot 7^{n}}{n^{3}}} \stackrel{(\mathbf{1} \mathbf{p}}{=} \frac{7 \sqrt[n]{2}}{(\sqrt[n]{n})^{3}} \stackrel{(\mathbf{1} \mathbf{p})}{\longrightarrow} 7$
b) $b_{n}=\left(\frac{\left(1-\frac{3}{2 n^{2}}\right)^{n^{2}}}{\left(1+\frac{4}{2 n^{2}}\right)^{n^{2}}}\right)^{3} \rightarrow\left(\frac{e^{-\frac{3}{2}}}{e^{\frac{4}{2}}}\right)^{3}=e^{-\frac{21}{2}}(5+\mathbf{4}+\mathbf{1} \mathbf{p})$
4. (4+4+4 points) Let $a_{1}=5$ and $a_{n+1}=\sqrt{10 a_{n}-21}$ for all $n \in \mathbb{N}$.
a) Prove that $3<a_{n}<7$ for all $n \in \mathbb{N}$.
b) Prove that the sequence is monotonically increasing.
c) Calculate the limit of the sequence $\left(a_{n}\right)$.

Solution. a) Boundedness: we prove by induction that $3<a_{n}<7$ for all $n \in \mathbb{N}$.
(1) $3<a_{1}=5<7$
(2) Assume that $3<a_{n}<7$. We need to show that this implies $3<a_{n+1}<7(n \in \mathbb{N})$.
(3) Then $30-21<10 a_{n}-21<70-21 \Longrightarrow 9<10 a_{n}-21<49 \Longrightarrow 3<\sqrt{10 a_{n}-21}<7$

So $\left(a_{n}\right)$ is bounded above. (4p)
b) Monotonicity: we prove by induction that (a_{n}) is monotonically increasing, that is, $a_{n}<a_{n+1} \forall n \in \mathbb{N}$.
(1) $a_{1}=5<a_{2}=\sqrt{50-21}=\sqrt{29}$
(2) Assume that $a_{n}<a_{n+1}$
(3) Then $10 a_{n}-21<10 a_{n+1}-21 \Longrightarrow a_{n+1}=\sqrt{10 a_{n}-21}<\sqrt{10 a_{n+1}-21}=a_{n+2} \Rightarrow a_{n+1}<a_{n+2}$

So $\left(a_{n}\right)$ is monotonically increasing. (4p)
c) Since $\left(a_{n}\right)$ is monotonically increasing and bounded above then it is convergent.

Let $\lim _{n \rightarrow \infty} a_{n}=A$. Then $A=\sqrt{10 A-21} \Longleftrightarrow A^{2}-10 A+21=(A-3)(A-7)=0 \Longleftrightarrow A_{1}=3, A_{2}=7$.
Since $a_{1}=5$ and the sequence is monotonically increasing then $A=3$ cannot be the limit.
So $\lim _{n \rightarrow \infty} a_{n}=7$. (4p)
5. (12 points) Find the liminf and limsup of $a_{n}=\left(\frac{n+(-1)^{n}}{n+2}\right)^{n+3}$. Is the sequence convergent?

Solution. If n is even, then $a_{n}=\left(\frac{n+1}{n+2}\right)^{n+3}=\frac{\left(1+\frac{1}{n}\right)^{n}}{\left(1+\frac{2}{n}\right)^{n}} \cdot\left(\frac{n+1}{n+2}\right)^{3} \rightarrow \frac{1}{e}$ (5p)
If n is odd, then $a_{n}=\left(\frac{n-1}{n+2}\right)^{n+3}=\frac{\left(1-\frac{1}{n}\right)^{n}}{\left(1+\frac{2}{n}\right)^{n}} \cdot\left(\frac{n-1}{n+2}\right)^{3} \rightarrow \frac{1}{e^{3}}(\mathbf{4} \mathbf{p})$
Therefore, the limit points of the sequence are $\frac{1}{e}$ and $\frac{1}{e^{3}}$, so liminf $a_{n}=\frac{1}{e^{3}}$, limsup $a_{n}=\frac{1}{e}$ (2p),
Since $\liminf a_{n} \neq \limsup a_{n}$, then the sequence is divergent. (1p)
6. (6 points) Calculate the sum of the following series: $\sum_{n=1}^{\infty} \frac{2^{3 n+1}+(-5)^{n-1}}{3^{2 n+2}}$.

Solution. $\sum_{n=1}^{\infty} \frac{2^{3 n+1}+(-5)^{n-1}}{3^{2 n+2}}=\sum_{n=2}^{\infty} \frac{2 \cdot 8^{n}+\left(-\frac{1}{5}\right)(-5)^{n}}{9 \cdot 9^{n}}=\sum_{n=2}^{\infty}\left(\frac{2}{9} \cdot\left(\frac{8}{9}\right)^{n}-\frac{1}{45} \cdot\left(\frac{-5}{9}\right)^{n}\right)=(\mathbf{2 p})$ $=\frac{2}{9} \frac{\frac{8}{9}}{1-\frac{8}{9}}-\frac{1}{45} \frac{-\frac{5}{9}}{1-\left(-\frac{5}{9}\right)} \mathbf{(4 p)}=\frac{16}{9}+\frac{1}{126}=\frac{25}{14}$
7. (10+10 points) Decide whether the following series are convergent or divergent:
a) $\sum_{n=1}^{\infty} \frac{(2 n)!\cdot 5^{n-1}}{(3 n)!}$
b) $\sum_{n=1}^{\infty}\left(\frac{n+3}{2 n+3}\right)^{n^{2}}$

Solution.

a) Let $a_{n}=\frac{(2 n)!\cdot 5^{n-1}}{(3 n)!}$. By the ratio test:
$\frac{a_{n+1}}{a_{n}}=\frac{(2 n+2)!\cdot 5^{n}}{(3 n+3)!} \cdot \frac{(3 n)!}{(2 n)!\cdot 5^{n-1}}$ (3p)
$=\frac{(2 n+1)(2 n+2) \cdot 5}{(3 n+1)(3 n+2)(3 n+3)}=\frac{n^{2}}{n^{3}} \cdot \frac{\left(2+\frac{1}{n}\right)\left(2+\frac{1}{n}\right) \cdot 5}{\left(3+\frac{1}{n}\right)\left(3+\frac{2}{n}\right)\left(3+\frac{3}{n}\right)} \rightarrow 0 \cdot \frac{2 \cdot 2 \cdot 5}{3 \cdot 3 \cdot 3}=0<1 \quad$ (5p)
\Longrightarrow the series $\sum_{n=1}^{\infty} a_{n}$ is convergent (1p)
b) Let $a_{n}=\left(\frac{n+3}{2 n+3}\right)^{n^{2}}$. By the root test:
$\sqrt[n]{a_{n}}=\left(\frac{n+3}{2 n+3}\right)^{n}(3 \mathbf{p})=\left(\frac{n}{2 n} \cdot \frac{1+\frac{3}{n}}{1+\frac{3}{2 n}}\right)^{n}=\left(\frac{1}{2}\right)^{n} \cdot \frac{\left(1+\frac{3}{n}\right)^{n}}{\left(1+\frac{3}{2 n}\right)^{n}} \rightarrow 0 \cdot \frac{e^{3}}{e^{\frac{3}{2}}}=0<1$
(5p)
\Longrightarrow the series $\sum_{n=1}^{\infty} a_{n}$ is convergent (1p)
8. (10 points) For what values of $x \in \mathbb{R}$ does the following series converge?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+3) \cdot 2^{n}}(x+5)^{n}
$$

Solution. The coefficients are $a_{n}=\frac{(-1)^{n}}{(n+3) \cdot 2^{n}}$ and the center is $x_{0}=-5$.
$\sqrt[n]{\left|a_{n}\right|}=\sqrt[n]{\frac{1}{(n+3) \cdot 2^{n}}}=\frac{1}{\sqrt[n]{n+3} \cdot 2} \rightarrow \frac{1}{1 \cdot 2}=\frac{1}{2}=\frac{1}{R} \Longrightarrow R=2$
Here we used that $\sqrt[n]{n+3} \rightarrow 1$ by the Sandwich Theorem, since
$1 \leq \sqrt[n]{n+3} \leq \sqrt[n]{n+3 n}=\sqrt[n]{4} \cdot \sqrt[n]{n} \rightarrow 1 \cdot 1=1$ (5p)

Let H denote the domain of convergence. The endpoints of H :
If $x=x_{0}-R=-5-2=-7$ then the series is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+3) \cdot 2^{n}} \cdot(-2)^{n}=\sum_{n=1}^{\infty} \frac{1}{n+3}$.
Since $\frac{1}{n+3} \geq \frac{1}{n+3 n}=\frac{1}{4 n}$ and $\sum_{n=1}^{\infty} \frac{1}{4} \cdot \frac{1}{n}$ diverges, then by the comparison test,
$\sum_{n=1}^{\infty} \frac{1}{n+3}$ also diverges. $\Rightarrow-7 \notin H$. (2p)
If $x=x_{0}+R=-5+2=-3$ then the series is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+3) \cdot 2^{n}} \cdot 2^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+3)}$
This is a Leibniz series, so it is convergent $\Rightarrow-3 \in H$. (2p)
The domain of convergence is $H=(-7,-3]$. (1p)
9.* (10 points - BONUS): Let $a_{0}=1$ and $a_{n+1}=-\frac{1}{2} \cdot \sqrt[3]{a_{n}}$.

Find the limit points of this recursive sequence. (Help: Investigate the subsequences with odd and even indexes.)

Solution. Using that n and $n+2$ have the same parity, for the subsequences with odd and even indexes we have
$a_{n+2}=-\frac{1}{2} \cdot \sqrt[3]{a_{n+1}}=-\frac{1}{2} \cdot \sqrt[3]{-\frac{1}{2} \cdot \sqrt[3]{a_{n}}}=\frac{1}{2 \cdot \sqrt[3]{2}} \cdot \sqrt[9]{a_{n}}=2^{-\frac{4}{3}} \cdot \sqrt[9]{a_{n}}$ (2p)
Solutions of $A=2^{-\frac{4}{3}} \cdot \sqrt[9]{A}$ are $A_{0}=0, A_{ \pm}= \pm 2^{-\frac{3}{2}}= \pm \frac{1}{2 \sqrt{2}}$ (3p)
Observing that $a_{2 n}$ is monotonically decreasing and tends to A_{+}: (2p)
Observing that $a_{2 n+1}$ is monotonically increasing and tends to $A_{-}:(\mathbf{2 p})$
Therefore the limit points are A_{+}and A_{-}. (1p)

