Calculus 1, Final exam 1, Part 1

18th December, 2023

Name: \qquad Neptun code: \qquad

Part I: \qquad Part II.: \qquad Part III.: \qquad Sum: \qquad

I. Definitions and theorems (15×3 points)

1. What does it mean that the sequence $\left(a_{n}\right)$ is a Cauchy sequence?
2. State the Bolzano-Weierstrass theorem for number sequences.
3. State the ratio test for number series.
4. State Leibniz's theorem for number series.
5. What does it mean that the number $x \in \mathbb{R}$ is a limit point of the set $H \subset \mathbb{R}$?
6. What does it mean that $\lim _{x \rightarrow x_{0}} f(x)=+\infty$?
7. State the sequential criterion for continuity.
8. What does it mean that a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is uniformly continuous on an interval $J \subset \mathbb{R}$?
9. What does it mean that a function is convex? Write down the definition.
10. State Lagrange's mean value theorem.
11. State the L'Hospital's rule.
12. Give two sufficient conditions for a function to have a local minimum at the point x_{0}.
13. State Taylor's theorem with the remainder term.
14. State the integration-by-parts formula.
15. State the Newton-Leibniz formula.

II. Proof of a theorem ($\mathbf{1 5}$ points)

Write down the statement of Bolzano's theorem (or intermediate value theorem) and prove it.

III. True or false? (15 x 3 points)

Indicate at each statement whether it is true or false and give a short explanation for your answer. The correct answer without an explanation is worth 1 point.

1. If $a_{n}>1$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} a_{n}^{n}=\infty$.
2. $\lim _{n \rightarrow \infty} a_{n}=L$ if and only if for any $\varepsilon>0$ the sequence $\left(a_{n}\right)$ has infinitely many terms closer to L than ε.
3. If the sequence $\left(a_{n}\right)$ has no minimal term, then its limit cannot be $+\infty$.
4. If $a_{n}<b_{n}$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_{n}$ is divergent, then $\sum_{n=1}^{\infty} b_{n}$ is divergent.
5. a) If $a_{n} \geq 0$ and $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\sum_{n=1}^{\infty} a_{n}^{3}$ is also convergent.
6. b) If x is a limit point of of $H \subset \mathbb{R}$, then x is a boundary point of H.
7. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is not continuous at x_{0}, then f doesn't have a finite limit at x_{0}.
8. The function $f(x)=\arctan \left(\frac{1}{x}\right)$ has a jump discontinuity at $x=0$.
9. The function $f(x)=2^{-x^{2}+4}-x \sqrt{x^{2}+5}$ has a real root in the interval [0, 2].
10. If a function f is differentiable everywhere on \mathbb{R} and $|f(9)-f(5)| \leq 2$, then $\left|f^{\prime}(x)\right| \leq \frac{1}{2}$ for some $x \in[5,9]$.
11. There exists a differentiable function $f:[a, b] \longrightarrow \mathbb{R}$ that has no maximum on $[a, b]$.
12. The function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable at x_{0} if and only if f is differentiable at x_{0} from the right and from the left.
13. Assume that f is at least two times differentiable on \mathbb{R}. If f has a local maximum at x_{0} then $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$.
14. The partial fraction decomposition of $f(x)=\frac{x+1}{(x-1)^{3}(x+2)^{2}}$ cannot contain the term $\frac{A}{(x+2)^{3}}$.
15. If the function $f:[a, b] \longrightarrow \mathbb{R}$ is Riemann-integrable, then it has an antiderivative.
16. There exists a function $f:[-1,1] \longrightarrow \mathbb{R}$ whose integral function is $F(x)=\operatorname{sgn}(x), x \in[-1,1]$.

Solutions

I. Definitions and theorems (15×3 points)

1. What does it mean that the sequence $\left(a_{n}\right)$ is a Cauchy sequence?

Definition. $\left(a_{n}\right)$ is a Cauchy sequence if for all $\varepsilon>0$ there exists $N(\varepsilon) \in \mathbb{N}$ such that if $n, m>N$ then $\left|a_{n}-a_{m}\right|<\varepsilon$.
2. State the Bolzano-Weierstrass theorem for number sequences.

Theorem. Every bounded sequence has a convergence subsequence.
3. State the ratio test for number series.

Theorem. Assume that $a_{n}>0$. Then
(1) if $\lim \sup \frac{a_{n+1}}{a_{n}}<1$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent;
(2) if $\lim \inf \frac{a_{n+1}}{a_{n}}>1$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

4. State Leibniz's theorem for number series.

Theorem: Let $\left(a_{n}\right)$ be a monotonically decreasing sequence of positive numbers such that $a_{n} \xrightarrow{n \rightarrow \infty} 0$.
Then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-a_{6}+\ldots$ is convergent.
5. What does it mean that the number $x \in \mathbb{R}$ is a limit point of the set $H \subset \mathbb{R}$?

Definition. Let $H \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then x is a limit point of H, if for all $r>0:(B(x, r) \backslash\{x\}) \cap H \neq \varnothing$ It means that any interval $(x-r, x+r)$ contains a point in H that is distinct from x.
6. What does it mean that $\lim _{x \rightarrow x_{0}} f(x)=+\infty$?

Definition. The limit of the function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ at the point $x_{0} \in \mathbb{R}$ is $+\infty$ if
(1) x_{0} is a limit point of $D_{f}\left(x \in D_{f}{ }^{\prime}\right)$
(2) for all $K>0$ there exists $\delta(K)>0$ such that

$$
\text { if } x \in D_{f} \text { and } 0<\left|x-x_{0}\right|<\delta(K) \text { then } f(x)>K .
$$

7. State the sequential criterion for continuity.

Theorem. The function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at $x_{0} \in D_{f}$ if and only if for all sequences $\left(x_{n}\right) \subset D_{f}$ for which $x_{n} \longrightarrow x_{0}, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.
8. What does it mean that a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is uniformly continuous on an interval $J \subset \mathbb{R}$?

Definition. The function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is uniformly continuous on the interval $J \subset \mathbb{R}$, if $\forall \varepsilon>0 \quad \exists \delta>0$ such that $\forall x, y \in J: \quad|x-y|<\delta \Longrightarrow|f(x)-f(x)|<\varepsilon$.
9. What does it mean that a function is convex? Write down the definition.

Definition. The function f is concave on the interval $I \subset D_{f}$ if for all $x, y \in I$ and $t \in[0,1]$ $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$

Or:
Definition. Let $h_{a, b}(x)$ denote the the secant line passing through the points ($a, f(a)$) and ($b, f(b)$). The function f is convex on the interval $I \subset D_{f}$ if for all $\forall a, b \in I$ and $a<x<b \Longrightarrow f(x) \leq h_{a, b}(x)$, that is, the secant lines of f always lie above the graph of f.
10. State Lagrange's mean value theorem.

Theorem. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous on $[a, b]$, differentiable on (a, b).
Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

11. State the L'Hospital's rule.

Theorem.
Assume that $a \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$, l is a neighbourhood of a, the functions f and g are differentiable on $I \backslash\{a\}$ and $g(x) \neq 0, g^{\prime}(x) \neq 0$ for all $x \in I \backslash\{a\}$. Assume moreover that

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0 \quad \text { or } \quad \lim _{x \rightarrow a}|f(x)|=\lim _{x \rightarrow a}|g(x)|=\infty .
$$

If $\exists \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=b \in \overline{\mathbb{R}}$ then $\exists \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=b$.
12. Give two sufficient conditions for a function to have a local minimum at the point x_{0}.

Theorems.

1) Assume that f is differentiable at $x_{0} \in \operatorname{int} D_{f}$.

If $f^{\prime}\left(x_{0}\right)=0$ and f^{\prime} changes sign from negative to positive at x_{0}, then f has a local minimum at x_{0}.
2) Assume that f is twice differentiable at $x_{0} \in \operatorname{int} D_{f}$.

If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$ then f has a local minimum at x_{0}.
13. State Taylor's theorem with the remainder term.

Theorem (Taylor's theorem). Assume that f is at least $(n+1)$ times differentiable
on the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ and $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. Then there exists a number ξ
between x and x_{0} (that is, $x_{0}<\xi<x$ or $x<\xi<x_{0}$) such that

$$
R_{n}(x)=f(x)-T_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

This expression is called the Lagrange form of the remainder term.
14. State the integration-by-parts formula.

Theorem. Assume that f and g are differentiable on the interval / and $f \cdot g^{\prime}$ has an antiderivative on I. Then $f^{\prime} \cdot g$ also has an antiderivative here and

$$
\int f^{\prime}(x) g(x) \mathrm{d} x=f(x) g(x)-\int f(x) g^{\prime}(x) \mathrm{dx}
$$

15. State the Newton-Leibniz formula.

Theorem. If $f:[a, b] \longrightarrow \mathbb{R}$ is Riemann integrable and $F:[a, b] \longrightarrow \mathbb{R}$ is an antiderivative of f, that is, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) \mathrm{dx}=F(b)-F(a)=[F(x)]_{a}^{b}$.

II. Proof of a theorem (15 points)

Theorem (Intermediate value theorem or Bolzano's theorem).

Assume that f is continuous on $[a, b], f(a) \neq f(b)$ and $f(a)<c<f(b)$ or $f(b)<c<f(a)$. Then there exists $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=c$.

Proof. We prove the case $f(a)<c<f(b)$. The point x_{0} can be found with an interval halving method (bisection method).
1st step: Consider the midpoint $\frac{a+b}{2}$ of the interval $[a, b]$. There are three cases:
If $f\left(\frac{a+b}{2}\right)>c \Longrightarrow a_{1}:=a, b_{1}:=\frac{a+b}{2}$
If $f\left(\frac{a+b}{2}\right)<c \Longrightarrow a_{1}:=\frac{a+b}{2}, b_{1}:=b$
If $f\left(\frac{a+b}{2}\right)=c \Longrightarrow x_{0}:=\frac{a+b}{2}$
2nd step: Consider the midpoint $\frac{a_{1}+b_{1}}{2}$ of the interval $\left[a_{1}, b_{1}\right]$. There are again three cases:
If $f\left(\frac{a_{1}+b_{1}}{2}\right)>c \Longrightarrow a_{2}:=a_{1}, b_{2}:=\frac{a_{1}+b_{1}}{2}$
If $f\left(\frac{a_{1}+b_{1}}{2}\right)<c \Longrightarrow a_{2}:=\frac{a_{1}+b_{1}}{2}, b_{2}:=b_{1}$
If $f\left(\frac{a_{1}+b_{1}}{2}\right)=c \Longrightarrow x_{0}:=\frac{a_{1}+b_{1}}{2}$
Continuing the above procedure, we either reach x_{0} in one of the steps, or we define the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ such that

$$
[a, b] \supset\left[a_{1}, b_{1}\right] \supset\left[a_{2}, b_{2}\right] \supset \ldots \supset\left[a_{n}, b_{n}\right] \supset\left[a_{n+1}, b_{n+1}\right] \supset \ldots
$$

and

$$
b_{1}-a_{1}=\frac{b-a}{2}, b_{2}-a_{2}=\frac{b_{1}-a_{1}}{2}=\frac{b-a}{2^{2}}, \ldots, b_{n}-a_{n}=\frac{b-a}{2^{n}}, \ldots
$$

From this it follows that $\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0$, so by the Cantor axiom there exists a unique element $x_{0} \in[a, b]$ such that $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]=\left\{x_{0}\right\}$.
Then $a_{n} \rightarrow x_{0}, b_{n} \rightarrow x_{0}$, so by the continuity of f we have that $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(x_{0}\right)=\lim _{n \rightarrow \infty} f\left(b_{n}\right)$, and since $f\left(a_{n}\right) \leq c \leq f\left(b_{n}\right)$, it follows that $f\left(x_{0}\right)=c$.

III. True or false? (15×3 points)

1. If $a_{n}>1$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} a_{n}^{n}=\infty$.

False. For example, $a_{n}=1+\frac{1}{n}>1$ and $\lim _{n \rightarrow \infty} a_{n}^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.
2. $\lim _{n \rightarrow \infty} a_{n}=L$ if and only if for any $\varepsilon>0$ the sequence $\left(a_{n}\right)$ has infinitely many terms closer to L than ε.

False. For example, if $a_{n}=(-1)^{n}$ and $\varepsilon=1$, then (a_{n}) has infinitely many terms (the terms with an even index) that are closer to $L=1$ than ε (that is, $0<a_{2 n}<2$), but $\left(a_{n}\right)$ is divergent, so $L=1$ is not the limit.
3. If the sequence $\left(a_{n}\right)$ has no minimal term, then its limit cannot be $+\infty$.

True. The contrapositive of this statement is: if $\lim _{n \rightarrow \infty} a_{n}=+\infty$, then the sequence (a_{n}) has a minimal term. This statement is true, since $\lim _{n \rightarrow \infty} a_{n}=+\infty$ means that for all $K>0$, the sequence has only finitely many terms that are less than K. Among finitely many terms there is a minimal term. Since the contrapositive of the statement is true, then the original statement is also true.
4. If $a_{n}<b_{n}$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} a_{n}$ is divergent, then $\sum_{n=1}^{\infty} b_{n}$ is divergent.

False. For example, if $a_{n}=-1<0=b_{n}$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent but $\sum_{n=1}^{\infty} b_{n}$ is convergent.
The implication is only true if $a_{n} \geq 0$.
5. a) If $a_{n} \geq 0$ and $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\sum_{n=1}^{\infty} a_{n}^{3}$ is also convergent.

True. If $\sum_{n=1}^{\infty} a_{n}$ converges, then by the nth term test $a_{n} \rightarrow 0$. Then by the definition of the limit, there exists $n \in \mathbb{N}$ such that for all $n>\mathbb{N}$ we have $0 \leq a_{n}<1$. From this it follows that $0 \leq a_{n}^{3} \leq a_{n}<1$ also holds. Since $\sum_{n=1}^{\infty} a_{n}$ converges, then by the comparison test $\sum_{n=1}^{\infty} a_{n}^{3}$ also converges.
5. b) If x is a limit point of of $H \subset \mathbb{R}$, then x is a boundary point of H.

False. For example, $x=1$ is both a limit point and interior point of $H=(0,2)$, but not a boundary point.
6. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is not continuous at x_{0}, then f doesn't have a finite limit at x_{0}.

False. If f has a removable discontinuity at x_{0}, then $\exists \lim _{x \rightarrow x_{0}} f(x) \in \mathbb{R}$.
7. The function $f(x)=\arctan \left(\frac{1}{x}\right)$ has a jump discontinuity at $x=0$.

True. $\lim _{x \rightarrow 0+0} \frac{1}{x}=+\infty$ and $\lim _{x \rightarrow 0-0} \frac{1}{x}=-\infty \Longrightarrow \lim _{x \rightarrow 0+0} \arctan \left(\frac{1}{x}\right)=\frac{\pi}{2}$ and $\lim _{x \rightarrow 0-0} \arctan \left(\frac{1}{x}\right)=-\frac{\pi}{2}$,
so f has a jump discontinuity at $x=0$.
8. The function $f(x)=2^{-x^{2}+4}-x \sqrt{x^{2}+5}$ has a real root in the interval $[0,2]$.

True. $f(0)=2^{4}-0=16>0$ and $f(2)=2^{0}-2 \cdot 3=-5<0$, so by Bolzano's theorem f has a real root in the interval [0, 2].
9. If a function f is differentiable everywhere on \mathbb{R} and $|f(9)-f(5)| \leq 2$, then $\left|f^{\prime}(x)\right| \leq \frac{1}{2}$ for some $x \in[5,9]$.

True. By Lagrange's theorem there exists $c \in(5,9)$, such that $f^{\prime}(c)=\frac{f(9)-f(5)}{9-5} \Longrightarrow$

$$
\left|f^{\prime}(c)\right|=\frac{|f(9)-f(5)|}{4} \leq \frac{2}{4}=\frac{1}{2} .
$$

10. There exists a differentiable function $f:[a, b] \longrightarrow \mathbb{R}$ that has no maximum on $[a, b]$.

False. Since f is differentiable, then f is continuous on $[a, b]$, so by Weierstrass' extreme value theorem f has a maximum (and minimum) on $[a, b]$.
11. The function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable at x_{0} if and only if f is differentiable at x_{0} from the right and from the left.

False. For example, $f(x)=|x|$ is differentiable at $x=0$ from the right and from the left $\left(f_{+}^{\prime}(0)=1, f_{-}^{\prime}(0)=1\right)$, but since the one-sided derivatives are not equal, then f is not differentiable at $x=0$.
12. Assume that f is at least two times differentiable on \mathbb{R}. If f has a local maximum at x_{0} then $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$.

False. For example, if $f(x)=-x^{4}$, then f has a local maximum at $x_{0}=0$, but $f^{\prime}(0)=f^{\prime \prime}(0)=0$.
13. The partial fraction decomposition of $f(x)=\frac{x+1}{(x-1)^{3}(x+2)^{2}}$ cannot contain the term $\frac{A}{(x+2)^{3}}$.

True. The partial fraction decomposition is $f(x)=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}}+\frac{D}{x+2}+\frac{E}{(x+2)^{2}}$.
14. If the function $f:[a, b] \longrightarrow \mathbb{R}$ is Riemann-integrable, then it has an antiderivative.

False. For example, if $f(x)=\operatorname{sgn}(x)$, then the integral $\int_{-1}^{1} \operatorname{sgn}(x) d x$ exists, since f is continuous except one point. However, by Darboux's theorem, f doesn't have an antiderivative, since f has a jump
discontinuity.
15. There exists a function $f:[-1,1] \longrightarrow \mathbb{R}$ whose integral function is $F(x)=\operatorname{sgn}(x), x \in[-1,1]$.

False. The integral function of f is Lipschitz continuous on [-1, 1], so it is continuous.
However, $F(x)=\operatorname{sgn}(x)$ has a jump discontinuity at $x=0$, therefore it cannot be an integral function.

