Calculus 1-17

Definite integral

The Riemann integral

Definition. A partition of an interval $[a, b]$ is a finite set $P=\left\{x_{0}, x_{1}, \ldots x_{n}\right\}$ such that

$$
a=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=b .
$$

Definition. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is bounded and $P=\left\{x_{0}, x_{1}, \ldots x_{n}\right\}$ is a partition of $[a, b]$. Let

$$
\begin{aligned}
& m_{k}:=\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\} \\
& M_{k}:=\sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}
\end{aligned}
$$

The lower Darboux sum of f with respect to P is $s_{P}=\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right)$.
The upper Darboux sum of f with respect to P is $S_{P}=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)$.
The Riemann sum of f with respect to P is $\sigma_{P}=\sum_{k=1}^{n} f\left(c_{k}\right)\left(x_{k}-x_{k-1}\right)$, where $c_{k} \in\left[x_{k-1}, x_{k}\right]$ is arbitrary. The points c_{k} are called the evaluation points.

Statement. $s_{P} \leq \sigma_{P} \leq S_{P}$ for all partitions P.
Proof. It follows from the fact that $m_{k} \leq f\left(c_{k}\right) \leq M_{k}$ on each subinterval $\left[x_{k-1}, x_{k}\right]$.

Definition. Let P_{1} and P_{2} be partitions of $[a, b]$. If P_{2} contains all points of P_{1} and some additional points then P_{2} is a refinement of P_{1}.

Theorem. If P_{2} is a refinement of P_{1} then $S_{P_{1}} \leq S_{P_{2}}$ and $S_{P_{1}} \leq S_{P_{2}}$, that is, by refining a partition, the lower Darboux sum cannot decrease and the upper Darboux sum cannot increase.

Proof. Let P_{2} be the partition that is obtained from $P_{1}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ by adding the point $x_{k-1}<y<x_{k}$. We prove $s_{P_{1}} \leq s_{P_{2}}$.
Let $A=\inf \left\{f(x): x \in\left[x_{k-1}, y\right]\right\}$ and $B=\inf \left\{f(x): x \in\left[y, x_{k}\right]\right\}$.
Then $m_{k}\left(x_{k}-x_{k-1}\right)=m_{k}\left(y-x_{k-1}\right)+m_{k}\left(x_{k}-y\right) \leq A\left(y-x_{k-1}\right)+B\left(x_{k}-y\right)$
$\Longrightarrow s_{P_{2}}-s_{P_{1}}=A\left(y-x_{k-1}\right)+B\left(x_{k}-y\right)-m_{k}\left(x_{k}-x_{k-1}\right) \geq 0$.

Theorem. $s_{P_{1}} \leq S_{P_{2}}$ for any partitions P_{1} and P_{2} of $[a, b]$, that is, any lower Darboux sum is less than or equal to any upper Darboux sum.

Proof. Let $P_{3}=P_{1} \cup P_{2} \Longrightarrow P_{3}$ is a refinement of P_{1} and $P_{2} \Longrightarrow s_{P_{1}} \leq s_{P_{3}} \leq S_{P_{3}} \leq S_{P_{2}}$
Definition. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is bounded.
The lower Darboux integral of f is $\underline{\int_{a}^{b} f}=\sup \left\{s_{P}: P\right.$ is a partition of $\left.[a, b]\right\}$.
The upper Darboux integral of f is $\overline{\int_{a}^{b}} f=\inf \left\{S_{P}: P\right.$ is a partition of $\left.[a, b]\right\}$.
Consequence: $\int_{a}^{b} f \leq \overline{\int_{a}^{b} f}$
Definition. If $f:[a, b] \longrightarrow \mathbb{R}$ is bounded and $I=\int_{a}^{b} f=\overline{\int_{a}^{b}} f$ then f is Riemann integrable on $[a, b]$. In this case the Riemann integral of f on $[a, b]$ is denoted as $I=\int_{a}^{b} f(x) \mathrm{dx}$ or $I=\int_{a}^{b} f . \quad(f$ is called the integrand.)

Notation. $R[a, b]$ denotes the set of those functions that are Riemann integrable on $[a, b]$
Remark. If $f:[a, b] \rightarrow \mathbb{R}$ is not bounded on $[a, b]$ or bounded but $\int_{a}^{b} f<\overline{\int_{a}^{b}} f$ then f is not Riemann integrable on $[a, b]$.
Example: Let $f(x)=c \in \mathbb{R}, \int_{a}^{b} c \mathrm{dx}=$?

$$
s_{P}=\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} c\left(x_{k}-x_{k-1}\right)=c(b-a)
$$

$$
\begin{aligned}
& S_{P}=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} c\left(x_{k}-x_{k-1}\right)=c(b-a) \text { for all partitions } P . \\
& \int_{a}^{b} f=\sup \left\{s_{P}\right\}=c(b-a)=\inf \left\{S_{P}\right\}=\overline{\int_{a}^{b}} f \Rightarrow \int_{a}^{b} c \mathrm{dx}=c(b-a)
\end{aligned}
$$

Example: The Dirichlet function $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \in[0,1] \cap \mathbb{Q} \\ 0 & \text { if } x \in[0,1] \backslash \mathbb{Q}\end{array}\right.$ is bounded, and for all partitions P of $[0,1], s_{P}=0$ and $S_{P}=1$
$\Longrightarrow \int_{a}^{b} f=0$ and $\overline{\int_{a}^{b}} f=1$
$\Longrightarrow f$ is not integrable on $[0,1]$.

Necessary and sufficient conditions for Riemann integrability

Definition. The mesh or norm of a partition is the maximal distance between adjacent points in the partition: $\Delta P=\max _{k \in\{1, \ldots, n\}}\left(x_{k}-x_{k-1}\right)$.

Statement. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is bounded and $\left(P_{n}\right)$ is a sequence of partitions of $[a, b]$.

$$
\text { If } \lim _{n \rightarrow \infty} \Delta P_{n}=0 \text { then } \lim _{n \rightarrow \infty} s_{P_{n}}=\underline{\int_{a}^{b}} f \text { and } \lim _{n \rightarrow \infty} S_{P_{n}}=\overline{\int_{a}^{b}} f
$$

Statement. a) If $\exists \int_{a}^{b} f(x) \mathrm{dx} \Longrightarrow$ for all partition sequences $\left(P_{n}\right)$ for which $\lim _{n \rightarrow \infty} \Delta P_{n}=0$:

$$
\lim _{n \rightarrow \infty} s_{P_{n}}=\lim _{n \rightarrow \infty} S_{P_{n}}=\int_{a}^{b} f(x) \mathrm{dx}
$$

b) If $\left(P_{n}\right)$ is a partition sequence for which $\lim _{n \rightarrow \infty} \Delta P_{n}=0$ and $\lim _{n \rightarrow \infty} S_{P_{n}}=\lim _{n \rightarrow \infty} S_{P_{n}}=I$

$$
\Longrightarrow \exists \int_{a}^{b} f(x) \mathrm{dx}=1
$$

Definition. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is bounded and $P=\left\{x_{0}, x_{1}, \ldots x_{n}\right\}$ is a partition of $[a, b]$. Then the oscillation sum of f related to the partition P is

$$
O_{P}=\sum_{k=1}^{n}\left(M_{k}-m_{k}\right)\left(x_{k}-x_{k-1}\right)=S_{P}-s_{P} .
$$

Theorem (Riemann's criterion for integrability). Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is bounded.
f is integrable on $[a, b] \Longleftrightarrow$ for all $\varepsilon>0$ there exists a partition P such that $O_{P}=S_{P}-s_{P}<\varepsilon$.
Proof. \Rightarrow : Assume that f is integrable and $\varepsilon>0$. Then there exist partitions P_{1} and P_{2} such that

$$
0 \leq S_{P_{2}}-\overline{\int_{a}^{b}} f<\frac{\varepsilon}{2} \text { and } 0 \leq \underline{\int_{a}^{b}} f-s_{P_{1}}<\frac{\varepsilon}{2} .
$$

Let $P=P_{1} \cup P_{2}$ (P is a common refinement of P_{1} and P_{2}). Then $s_{P_{1}} \leq s_{P} \leq S_{P} \leq S_{P_{2}}$, so
$0 \leq O_{P}=S_{P}-s_{P} \leq S_{P_{2}}-s_{P_{1}}=\left(s_{P_{2}}-\overline{\int_{a}^{b}}\right)+\left(\underline{\int_{a}^{b} f}-s_{P_{1}}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$
\Longleftarrow : For any partition $P, s_{P} \leq \int_{a}^{b} f \leq \overline{\int_{a}^{b}} f \leq S_{P}$, so
$0 \leq \overline{\int_{a}^{b}} f-\int_{a}^{b} f \leq S_{P}-S_{P}=O_{P}<\varepsilon$ for all $\varepsilon>0 \Longrightarrow \overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} f$, that is, f is integrable.
Remark. Recall that the Riemann sum of f with respect to the partition P is $\sigma_{P}=\sum_{k=1}^{n} f\left(c_{k}\right)\left(x_{k}-x_{k-1}\right)$, where the evaluation points $c_{k} \in\left[x_{k-1}, x_{k}\right]$ are arbitrary and $S_{P} \leq \sigma_{P} \leq S_{P}$ for all partitions P.

Theorem. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is bounded. Then

1. $\exists \int_{a}^{b} f(x) \mathrm{dx}=I \Longrightarrow$ for all partition sequences $\left(P_{n}\right)$ for which $\lim _{n \rightarrow \infty} \Delta P_{n}=0$: $\lim _{n \rightarrow \infty} \sigma_{P_{n}}=\int_{a}^{b} f(x) \mathrm{dx}=I$ (independent of the choice of the evaluation points).
2. $\exists \int_{a}^{b} f(x) \mathrm{dx}=I \Longleftarrow$ there exists a partition sequence $\left(P_{n}\right)$ for which $\lim _{n \rightarrow \infty} \Delta P_{n}=0$ and $\exists \lim _{n \rightarrow \infty} \sigma_{P_{n}}=I$ (independent of the choice of the evaluation points).

Remark. The proof of part 1. is obvious, since $S_{P_{n}} \leq \sigma_{P_{n}} \leq S_{P_{n}}$ and $\lim _{n \rightarrow \infty} S_{P_{n}}=\lim _{n \rightarrow \infty} S_{P_{n}}=I$.
Remark. It is important that the limit exists independent of the choice of $c_{k} \in\left[x_{k-1}, x_{k}\right]$ in the
Riemann sum. For example, assume that f is the Dirichlet function on $[a, b]$ and $\left(P_{n}\right)$ is a sequence of partitions for which $\lim _{n \rightarrow \infty} \Delta P_{n}=0$.
If c_{k} is rational: $\sigma_{P_{n}}=\sum_{k=1}^{n} 1 \cdot\left(x_{k}-x_{k-1}\right)=1 \cdot(b-a) \longrightarrow b-a$
If c_{k} is irrational: $\sigma_{P_{n}}=\sum_{k=1}^{n} 0 \cdot\left(x_{k}-x_{k-1}\right)=0 \longrightarrow 0$
\Longrightarrow the Dirichlet function is not integrable on any interval.

Sufficient conditions for Riemann integrability

Theorem. If f is monotonic and bounded on $[a, b]$ then f is Riemann integrable on $[a, b]$.
Proof. Assume that f is monotonically increasing.

1) If $f(a)=f(b)$ then f is constant, so $f \in R[a, b]$.
2) If $f(a)<f(b)$ then we show that for all $\varepsilon>0$ there exists a partition P such that the oscillation sum $O_{P}=S_{P}-s_{P}<\varepsilon$.
3) Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition with mesh

$$
\Delta P=\max _{k \in\{1, \ldots, n\}}\left(x_{k}-x_{k-1}\right)<\delta=\frac{\varepsilon}{f(b)-f(a)}>0 .
$$

4) Then for the oscillation sum we get that

$$
\begin{aligned}
& O_{P}=S_{P}-s_{P}=\sum_{k=1}^{n}\left(\boldsymbol{M}_{\boldsymbol{k}}-\boldsymbol{m}_{\boldsymbol{k}}\right)\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n}\left(\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{k}}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{k}-\mathbf{1}}\right)\right)\left(\boldsymbol{x}_{\boldsymbol{k}}-\boldsymbol{x}_{\boldsymbol{k}-\mathbf{1}}\right)< \\
& <\delta \sum_{k=1}^{n}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)=\delta(f(b)-f(a))=\boldsymbol{\varepsilon}
\end{aligned}
$$

Theorem. If $f:[a, b] \longrightarrow \mathbb{R}$ is continuous then f is Riemann integrable on $[a, b]$.
Proof. 1) We prove that for all $\varepsilon>0$ there exists a partition P such that the oscillation sum $O_{P}=S_{P}-s_{P}<\varepsilon$.
2) f is continuous on $[a, b] \Longrightarrow f$ is bounded and also uniformly continuous on $[a, b]$.
\Longrightarrow for $\frac{\varepsilon}{b-a}>0$ there exists $\delta>0$ such that $\forall x, y \in[a, b]$,

$$
|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\frac{\varepsilon}{b-a} .
$$

3) Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition with mesh $\Delta P=\max _{k \in\{1, \ldots, n\}}\left(x_{k}-x_{k-1}\right)<\delta$.
4) f is continuous on $\left[x_{k-1}, x_{k}\right] \Longrightarrow$ by the extreme value theorem f has a minimum for some $c_{k} \in\left[x_{k-1}, x_{k}\right]$ and a maximum for some $d_{k} \in\left[x_{k-1}, x_{k}\right]$, let $f\left(c_{k}\right)=m_{k}, f\left(d_{k}\right)=M_{k}$.
5) Then obviously $\left|\boldsymbol{d}_{\boldsymbol{k}}-\boldsymbol{c}_{\boldsymbol{k}}\right|<\boldsymbol{\delta}$, so for the oscillation sum we get that

$$
\begin{aligned}
& O_{P}=S_{P}-S_{P}=\sum_{k=1}^{n}\left(M_{k}-m_{k}\right)\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n}\left(f\left(d_{k}\right)-f\left(c_{k}\right)\right)\left(x_{k}-x_{k-1}\right)= \\
& =\sum_{k=1}^{n}\left|f\left(d_{k}\right)-f\left(c_{k}\right)\right|\left(x_{k}-x_{k-1}\right)<\sum_{k=1}^{n} \frac{\varepsilon}{b-a}\left(x_{k}-x_{k-1}\right)= \\
& =\frac{\varepsilon}{b-a} \sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right)=\frac{\varepsilon}{b-a}(b-a)=\varepsilon .
\end{aligned}
$$

Theorem. If $f:[a, b] \longrightarrow \mathbb{R}$ is bounded and continuous except finitely many points then f is Riemann integrable on $[a, b]$.

Proof. 1) We prove it in the case of one point. Let $c \in[a, b]$ and assume that f is continuous on $[a, b] \backslash\{c\}$. Let $K>0$ be such that $|f(x)| \leq K$ for all $x \in[a, b]$. We show that for all $\varepsilon>0$ there exists a partition P such that $O_{P}<\varepsilon$.
2) If $c-\frac{\varepsilon}{8 K}>a$ then let $c_{1}=c-\frac{\varepsilon}{8 K}$ and let P_{1} be a partition of $\left[a, c_{1}\right]$ such that $O_{P_{1}}<\frac{\varepsilon}{4}$.

Such a partition exists since f is continuous on $\left[a, c_{1}\right]$.
If $c-\frac{\varepsilon}{8 K} \leq a$ then let $c_{1}=a$ and $P_{1}=\{a\}$.
3) If $c+\frac{\varepsilon}{8 K}<b$ then let $c_{2}=c+\frac{\varepsilon}{8 K}$ and let P_{2} be a partition of $\left[c_{2}, b\right]$ such that $O_{P_{2}}<\frac{\varepsilon}{4}$. Such a partition exists since f is continuous on $\left[c_{2}, b\right]$.
If $c+\frac{\varepsilon}{8 K} \geq b$ then let $c_{2}=b$ and $P_{2}=\{b\}$.
4) Then $P=P_{1} \cup P_{2}$ is a suitable choice.

Remark. If $f, g:[a, b] \longrightarrow \mathbb{R}, f$ is Riemann integrable and $f(x)=g(x)$ except finitely many points in $[a, b]$ then g is Riemann integrable and $\int_{a}^{b} f=\int_{a}^{b} g$.

Newton-Leibniz formula

Theorem (First fundamental theorem of calculus, Newton-Leibniz formula).
If $f:[a, b] \longrightarrow \mathbb{R}$ is Riemann integrable and $F:[a, b] \longrightarrow \mathbb{R}$ is an antiderivative of f, that is, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{dx}=F(b)-F(a)=[F(x)]_{a}^{b}
$$

Proof. Let $\left(P_{n}\right)$ be a partition sequence of $[a, b]$ such that $\lim _{n \rightarrow \infty} \Delta P_{n}=0$.
For all $k \in\{1,2, \ldots, n\}, F$ is continuous on $\left[x_{k-1}, x_{k}\right]$ and differentiable on $\left(x_{k-1}, x_{k}\right)$, so by Lagrange's mean value theorem there exists $x_{k-1}<c_{k}<x_{k}$ such that

$$
\begin{aligned}
& \frac{F\left(x_{k}\right)-F\left(x_{k-1}\right)}{x_{k}-x_{k-1}}=F^{\prime}\left(c_{k}\right)=f\left(c_{k}\right) \Longrightarrow F\left(x_{k}\right)-F\left(x_{k-1}\right)=f\left(c_{k}\right)\left(x_{k}-x_{k-1}\right) \\
& \begin{array}{c}
\Rightarrow F(b)-F(a)=\left(F\left(x_{1}\right)-F\left(x_{0}\right)\right)+\left(F\left(x_{2}\right)-F\left(x_{1}\right)\right)+\ldots+\left(F\left(x_{n}\right)-F\left(x_{n-1}\right)\right)= \\
\quad=\sum_{k=1}^{n}\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)=\sum_{k=1}^{n} f\left(c_{k}\right)\left(x_{k}-x_{k-1}\right)=\sigma_{P_{n}} \\
\Rightarrow F(b)-F(a)=\sigma_{P_{n}}
\end{array}
\end{aligned}
$$

Taking the limits of both sides: $\lim _{n \rightarrow \infty}(F(b)-F(a))=\lim _{n \rightarrow \infty} \sigma_{P_{n}}$
The left-hand side is independent of n and since f is integrable then the limit of the right-hand side is the integral of f, so
$F(b)-F(a)=\int_{a}^{b} f(x) \mathrm{d} x$.
Remark. The geometrical meaning of $\int_{a}^{b} f$ is the signed area under the graph of f on $[a, b]$.
Remark. Both conditions of the theorem are important as the following examples show.

Examples

Example 1. Let $F(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$, then $F^{\prime}(x)=f(x)=\left\{\begin{array}{ll}2 x \sin \frac{1}{x^{2}}-\frac{2}{x} \cos \frac{1}{x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$. f has an antiderivative, however, $\int_{0}^{1} f(x) d x$ doesn't exist, since f is not bounded.
Example 1. $\int_{0}^{5} \operatorname{sign}\left(x^{2}-5 x+6\right) d x$ exists, since f is continuous except 2 points. However, by Darboux's theorem, f doesn't have an antiderivative, since f has jump discontinuities.

Properties of Riemann integrable functions

Definition. If $f \in R[a, b] \int_{b}^{a} f(x) \mathrm{dx}:=-\int_{a}^{b} f(x) \mathrm{dx}, \int_{a}^{a} f(x) \mathrm{dx}:=0$
Theorem. Let $f, g \in R[a, b]$ and $\lambda \in \mathbb{R}$. Then
(1) $\lambda f, f+g, f-g \in R[a, b]$ and $\int_{a}^{b} \lambda f=\lambda \int_{a}^{b} f, \int_{a}^{b}(f \pm g)=\int_{a}^{b} f \pm \int_{a}^{b} g$
(2) $[\alpha, \beta] \subset[a, b] \Longrightarrow f \in R[\alpha, \beta]$
(3) $a<c<b \Rightarrow \int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$
(4) $f(x) \leq g(x) \forall x \in[a, b] \Longrightarrow \int_{a}^{b} f(x) \mathrm{dx} \leq \int_{a}^{b} g(x) \mathrm{dx}$
(5) $|f| \in R[a, b] \Longrightarrow\left|\int_{a}^{b} f(x) \mathrm{dx}\right| \leq \int_{a}^{b}|f(x)| \mathrm{dx}$
(6) $\inf _{[a, b]} f \leq \frac{1}{b-a} \int_{a}^{b} f \leq \sup _{[a, b]} f$

Integration by parts

Theorem. If f and g are continuously differentiable on $[a, b]$ then $\int_{a}^{b} f^{\prime} g=[f g]_{a}^{b}-\int_{a}^{b} f g^{\prime}$

Integration by substitution

Theorem. If g is continuously differentiable, strictly monotonic, $[a, b] \subset D_{g}$ and

$$
f \text { is continuous on }[a, b] \text { then } \int_{a}^{b} f(x) \mathrm{dx}=\int_{g^{-1}(a)}^{g^{-1}(b)} f(g(t)) g^{\prime}(t) \mathrm{dt} \text {. }
$$

Example. $I=\int_{0}^{\ln 2} \sqrt{e^{x}-1} \mathrm{dx}=$?
Solution. Substitution: $t=\sqrt{e^{x}-1} \Longrightarrow x=x(t)=\ln \left(t^{2}+1\right)$

$$
x^{\prime}(t)=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{1}{t^{2}+1} \cdot 2 t \Longrightarrow \mathrm{dx}=\frac{2 t}{t^{2}+1} \mathrm{dt}
$$

The bounds will change: $x_{1}=0 \Longrightarrow t_{1}=\sqrt{e^{0}-1}=0$

$$
x_{2}=\ln 2 \Rightarrow t_{2}=\sqrt{e^{\ln 2}-1}=\sqrt{2-1}=1
$$

$I=\int_{0}^{\ln 2} \sqrt{e^{x}-1} \mathrm{dx}=\int_{t_{1}}^{t_{2}} t \cdot \frac{2 t}{t^{2}+1} \mathrm{dt}=\int_{0}^{1} \frac{2 t^{2}}{t^{2}+1} \mathrm{dt}=\int_{0}^{1} \frac{2\left(t^{2}+1\right)-2}{t^{2}+1} \mathrm{dt}=\int_{0}^{1}\left(2-\frac{2}{t^{2}+1}\right) \mathrm{dt}=$
$=[2 t-2 \operatorname{arctg} t]_{0}^{1}=(2 \cdot 1-2 \operatorname{arctg} 1)-(0-0)=2-\frac{\pi}{2}$

Lebesgue's theorem

Definition. We say that the set $A \subset \mathbb{R}$ has Lebesgue measure $\mathbf{0}$ if for all $\varepsilon>0$ there exist sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ such that $x_{n} \leq y_{n}, A \subset \bigcup_{n=1}^{\infty}\left[x_{n}, y_{n}\right]$ and $\sum_{n=1}^{\infty}\left(y_{n}-x_{n}\right)<\varepsilon$. (That is, A can be covered with countably many intervals such that their total length is less than ε.)

Examples. 1) Any countable set of \mathbb{R} has Lebesgue measure 0 , for example \mathbb{N}, \mathbb{Z} or \mathbb{Q}.
2) The Cantor set is defined in the following way. Let $C_{0}=[0,1]$.
C_{1} is obtained from C_{0} by deleting the open middle third from C_{0}, that is,
$C_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$.
C_{2} is obtained from C_{1} by deleting the open middle thirds from C_{1}, that is, $C_{2}=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \bigcup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right]$
Continuing this process, C_{n+1} is obtained from C_{n} by deleting the open middle thirds of each of these intervals. The Cantor set is $C=\bigcap_{n \in \mathbb{N}} C_{n}$.

It can proved that the Cantor set is uncountable but has Lebesgue measure 0.

Theorem (Lebesgue). The function $f:[a, b] \longrightarrow \mathbb{R}$ is Riemann integrable if and only if it is bounded and the set of discontinuities of f has Lebesgue measure 0 .

Remark. If $f:[a, b] \longrightarrow \mathbb{R}$ is monotonic then f has at most countably many discontinuities (and they are jump discontinuities), so by Lebesgue's theorem f is Riemann integrable.

Example*. The Riemann function is defined as
$f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)= \begin{cases}0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} \\ \frac{1}{q} & \text { if } x=\frac{p}{q} \text { where } p \in \mathbb{Z}, \text { and } q \in \mathbb{N}^{+} \text {are coprimes }\end{cases}$
Prove that
a) $\lim _{x \rightarrow a} f(x)=0 \quad \forall a \in \mathbb{R}$;
a) f is continuous at all irrational numbers;
b) f is discontinuous at all rational numbers.

Solution. If $q \in \mathbb{N}^{+}$is fixed then the set $\mathbb{Z} \cdot \frac{1}{q}=\left\{\frac{k}{q}: k \in \mathbb{Z}\right\}$ does not have any real limit points.
Therefore a finite union of such sets, $A_{n}=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in\{1,2, \ldots, n\}\right\}$ does not have any limit points either. If $x \in \mathbb{R} \backslash A_{n}$ the $|f(x)|<\frac{1}{n}$, so for all $x_{0} \in \mathbb{R}, \lim _{x \rightarrow x_{0}} f(x)=0$.
$\Longrightarrow f$ is continuous at all irrational points and has a removable discontinuity at all rational points.
The Riemann function is bounded and the set of discontinuities is countable, so it has Lebesgue measure $0 \Longrightarrow f$ is Riemann integrable and $\int_{a}^{b} f(x) \mathrm{dx}=0$.

The integral function

Definition. Assume that f is Riemann integrable on $[a, b]$. Then the function

$$
F(x)=\int_{a}^{x} f(t) \mathrm{dt}, x \in[a, b]
$$

is called the integral function of f.

Theorem (Second fundamental theorem of calculus).

Assume that f is Riemann integrable on $[a, b]$ and $F(x)=\int_{a}^{x} f(t) \mathrm{dt}, x \in[a, b]$. Then

1. F is Lipschitz continuous on $[a, b]$.
2. If f is continuous at $x_{0} \in[a, b]$ then F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

Proof. 1. Let $K=\sup _{[a, b]}|f(x)|$. If $K=0$ then $f=0$ so $F=0$ is Lipschitz continuous.
If $K \neq 0$ then $0<K \in \mathbb{R}$. Let $\varepsilon>0$ and $\delta(\varepsilon)=\frac{\varepsilon}{K}$. If $x, y \in[a, b]$ such that $|x-y|<\delta$ then
$|F(x)-F(y)|=\left|\int_{a}^{x} f(t) \mathrm{dt}-\int_{a}^{y} f(t) \mathrm{dt}\right|=\left|\int_{y}^{x} f(t) \mathrm{dt}\right| \leq\left|\int_{y}^{x}\right| f(t)|\mathrm{dt}| \leq\left|\int_{y}^{x} K \mathrm{dt}\right| \leq$ $\leq K|x-y|<K \delta=\varepsilon \Longrightarrow F$ is Lipschitz continuous.
2. $F^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{F(x)-F\left(x_{0}\right)}{x-x_{0}}=f\left(x_{0}\right)$ if for all $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left|\frac{F(x)-F\left(x_{0}\right)}{x-x_{0}}-f\left(x_{0}\right)\right|<\varepsilon \text { if } 0<\left|x-x_{0}\right|<\delta
$$

Let $\varepsilon>0$. Since f is continuous at x_{0} then $\exists \delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$ if $\left|x-x_{0}\right|<\delta$.
Then with this δ

$$
\begin{aligned}
& \left|\frac{F(x)-F\left(x_{0}\right)}{x-x_{0}}-f\left(x_{0}\right)\right|=\left|\frac{F(x)-F\left(x_{0}\right)-f\left(x_{0}\right)\left(x-x_{0}\right)}{x-x_{0}}\right|=\left|\frac{\int_{x_{0}}^{x} f(t) d t-\int_{x_{0}}^{x} f\left(x_{0}\right) \mathrm{dt}}{x-x_{0}}\right|= \\
& =\left|\frac{\int_{x_{0}}^{x}\left(f(t)-f\left(x_{0}\right)\right) \mathrm{dt}}{x-x_{0}}\right| \leq \frac{\left|\int_{x_{0}}^{x}\right| f(t)-f\left(x_{0}\right)|\mathrm{dt}|}{\left|x-x_{0}\right|} \leq \frac{\left|\int_{x_{0}}^{x} \varepsilon \mathrm{dt}\right|}{\left|x-x_{0}\right|}=\frac{\left|\varepsilon\left(x-x_{0}\right)\right|}{\left|x-x_{0}\right|}=\varepsilon .
\end{aligned}
$$

Consequence.

1. If f is continuous on $[a, b]$ and $F(x)=\int_{a}^{x} f(t) \mathrm{dt}, x \in[a, b]$ then $F^{\prime}(x)=f(x) \forall x \in[a, b]$.
2. Every continuous function has an antiderivative.

Examples

Example 1. Calculate the derivatives of the following functions:
a) $F(x)=\int_{0}^{x} \sin t^{2} \mathrm{dt}, x \neq 0$
b) $G(x)=\int_{0}^{x^{3}} \sin t^{2} d t$
c) $H(x)=\int_{x^{2}}^{x^{3}} \sin t^{2} d t$

Solution. a) $F^{\prime}(x)=\sin x^{2}$, since $f(t)=\sin \left(t^{2}\right)$ is continuous.
b) $G(x)=F\left(x^{3}\right) \Longrightarrow G^{\prime}(x)=F^{\prime}\left(x^{3}\right) \cdot 3 x^{2}=\sin \left(\left(x^{3}\right)^{2}\right) \cdot 3 x^{2}=\sin \left(x^{6}\right) \cdot 3 x^{2}$
c) $H(x)=\int_{0}^{x^{3}} \sin t^{2} d t-\int_{0}^{x^{2}} \sin t^{2} d t=F\left(x^{3}\right)-F\left(x^{2}\right) \Longrightarrow H^{\prime}(x)=\sin \left(x^{6}\right) \cdot 3 x^{2}-\sin \left(x^{4}\right) \cdot 2 x$

Example 2. $\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \arctan t^{2} d t}{x^{2}}=$?
Solution. The limit has the form $\frac{0}{0}$ and the numerator is differentiable since $f(t)=\arctan t^{2}$ is continuous

$$
\Longrightarrow \lim _{x \rightarrow 0} \frac{\int_{0}^{x} \arctan t^{2} d t}{x^{2}} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{\arctan x^{2}}{2 x} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{\frac{1}{1+x^{4}} \cdot 2 x}{2}=0
$$

Applications

Area

Example. Calculate the area of the unit circle.
Solution. The equation of the circle with radius $r=1$ centered at the origin is

$$
x^{2}+y^{2}=1 \Longrightarrow y^{2}=1-x^{2} \Longrightarrow y= \pm \sqrt{1-x^{2}}
$$

The area of the unit circle is $A=2 \int_{-1}^{1} \sqrt{1-x^{2}} \mathrm{dx}$

Substitution: $x=x(t)=\sin t \Longrightarrow t=\arcsin x$

$$
x^{\prime}(t)=\frac{\mathrm{dx}}{\mathrm{dt}}=\cos t \Longrightarrow \mathrm{dx}=\cos t \mathrm{dt}
$$

The bounds will change: $x_{1}=-1 \Longrightarrow t_{1}=\arcsin (-1)=-\frac{\pi}{2}$

$$
x_{2}=1 \Longrightarrow t_{2}=\arcsin 1=\frac{\pi}{2}
$$

$$
\Longrightarrow A=2 \int_{-1}^{1} \sqrt{1-x^{2}} \mathrm{dx}=\int_{-\pi / 2}^{\pi / 2} 2 \sqrt{1-(\sin t)^{2}} \cos t \mathrm{dt}=2 \int_{-\pi / 2}^{\pi / 2} \cos t \cdot \cos t \mathrm{dt}
$$

$$
=\int_{-\pi / 2}^{\pi / 2} \mathbf{2} \cos ^{2} \boldsymbol{t} d t=\int_{-\pi / 2}^{\pi / 2}(\mathbf{1}+\cos 2 \boldsymbol{t}) \mathrm{dt}=\left[t+\frac{\sin 2 t}{2}\right]_{-\pi / 2}^{\pi / 2}
$$

$$
=\left(\frac{\pi}{2}+\frac{\sin \pi}{2}\right)-\left(-\frac{\pi}{2}+\frac{\sin (-\pi)}{2}\right)=\left(\frac{\pi}{2}+0\right)-\left(-\frac{\pi}{2}+0\right)=\pi
$$

Arc length

Theorem. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is continuously differentiable. Then the arc length of the graph of f is $L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{dx}$.

Remark. Let $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b$ be a partition. If f is differentiable then by Lagrange's
mean value theorem there exists $c_{k} \in\left(x_{k-1}, x_{k}\right)$ such that $m=f^{\prime}\left(c_{k}\right)$, where m is the slope of the secant line connecting the points $\left(x_{k-1}, f\left(x_{k-1}\right)\right)$ and $\left(x_{k}, f\left(x_{k}\right)\right)$.
So the arc length can be approximated by the sum $\sum_{k=1}^{n} \sqrt{1+\left(f^{\prime}\left(c_{k}\right)\right)^{2}}\left(x_{k}-x_{k-1}\right)$, which is
the Riemann sum of the function $\sqrt{1+\left(f^{\prime}(x)\right)^{2}}$.
If f is continuously differentiable then the arc length of the graph of f is $L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{dx}$.

Example. Calculate the arc length of the unit circle.
Solution. Let $f(x)=\sqrt{1-x^{2}}$ if $x \in[-1,1]$.
$f^{\prime}(x)=\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}}(-2 x)=-\frac{x}{\sqrt{1-x^{2}}}$
$\Rightarrow \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\sqrt{1+\frac{x^{2}}{1-x^{2}}}=\sqrt{\frac{1}{1-x^{2}}}=\frac{1}{\sqrt{1-x^{2}}}$
The arc length of the unit circle is
$L=2 \int_{-1}^{1} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{dx}=2 \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} \mathrm{dx}=2 \lim _{a \rightarrow-1+b \rightarrow 1-} \lim _{a}^{b} \frac{1}{\sqrt{1-x^{2}}} \mathrm{dx}=$ $=2 \lim _{a \rightarrow-1+b \rightarrow 1-} \lim [\arcsin x]_{a}^{b}=2 \lim _{a \rightarrow-1+b \rightarrow 1-} \lim _{(\arcsin b-\arcsin a)}=$ $=2(\arcsin 1-\arcsin (-1))=2\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right)=2 \pi$

Volume of solids of revolutions

Theorem. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous and nonnegative and the graph of f is rotated about the x axis. Then the volume of this solid of revolution is $V=\pi \int_{a}^{b} f^{2}(x) d x$.

Remark. If $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b$ is a partition then the volume can be approximated by the sum $\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \pi f^{2}\left(c_{k}\right)$ where $c_{k} \in\left[x_{k-1}, x_{k}\right]$ is arbitrary.
(Geometrically it means that the volume can be approximated by the sum of volumes of cylinders.)
This is the Riemann sum of the function $\pi f^{2}(x)$, so if f is continuous then the volume is $V=\pi \int_{a}^{b} f^{2}(x) \mathrm{dx}$.

Surface area of solids of revolutions

Theorem. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is continuously differentiable and nonnegative and the graph of f is rotated about the x axis. Then the surface area of this solid of revolution is $A=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{dx}$.

Remark. If $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b$ is a partition then the surface area of the solid of revolution can be approximated by the sum

$$
\sum_{k=1}^{n} \pi\left(f\left(x_{k-1}\right)+f\left(x_{k}\right)\right) \sqrt{1+\left(f^{\prime}\left(c_{k}\right)\right)^{2}}\left(x_{k}-x_{k-1}\right)
$$

where $c_{k} \in\left[x_{k-1}, x_{k}\right]$ exists by the Lagrange intermediate value theorem if f is differentiable. (Geometrically it means that the surface area can be approximated by the sum of lateral surfaces of truncated cones.)

If f is continuously differentiable then $f\left(x_{k-1}\right)+f\left(x_{k}\right) \approx 2 f\left(c_{k}\right)$, so the above sum will be the Riemann sum of the function $2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}}$. Therefore if f is continuously differentiable then the surface area is $A=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{dx}$.

Exercise

Let $f(x)=\sqrt{r^{2}-x^{2}},-r \leq x \leq r$. Rotating the graph of f about the x axis, we get a sphere with radius r. Calculate the volume and surface area of the sphere.

Solution: 1 . The volume can be calculated as $V=\pi \int_{a}^{b} f^{2}(x) \mathrm{dx}$
The integrand is $(f(x))^{2}=r^{2}-x^{2}$
The volume is $V=\pi \int_{-r}^{r}\left(r^{2}-x^{2}\right) \mathrm{dx}=\pi\left[r^{2} x-\frac{x^{3}}{3}\right]_{-r}^{r}=$
$=\pi\left(\left(r^{3}-\frac{r^{3}}{3}\right)-\left(-r^{3}+\frac{r^{3}}{3}\right)\right)=\frac{4 r^{3} \pi}{3}$
2. The surface area can be calculated as $A=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$ The derivative of f is $f^{\prime}(x)=\left(\left(r^{2}-x^{2}\right)^{\frac{1}{2}}\right)^{\prime}=\frac{1}{2}\left(r^{2}-x^{2}\right)^{-\frac{1}{2}} \cdot(-2 x)=-\frac{x}{\sqrt{r^{2}-x^{2}}}$
$\Longrightarrow 1+\left(f^{\prime}(x)\right)^{2}=1+\frac{x^{2}}{r^{2}-x^{2}}=\frac{r^{2}-x^{2}+x^{2}}{r^{2}-x^{2}}=\frac{r^{2}}{r^{2}-x^{2}}$
The integrand is $f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\sqrt{r^{2}-x^{2}} \cdot \sqrt{\frac{r^{2}}{r^{2}-x^{2}}}=r$
The surface area is $A=2 \pi \int_{-r}^{r} r \mathrm{dx}=2 \pi \cdot[r x]_{-r}^{r}=2 \pi\left(r^{2}-\left(-r^{2}\right)\right)=4 r^{2} \pi$
Additional exercises: Chapter 5, from page 86:
https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_gyak.pdf

