Calculus 1, Final exam 2, Part 1

12th January, 2024

Name: \qquad Neptun code: \qquad

Part I: \qquad Part II.: \qquad Part III.: \qquad
Sum: \qquad

I. Definitions and theorems (15×3 points)

1. What is the statement of the sandwich theorem for number sequences?
2. Define the limit point and the limes superior of the sequence $\left(a_{n}\right)$.
3. State the root test for number series.
4. State Leibniz's theorem for alternating series.
5. What does it mean that
a) $\lim _{x \rightarrow \infty} f(x)=A \in \mathbb{R}$?
b) $\lim _{x \rightarrow \infty} f(x) \neq A \in \mathbb{R}$?
6. What does it mean that a function f has a removable discontinuity at the point $x_{0} \in \mathbb{R}$?
7. State the intermediate value theorem or Bolzano's theorem.
8. What does it mean that a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is uniformly continuous on an interval $J \subset \mathbb{R}$?
9. What does it mean that a function is concave? Write down the definition.
10. State Rolle's theorem.
11. State Darboux's theorem.
12. Give two sufficient conditions for a function to have an inflection point at x_{0}.
13. State Taylor's theorem with the remainder term.
14. Give two sufficient conditions for a function $f:[a, b] \longrightarrow \mathbb{R}$ to be Riemann integrable.
15. State the second fundamental theorem of calculus.

II. Proof of a theorem (15 points)

Write down the statement of the Newton-Leibniz formula and prove it.

III. True or false? (16 x 3 points)

Indicate at each statement whether it is true or false and give a short explanation for your answer. The correct answer without an explanation is worth 1 point.

1. $\lim _{n \rightarrow \infty} a_{n}=L$ if and only if there exists $\varepsilon>0$ such that the sequence $\left(a_{n}\right)$ has infinitely many terms closer to L than ε.
2. The sequence $\left(a_{n} \cdot b_{n}\right)$ is convergent if and only if both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent.
3. The sequence $a_{n}=\cos n$ has a convergent subsequence.
4. If $a_{n} \longrightarrow 0$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
5. If $a_{n}>0$ for all $n \in \mathbb{N}$ and the sequence $\left(a_{n}\right)$ is monotonically decreasing, then the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ is convergent.
6. If the set $H \subset \mathbb{R}$ contains all of its limit points, then it is closed.
7. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and assume that for all sequences $\left(x_{n}\right)$ with non-zero terms for which $\lim _{n \rightarrow \infty} x_{n}=0$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=A$. Then $\lim _{x \rightarrow 0} f(x)=A$.
8. The function $f(x)=\frac{1}{\ln \left(x^{2}\right)}$ has a jump discontinuity at $x=0$.
9. The equation $x^{5}=10 x^{2}-3$ has a real solution in the interval $[0,1]$.
10. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at x_{0}, then the limit $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ exists and is finite.
11. The function $f(x)=e^{x}+\arctan (x)$ is invertible on \mathbb{R}.
12. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous on $[a, b]$. Then f has both a minimum and a maximum on $[a, b]$ only if f is differentiable on (a, b).
13. Assume that f is at least two times differentiable on \mathbb{R}. If $f^{\prime \prime}\left(x_{0}\right)=0$, then f has an inflection point at x_{0}.
14. The partial fraction decomposition of $f(x)=\frac{x+6}{(x+1)\left(x^{4}-1\right)}$ contains the term $\frac{A x+B}{x^{2}+1}$.
15. The function $f(x)=\operatorname{sgn}(x)$ has an antiderivative on $[-1,1]$.
16. If $f:[a, b] \longrightarrow \mathbb{R}$ is bounded and has a finite number of discontinuities, then f is Riemann-integrable on $[a, b]$.

Solutions

I. Definitions and theorems (15×3 points)

1. What is the statement of the sandwich theorem for number sequences?

Theorem. If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}, c_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $a_{n} \leq b_{n} \leq c_{n}$ for all $n>N$, then $b_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$.
2. Define the limit point and the limes superior of the sequence $\left(a_{n}\right)$.

Definition. $A \in \mathbb{R} \cup\{\infty,-\infty\}$ is called a limit point or accumulation point of $\left(a_{n}\right)$ if any neighbourhood of A contains infinitely many terms of $\left(a_{n}\right)$. Or equivalently there exists a subsequence $\left(a_{n_{k}}\right)$ such that $a_{n_{k}} \xrightarrow{n \rightarrow \infty} A$.

Definition. - If the set of limit points of $\left(a_{n}\right)$ is bounded above, then its supremum is called the limes superior of $\left(a_{n}\right)$ (notation: $\lim \sup a_{n}$).

- If $\left(a_{n}\right)$ is not bounded above, then we define $\lim \sup a_{n}=\infty$.

3. State the root test for number series.

Theorem. Assume that $a_{n}>0$ and lim sup $\sqrt[n]{a_{n}}=R$. Then
(1) if $R<1$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent;
(2) if $R>1$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
4. State Leibniz's theorem for alternating series.

Theorem: Let $\left(a_{n}\right)$ be a monotonically decreasing sequence of positive numbers such that $a_{n} \xrightarrow{n \rightarrow \infty} 0$.
Then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-a_{6}+\ldots$ is convergent.
5. What does it mean that
a) $\lim _{x \rightarrow \infty} f(x)=A \in \mathbb{R}$?
b) $\lim _{x \rightarrow \infty} f(x) \neq A \in \mathbb{R} ?$
a) Definition: $\lim _{x \rightarrow \infty} f(x)=A \in \mathbb{R} \Longleftrightarrow$ For all $\varepsilon>0$ there exists $P(\varepsilon)>0$ such that for all $x>P(\varepsilon)$ we have $|f(x)-A|<\varepsilon$.
b) Negation of the definition:
$\lim _{x \rightarrow \infty} f(x) \neq A \in \mathbb{R} \Longleftrightarrow$ There exists $\varepsilon>0$ such that for all $P(\varepsilon)>0$ there exists $x>P(\varepsilon)$, for which $|f(x)-A| \geq \varepsilon$.
6. What does it mean that a function f has a removable discontinuity at the point $x_{0} \in \mathbb{R}$?

Definition. f has a removable discontinuity at x_{0} if $\exists \lim _{x \rightarrow x_{0}} f(x) \in \mathbb{R}$ but $\lim _{x \rightarrow x_{0}} f(x) \neq f\left(x_{0}\right)$ or $f\left(x_{0}\right)$ is not defined.
7. State the intermediate value theorem or Bolzano's theorem.

Theorem. Assume that f is continuous on $[a, b], f(a) \neq f(b)$ and $f(a)<c<f(b)$ or $f(b)<c<f(a)$. Then there exists $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=c$.
8. What does it mean that a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is uniformly continuous on an interval $J \subset \mathbb{R}$?

Definition. The function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is uniformly continuous on the interval $J \subset \mathbb{R}$, if $\forall \varepsilon>0 \quad \exists \delta>0$ such that $\forall x, y \in J: \quad|x-y|<\delta \Longrightarrow|f(x)-f(x)|<\varepsilon$.
9. What does it mean that a function is concave? Write down the definition.

Definition. The function f is concave on the interval $I \subset D_{f}$ if for all $x, y \in I$ and $t \in[0,1]$
$f(t x+(1-t) y) \geq t f(x)+(1-t) f(y)$
Or:
Definition. Let $h_{a, b}(x)$ denote the the secant line passing through the points $(a, f(a))$ and $(b, f(b))$. The function f is concave on the interval $/ \subset D_{f}$ if for all $\forall a, b \in I$ and $a<x<b \Longrightarrow f(x) \geq h_{a, b}(x)$, that is, the secant lines of f always lie below the graph of f.
10. State Rolle's theorem.

Theorem. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous on $[a, b]$, differentiable on (a, b) and $f(a)=f(b)$. Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
11. State Darboux's theorem.

Theorem. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is differentiable and $f^{\prime}(a)<y<f^{\prime}(b)$ or $f^{\prime}(b)<y<f^{\prime}(a)$. Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=y$.
12. Give two sufficient conditions for a function to have an inflection point at x_{0}.

Theorem (Sufficient condition for an inflection point, second derivative test).
If f is twice differentiable in a neighbourhood of x_{0},
$f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}$ changes sign at x_{0},
then f has an inflection point at x_{0}.

Theorem (Sufficient condition for an inflection point, third derivative test).
If f is three times differentiable in a neighbourhood of x_{0},
$f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime \prime}\left(x_{0}\right) \neq 0$,
then f has an inflection point at x_{0}.
13. State Taylor's theorem with the remainder term.

Theorem (Taylor's theorem). Assume that f is at least $(n+1)$ times differentiable on the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ and $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. Then there exists a number ξ between x and x_{0} (that is, $x_{0}<\xi<x$ or $x<\xi<x_{0}$) such that

$$
R_{n}(x)=f(x)-T_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

This expression is called the Lagrange form of the remainder term.
14. Give two sufficient conditions for a function $f:[a, b] \longrightarrow \mathbb{R}$ to be Riemann integrable.

Theorems:

1) If f is monotonic and bounded on $[a, b]$ then f is Riemann integrable on $[a, b]$.
2) If $f:[a, b] \longrightarrow \mathbb{R}$ is continuous then f is Riemann integrable on $[a, b]$.
3) If $f:[a, b] \longrightarrow \mathbb{R}$ is bounded and continuous except finitely many points then
f is Riemann integrable on $[a, b]$.
Any two conditions are suitable.
15. State the second fundamental theorem of calculus.

Theorem. Assume that f is Riemann integrable on $[a, b]$ and $F(x)=\int_{a}^{x} f(t) \mathrm{dt}, x \in[a, b]$.
Then

1. F is Lipschitz continuous on $[a, b]$.
2. If f is continuous at $x_{0} \in[a, b]$ then F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

II. Proof of a theorem (15 points)

Theorem (First fundamental theorem of calculus, Newton-Leibniz formula).

If $f:[a, b] \longrightarrow \mathbb{R}$ is Riemann integrable and $F:[a, b] \longrightarrow \mathbb{R}$ is an antiderivative of f, that is, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{dx}=F(b)-F(a)=[F(x)]_{a}^{b}
$$

Proof. Let $\left(P_{n}\right)$ be a partition sequence of $[a, b]$ such that $\lim _{n \rightarrow \infty} \Delta P_{n}=0$.
For all $k \in\{1,2, \ldots, n\}, F$ is continuous on $\left[x_{k-1}, x_{k}\right]$ and differentiable on $\left(x_{k-1}, x_{k}\right)$, so by Lagrange's mean value theorem there exists $x_{k-1}<c_{k}<x_{k}$ such that

$$
\begin{aligned}
& \frac{F\left(x_{k}\right)-F\left(x_{k-1}\right)}{x_{k}-x_{k-1}}=F^{\prime}\left(c_{k}\right)=f\left(c_{k}\right) \Longrightarrow F\left(x_{k}\right)-F\left(x_{k-1}\right)=f\left(c_{k}\right)\left(x_{k}-x_{k-1}\right) \\
& \begin{array}{l}
\Rightarrow F(b)-F(a)=\left(F\left(x_{1}\right)-F\left(x_{0}\right)\right)+\left(F\left(x_{2}\right)-F\left(x_{1}\right)\right)+\ldots+\left(F\left(x_{n}\right)-F\left(x_{n-1}\right)\right)= \\
\quad=\sum_{k=1}^{n}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)=\sum_{k=1}^{n} f\left(c_{k}\right)\left(x_{k}-x_{k-1}\right)=\sigma_{P_{n}} \\
\Longrightarrow F(b)-F(a)=\sigma_{P_{n}}
\end{array}
\end{aligned}
$$

Taking the limits of both sides: $\lim _{n \rightarrow \infty}(F(b)-F(a))=\lim _{n \rightarrow \infty} \sigma_{P_{n}}$
The left-hand side is independent of n and since f is integrable then the limit of the right-hand side is the integral of f, so
$F(b)-F(a)=\int_{a}^{b} f(x) \mathrm{dx}$.

III. True or false? (16 x 3 points)

1. $\lim _{n \rightarrow \infty} a_{n}=L$ if and only if there exists $\varepsilon>0$ such that the sequence $\left(a_{n}\right)$ has infinitely many terms closer to L than ε.

False. For example, the sequence $a_{n}=(-1)^{n}$ doesn't have a limit, but for $L=1$ and $\varepsilon=1$ the sequence has infinitely many terms in the interval $(L-\varepsilon, L+\varepsilon)=(0,2)$, that is, these terms are closer to $L=1$ than $\varepsilon=1$.
2. The sequence $\left(a_{n} \cdot b_{n}\right)$ is convergent if and only if both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent.

False. For example, if $a_{n}=\frac{1}{n}$ and $b_{n}=n$, then $a_{n} \cdot b_{n}=1$, which is convergent, $\left(a_{n}\right)$ is convergent, but $\left(b_{n}\right)$ is divergent.
3. The sequence $a_{n}=\cos n$ has a convergent subsequence.

True. Since the sequence is bounded, then by the Bolzano-Weierstrass theorem it has a convergent subsequence.
4. If $a_{n} \rightarrow 0$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.

False. For example, $a_{n}=\frac{1}{n} \longrightarrow 0$, but the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
5. If $a_{n}>0$ for all $n \in \mathbb{N}$ and the sequence $\left(a_{n}\right)$ is monotonically decreasing, then the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ is convergent.

False. If the sequence does not tend to zero, then the statement is not true.
For example, if $a_{n}=1+\frac{1}{n}>0$, then $\left(a_{n}\right)$ is monotonically decreasing, but since $\lim _{n \rightarrow \infty} a_{n}=1$, then $\lim _{n \rightarrow \infty}(-1)^{n} a_{n}$ doesn't exist, so by the nth term test the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ diverges.
6. If the set $H \subset \mathbb{R}$ contains all of its limit points, then it is closed.

True. We learned the following theorem:
A set $A \subset \mathbb{R}$ is closed if and only if it contains all of its limit points.
7. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and assume that for all sequences $\left(x_{n}\right)$ with non-zero terms for which $\lim _{n \rightarrow \infty} x_{n}=0$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=A$. Then $\lim _{x \rightarrow 0} f(x)=A$.

True. This follows from the sequential criterion for continuity.
8. The function $f(x)=\frac{1}{\ln \left(x^{2}\right)}$ has a jump discontinuity at $x=0$.

False. The function is even and is defined in a neighbourhood of 0 ,
$\lim _{x \rightarrow 0 \pm 0} x^{2}=0 \Longrightarrow \lim _{x \rightarrow 0 \pm 0} \ln \left(x^{2}\right)=-\infty \Longrightarrow \lim _{x \rightarrow 0 \pm 0} \frac{1}{\ln \left(x^{2}\right)}=\frac{1}{-\infty}=0$.
Since f has a finite limit but it is not defined at $x=0$, then f has a removable discontinuity at this point.
9. The equation $x^{5}=10 x^{2}-3$ has a real solution in the interval $[0,1]$.

True. Solving the equation for $0 \leq x \leq 1$ is equivalent to finding a root of $f(x)=x^{5}-10 x^{2}+3$ on $[0,1]$. Then f is continuous, $f(0)=3>0, f(1)=-6<0$, therefore, by the intermediate value theorem f has a real root on $[0,1]$. So the equation also has a real solution on $[0,1]$.
10. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at x_{0}, then the limit $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ exists and is finite.

False. If the above limit exists and is finite then it means that f is differentiable at x_{0} and the value of the derivative if $f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$. We learned that differentiability at a point implies continuity, however, the converse is not true. For example, the function $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=|x|$ is continuous but not differentiable at $x_{0}=0$.
11. The function $f(x)=e^{x}+\arctan (x)$ is invertible on \mathbb{R}.

True. Since $f^{\prime}(x)=e^{x}+\frac{1}{1+x^{2}}>0$ for all $x \in \mathbb{R}$, then then f is strictly monotonically increasing on \mathbb{R}, so f is invertible on \mathbb{R}.
12. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous on $[a, b]$. Then f has both a minimum and a maximum on $[a, b]$ only if f is differentiable on (a, b).

False. Assuming continuity of f on a closed interval is sufficient for the existence of a minimum and a maximum. For example, if $f(x)=|x|$ for $-1 \leq x \leq 1$, then f has a minimum at $x=0$, but f is not differentiable at $x=0$.
13. Assume that f is at least two times differentiable on \mathbb{R}. If $f^{\prime \prime}\left(x_{0}\right)=0$, then f has an inflection point at x_{0}.

False. For example, if $f(x)=x^{4}$, then $f^{\prime \prime}(x)=12 x^{2}$, so $f^{\prime \prime}(0)=0$, but f doesn't have an inflection point at $x_{0}=0$.
14. The partial fraction decomposition of $f(x)=\frac{x+6}{(x+1)\left(x^{4}-1\right)}$ contains the term $\frac{A x+B}{x^{2}+1}$.

True. The partial fraction decomposition of $f(x)=\frac{x+6}{(x+1)\left(x^{2}-1\right)\left(x^{2}+1\right)}=\frac{x+6}{(x+1)^{2}(x-1)\left(x^{2}+1\right)}$ is $f(x)=\frac{A}{x-1}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}}+\frac{E x+F}{x^{2}+1}$.
15. The function $f(x)=\operatorname{sgn}(x)$ has an antiderivative on $[-1,1]$.

False. Since f has a jump discontinuity, then there is no such function $F:[-1,1] \rightarrow \mathbb{R}$ for which
$F^{\prime}(x)=f(x)$, that is, f doesn't have an antiderivative on $[-1,1]$.
By Darboux's theorem if $-1<y<1$ then $F^{\prime}(x)=y$ should hold for some $x \in[-1,1]$, but if $y=\frac{1}{2}$, then there is no $\operatorname{such} x$.
16. If $f:[a, b] \longrightarrow \mathbb{R}$ is bounded and has a finite number of discontinuities, then f is Riemann-integrable on $[a, b]$.

True. This is a theorem that we learned. It is also a consequence of Lebesgue's theorem.

