Calculus1-17

Definite integral

The Riemann integral

Definition. A partition of an interval [a, b] is a finite set P = {xg, X1, ... Xy} such that
A=Xg<X;<..<Xp_1<X,=b.
Definition. Assume that f : [0, b]—R is bounded and P = {xq, x1, ...X,}is a partition of [a, b]. Let
my = inf{f(x) : x € [xe_1, X[}
My :=sup {f(x) : x & [X4_1, X]}

n
The lower Darboux sum of f with respectto Pis sp = ka(xk - Xy_1)-
k=1

n
The upper Darboux sum of f with respectto Pis Sp = ZMk(xk - X)_1)-
k=1

n
The Riemann sum of f with respectto Pis gp= Zf(ck) (X — Xk-1), where
k=1
Cx € [Xk_1, X] is arbitrary. The points ¢, are called the evaluation points.
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A A A
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a=xg b=x, a=xg b=x, a=xg b=x,

Statement. sp < 0, < S, for all partitions P.

Proof. It follows from the fact that m, < f(c,) < M, on each subinterval [x,_;, x].

Definition. Let P, and P, be partitions of [a, b]. If P, contains all points of P;
and some additional points then P, is a refinement of P;.
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Theorem. If P, is a refinement of P; then sp, <sp, and Sp, < Sp,,
that is, by refining a partition, the lower Darboux sum cannot
decrease and the upper Darboux sum cannot increase.

Proof. Let P, be the partition that is obtained from P = {xq, x1, ..., X,} by adding
the point x,_; <y <xi. We prove sp, < sp,.
Let A=inf{f(x):xe[xc1, y]} and B=inf{f(x):x e[y, x]}.
Then my (X = Xy-1) = Mp(Y = Xk-1) + Me(Xi = ¥) SA(Y = Xg1) + Blxy = y)
= Sp, = Sp, =A(Y = Xk-1) + B(Xk = ¥) = My(xy = Xk_1) 2 0.
\ A

Xo Xe-1 Y X Xp Xo Xe-1Y Xk Xp

Theorem. sp, < Sp, for any partitions P, and P, of [a, b], thatis,
any lower Darboux sum is less than or equal to any upper Darboux sum.

Proof. Let P; =P, UP, = Pjisarefinementof P, and P, = sp <sp, <Sp, < Sp,
Definition. Assume that f : [a, b]— R is bounded.

b
The lower Darboux integral of f is f f =sup{sp: Pis a partition of [a, b]}.
Ja_

b
The upper Darboux integral of f is f f=inf{Sp: Pis a partition of [a, b]}.
b (b
Consequence: J fsjf

b (b
Definition. If f : [a, b]— R is bounded and/:Jf:jfthenfis Riemann integrable on [a, b].

In this case the Riemann integral of f on [a, b] is denoted as
b b
= [ f(x)dx or I= j f.  (fiscalled the integrand.)
Notation. R[a, b] denotes the set of those functions that are Riemann integrable on [a, b]

)
Remark. If f : [a, b]—Ris not bounded on [a, b] or bounded but j f< j f then fis not
Riemann integrable on [a, b].

Example: Let f(x) =ceR, fc dx=7?

Sp= ka(Xk = Xk-1) = ZC(Xk - X-1) = (b -a),

k=1 k=1
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n n
Sp= ZMk(xk - X1) Zc Xk — Xk-1) = c(b - a) for all partitions P.
k=1 k=1

b b
jf=sup{sp}=c(b—a)=inf{Sp}=ff = chx=c(b—a)

1 if 0,1
Example: The Dirichlet function f(x) ={ 0 :fii {0, 1} Cg is bounded, and for all

partitions Pof [0, 1], sp=0and Sp=1
b b

- ff=0andjf=1
a a

= fis notintegrable on [0, 1].

Necessary and sufficient conditions for Riemann integrability

Definition. The mesh or norm of a partition is the maximal distance between
adjacent points in the partition: AP= Mnax (Xk = Xk_1)-
{1}

,,,,,

Statement. Assume that f : [a, b]— R is bounded and (P,) is a sequence of partitions of [a, b].

If imAP,=0 then limspn_ fand lim Sp, -jf

N—oo N—oo N—>co0

N—>co

b
Statement. a) If 3 J f(x)dx = for all partition sequences (P,) for which limA P, = 0:

b
limsp, _l|mSP _[f(x)dx.

N—>oco

b) If (P,) is a partition sequence for which imA P, =0 and limsp, = l|m SP =

N—>o0 N—oco

=3 jf(x)dx:/.

Definition. Assume that f : [a, b]—R is bounded and P = {x,, x1, ...X,}is a partition of [a, b].
Then the oscillation sum of f related to the partition Pis

n

Op= (Mi—my) (X = Xi-1) = Sp = Sp.
k=1

Theorem (Riemann’s criterion for integrability). Assume that f : [a, b] — R is bounded.
fisintegrable on [a, b] < for all £ > 0 there exists a partition P such that Op = Sp—sp<¢.

Proof. = : Assume that f is integrable and ¢ > 0. Then there exist partitions P; and P, such that

b ¢ b £
Ossz—jf<— andOij—spl<—.
a 2 Ja_ 2
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LetP=P; UP, (Pisacommon refinement of P; and P,). Then sp, <sp<Sp<Sp,, 50

b b £ €
OSOP=SP_SPSSP2_SP1=(SPZ_J +(jf—5pl)<5+£:€
a =a_

)
< For any partition P, SijfSJfSSP,SO
ZJa_ a

b b b b
OSJf—stSP—sp=Op<£forall£>0 = Jf=jf,thatis,fisintegrable.

Remark. Recall that the Riemann sum of f with respect to the partition Pis

n
Op= Zf(ck) (Xx — xk-1), where the evaluation points ¢, € [x,_1, xx] are arbitrary and
k=1

sp < ap < Sp for all partitions P.

Theorem. Assume that f : [a, b]— R is bounded. Then

b
1.3 f f(x)dx=1 = for all partition sequences (P,) for which limA P, = 0:

N—oo

b
limop, = J f(x) dx =/ (independent of the choice of the evaluation points).

b
2.3 f f(x)dx =1 < there exists a partition sequence (P,) for which imAP,=0
a N—oco

and 3 lim gp, =/ (independent of the choice of the evaluation points).

N—>co

Remark. The proof of part 1. is obvious, since sp <gp <Sp and limsp, =limSp =1.

N—oco N—oo

Remark. It is important that the limit exists independent of the choice of ¢ € [x4_1, Xi] in the
Riemann sum. For example, assume that f is the Dirichlet function on [a, b] and
(P,) is a sequence of partitions for which limA P, =0.

N—o0

If cy is rational: op, = Zl-(xk -X1)=1(b-a)—b-a
k=1

n
If ¢y is irrational: gp, = > 0" (X - X41) =0—0
k=1
= the Dirichlet function is not integrable on any interval.

Sufficient conditions for Riemann integrability

Theorem. If f is monotonic and bounded on [a, b] then f is Riemann integrable on [a, b].

Proof. Assume that f is monotonically increasing.
1) If f(a) = f(b) then f is constant, so f € R[a, b].
2) If f(a) < f(b) then we show that for all £ > 0 there exists a partition P such that
the oscillation sum Op=Sp —sp < €.
3) Let P={xo, x1, ..., X,} be a partition with mesh

AP= max (Xgx-Xy_1)<6=—>0
ke{l,...,n} f(b) - f(a)

4) Then for the oscillation sum we get that
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n

Op=Sp-sp= Z(Mk = my) (X = Xy-1) = Z(f(xk) = F(Xk-1)) (X = Xk-1) <
k=1 k=1

<6 ) () = fxi-a)) = 8(F(b) - f(a) = €.

k=1
Theorem. If f : [a, b]—R is continuous then f is Riemann integrable on [a, b].

Proof. 1) We prove that for all € > 0 there exists a partition P such that
the oscillation sum Op=Sp—sp< €.
2) f is continuous on [a, b] = f is bounded and also uniformly continuous on [a, b].

= for - >0 there exists 6 >0 such thatV x, y €[a, b],
-a
| x-y| <6 = |f(x) f(y)l
a
3) Let P = {xq, X1, ..., Xn} be a partition W|th mesh AP= max (X, —X_1)<O.

ke{l,...,n}

4) f is continuous on [x,_;, x,] = by the extreme value theorem f has a
minimum for some ¢, € [xx_1, Xx] and a maximum for some dy € [x;_1, X«l,
let f(cy) = my, f(dy) =M.

5) Then obviously | dx-cx | <&, so for the oscillation sum we get that
Op=Sp=Sp= ) (Mi=my) (X = Xi1) = > (F(di) = F(Ch)) (6 = Xpo1) =

k=1 k=1

fldi) - £ () | o 20) <) =)=

n

-5

k=1

—_Z(Xk Xkl)— b a)=¢.

Theorem. If f : [a, b]— R is bounded and continuous except finitely many points then
f is Riemann integrable on [a, b].

Proof. 1) We prove it in the case of one point. Let c € [a, b] and assume that f is continuous on
[a, b]\{c}. Let K> 0 be such that | f(x) | <K forallx €[a, b]. We show that for all e>0
there exists a partition Psuch that Op < ¢.

& & &
2) If c- — >athenletc; =c - — and let P; be a partition of [a, ¢;] such that Op < .
8K 8K 4

Such a partition exists since f is continuous on [a, ¢4].

I3
Ifc——KSGthen letc; =aand P, ={a}.
8

& & &
3)Ifc+ _K <bthenletc,=c+ _K and let P, be a partition of [c,, b] such that Op, < —.
8 8 4

Such a partition exists since f is continuous on [c,, b].

&
If c+ — =bthenletc, =band P, ={b}.
8K
4) Then P=P; U P, is a suitable choice.

Remark. Iff, g : [0, b] —R, f is Riemann integrable and f(x) = g(x) except finitely many points

b b
in [a, b] then g is Riemann integrable and j f= J g.
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Newton-Leibniz formula

Theorem (First fundamental theorem of calculus, Newton-Leibniz formula).
Iff : [a, bl—Ris Riemann integrable and F : [a, b]— R is an antiderivative of f,
thatis, F' (x) = f(x) for all x € [a, b], then

f Fx) dx = F(b) - F(a) = [FOOL2

Proof. Let (P,) be a partition sequence of [a, b] such that imA P, =0.

N—>co0

Forallke{l1, 2, ..., n}, F is continuous on [x,_1, X,] and differentiable on (x,_, Xx), SO

by Lagrange’s mean value theorem there exists x_; < ¢x <X, such that

Fxk) = F(Xk-1)
T S Fr () = Flal) = FO) - Fotr) = FC) (= Xir)
Xie = Xk-1

= F(b) - F(a) = (F(x1) = F(xo)) + (F(x2) = F(x1)) + ... + (F(Xs) = F(X5_1)) =
= > (FO4) = FXi1)) = D F(Ck) (X = Xk1) = O,
k=1 k=1
= F(b) - F(a) = gp,
Taking the limits of both sides: lim (F(b) - F(a)) = lim gp,

The left-hand side is independent of n and since f is integrable then the limit of the
right-hand side is the integral of f, so

F(b) - F(a) = f F(x) dx.
b
Remark. The geometrical meaning of f f is the signed area under the graph of f on [q, b].

Remark. Both conditions of the theorem are important as the following examples show.

Examples

1 1 2 1
x*sin— ifx%0 2xsin—-—cos— ifx#0
Example 1. Let F(x) = X2 ,then F' (x)=f(x) = ¥ X X2 .
0 ifx=0 0 ifx=0

1
f has an antiderivative, however, f f(x) dx doesn’t exist, since f is not bounded.
0

5
Example 1. f sign (x2 - 5x +6) dx exists, since f is continuous except 2 points. However,
0

by Darboux’s theorem, f doesn’t have an antiderivative, since f has jump discontinuities.

Properties of Riemann integrable functions
a b a
Definition. If f < R[q, b] f F(x) dx = - j F(x) dx, j f(x)dx =0
b a a
Theorem. Let f, ge R[a, b]and AeR. Then

(1) Af, f+g, f-geRla, b] and fAf:Ajbf, Jb(fig)=jbfijbg
(2)[a, Blcla, b] = feR[a, B]
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b C b
(3)a<c<b => [f:jhjf

b b
(8) f(x) < g(x) Vxela, b] = J f(x) dx < j g0 dx

b b
5) | f| eRla, b] = ff(x)dx| < f(x)|dx

inffs—— | f<supf
()[ab] b- GJ [a[f])

Integration by parts

b b
Theorem. If f and g are continuously differentiable on [a, b] then J flg=[fgl° - j fg'

Integration by substitution

Theorem. If g is continuously differentiable, strictly monotonic, [a, b] c Dy and

b L(b)
f is continuous on [a, b] then J'f(x)dx_J'g1 f(g(t))g' (t)dt.

g -(a)

n2
Example.l=j ye¥-1dx=?
0

Solution. Substitution: t= Ye*-1 = x=x(t)=In(t*+1)

dx 1 2t
2t = dx=
dt t2+l ?+1

dt

x'(t) =

The bounds will change: x; =0 = t; = Y€’ -1 =0

Xx=n2 = t= Velnz— =42-1=1

-2 2
I= [M* e -1 dx= j‘t—dt J;) jo T dtzjol(Z—tz”)dt:

=[2t—2arctgt]0=(2-1—2arctg1)—(0—0)=2—12r

Lebesgue’s theorem

Definition. We say that the set A c R has Lebesgue measure 0 if for all £ > 0 there exist

sequences (x,) and (y,) such that x, <y,, Ac U[x,,, y,] and Z(y,, —X,) <E.
n=1 n=1

(That is, A can be covered with countably many intervals such that their total
length is less than ¢.)

Examples. 1) Any countable set of R has Lebesgue measure 0, for example N, Z or Q.

2) The Cantor set is defined in the following way. Let C, = [0, 1].
C; is obtained from C, by deleting the open middle third from Cy, that is,
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1 2
Ci=10,—|Ul-, 1|
1=[0.5]u5.1]
C, is obtained from C; by deleting the open middle thirds from Cy, that is,
1 21 27 8
0 UL IUE U
=] 51U 5l UG
Continuing this process, C,.; is obtained from C, by deleting the open middle thirds
of each of these intervals. The Cantor setis C = ﬂ C,.

neN
It can proved that the Cantor set is uncountable but has Lebesgue measure 0.

Theorem (Lebesgue). The function f : [a, b]— R is Riemann integrable if and only if it is bounded
and the set of discontinuities of f has Lebesgue measure 0.

Remark. If f : [a, b]—R is monotonic then f has at most countably many discontinuities (and they are
jump discontinuities), so by Lebesgue’s theorem f is Riemann integrable.

Example*. The Riemann function is defined as

0 ifxeR\Q
f:R>R, f(x)={ 1
—R, f(x) . if)(=BWhe|'eP€Z, and g e N* are coprimes
q q
Prove that

a)limf(x)=0 YaeR,;

X—=a
a) f is continuous at all irrational numbers;
b) f is discontinuous at all rational numbers.

1 k
Solution. If g e N* is fixed then the set Z- — = {— ke Z} does not have any real limit points.
q q

Therefore a finite union of such sets, A, = {E :peZ,qef{l, 2, .., n}} does not have any
q

1
limit points either. If x e R\ A, the | f(x) | <—,soforallxyeR, limf(x)=0.

n X-Xo
= f is continuous at all irrational points and has a removable discontinuity
at all rational points.

The Riemann function is bounded and the set of discontinuities is countable, so it has

Lebesgue measure 0 = f is Riemann integrable and fff(x) dx=0.

The integral function

Definition. Assume that f is Riemann integrable on [a, b]. Then the function
Flx) = f “f(t) dt, x e[a, b]

is called the integral function of f.
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Theorem (Second fundamental theorem of calculus).

Assume that f is Riemann integrable on [a, b] and F(x) = Ff(t) dt, x €[a, b]. Then

1. Fis Lipschitz continuous on [a, b].

2. If fis continuous at xq € [a, b] then F is differentiable at x, and F' (x) = f(Xo).

Proof. 1. Let K =sup | f(x) | .IfK=0 thenf=0so0 F=0is Lipschitz continuous.
[a.b]

&
IfK+0then0<KeR.Lete>0and 6(£)=}—(.Ifx,ye[a, blsuchthat | x-y | <&then

F0-Fo) | = | [rode- [rooe| = | [foae| < | [

<K |x-y| <Ké=¢ = FisLipschitz continuous.

f(t)|dt| < | rKdt| <
y

, . F(x) = F(xo) . .
2. F'(xp) = lim———— =f(xp) if forall £ >0 there exists 6 > 0 such that
XX X = Xo

F(x) = F(x
|M—f(xo)| <eif0< |x-x | <6.
X =Xp

Let € > 0. Since f is continuous at xo then 3 6 > 0 such that | f(x) - f(xo) | <€if | x=xo | <0.
Then with this 6

F(x) = F(xo) F(x) = F(xo) = F(Xo) (X = Xo) Lf(t)dt— Lf(xO)dt
| - —f(Xo) | = | — | _
X =Xo X —Xo X=X
y L(f(t)—f(x()))dt| < | 1f0-reo ae | ] eat] el
X=Xo | x=Xo | | X=X | | X-Xo |
Consequence.

1. If f is continuous on [a, b] and F(x) = fo(t) dt, xe[a, bl then F' (x) =f(x) Vx e]a, b].

2. Every continuous function has an antiderivative.

Examples

Example 1. Calculate the derivatives of the following functions:

a) F(x)=rsint2dt, Xxt0 b) G(x):JX sint? dt c) H(x)=F sint? dt
0 0 x?
Solution. a) F' (x) = sin x?, since f(t) = sin(t?) is continuous.

b) G(x)=F(x}) = G'(x)=F"(x*)-3x =sin((x3)2)-3)(2 =sin(x®)-3x*
¢) Hx) = rsint2dt— szsintz dt=F(x*) - F(x*) = H'(x) =sin(x®)-3x* - sin(x*)-2x

fgarctan t2dt
Example 2. im——— =?
x-0 X2
Solution. The limit has the form % and the numerator is differentiable since

f(t) = arctan t? is continuous
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1
X 2 2 2X
 [arctant’dt ., arctanx? .y TP
= lim——— = lim——— = lim
X=0 X2 x-0 2X x-0 2

=0

Applications

Area

Example. Calculate the area of the unit circle.

Solution. The equation of the circle with radius r = 1 centered at the origin is
Xryt=1= y?=1-x2 = y=241-x*

1
The area of the unit circle is A=2f V1-x2 dx
-1

Substitution: x =x(t)=sint = t=arcsinx

dx
x’(t):d— =cost = dx=costdt
t

The bounds will change: x; = -1 = t; =arcsin(-1) = -7
2

X, =1 = ty=arcsinl=

1 /2 12
=>A=2J V1-x2 dx=f 241-(sint)? costdt=2 | cost-costdt
-1 T

12 —77/2
sin2t nn2

/2 12
=Jﬂ1 2cos? tdt= (1+cos2t)dt=[t+ ]
—-77/2 —~77/2 2 -7/2

=(12r + Sizn)—(—l—; + sm(z_Tr))=(7—2T +O)—(—%r +0):JT

Arc length

Theorem. Assume that f : [a, b]— R is continuously differentiable. Then the arc length of the

b
graph of f is L=j 1+ (F' (x))? dx.

Remark. Let a = xy <x; <X, < ... <X, =b be a partition. If f is differentiable then by Lagrange’s
mean value theorem there exists ¢, € (x4_1, Xx) such that m=£"'(c,), where m is the slope of
the secant line connecting the points (x,_1, f(xc-1)) and (xx, f(xx)).

So the arc length can be approximated by the sum Z \/ 1+ (F'(ck))?® (Xk = Xk_1), Which is

k=1
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the Riemann sum of the function /1 + (f' (x))?.

If f is continuously differentiable then the arc length of the graph of f is

L:F 1+ (F' () dx.

M(Xk—Xk-1)

Example. Calculate the arc length of the unit circle.
Solution. Let f(x) = Y1 -x? ifxe[-1, 1].
1 1
fro)=—(1-x)72(-2x)=-
2

N1-x2
2 1 1
fl 2: X - -
= \/l+( () ‘/l+1—x2 /1—)(2 —

The arc length of the unit circle is
1 1
Lzzf 1+ (F () dx:z[
-1 -1

=2 lim lim [arcsinx]2=2 lim lim (arcsinb - arcsina) =
a--1+b->1- a-»>-1+b->1-

=2 (arcsin1-arcsin (-1)) = Z(g - (—g)) =277

l . . b l
dx=2 lim llmj dx =
1- X2 a-»-1+b-1- Jg 1- X2

Volume of solids of revolutions

Theorem. Assume that f : [a, b]— R is continuous and nonnegative and the graph of f is rotated

b
about the x axis. Then the volume of this solid of revolutionis V =7t j f2(x) dx.

Remark. If a =xg < x; <X, <...<x, = b is a partition then the volume can be approximated by the

n
sum Z(Xk — Xi_1) TTF2(cx) where ¢, € [x_1, X] is arbitrary.
k=1
(Geometrically it means that the volume can be approximated by the sum of volumes of

cylinders.)
This is the Riemann sum of the function 7t f2(x), so if f is continuous then the volume is

b
v=nJ £2(x) dx.
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A
f(x)
XO _ [ [ [ _ X;

Surface area of solids of revolutions

Theorem. Assume that f : [a, b]— R is continuously differentiable and nonnegative and the graph
of f is rotated about the x axis. Then the surface area of this solid of revolution is

A= znff NI+ (F ()2 dx.

Remark. If a =x < x; <X, <...<x, = bis a partition then the surface area of the solid of revolution
can be approximated by the sum

D> Tt(F(xien) + F00)) Y1+ (F' (i) (k= Xkoa)
k=1

where ¢ € [x4_1, X,] exists by the Lagrange intermediate value theorem if f is differentiable.
(Geometrically it means that the surface area can be approximated by the sum of lateral
surfaces of truncated cones.)

If f is continuously differentiable then f(x,_;) + f(xx) = 2 f(ck), so the above sum will be the
Riemann sum of the function 2 7t f(x) \/ 1+ (f' (x))?. Therefore if f is continuously

b
differentiable then the surface areaisA=2r J' f(x) Y1+ (F'(x))? dx

X0= =Xn
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Exercise

Let f(x) = 4/r> = x*, —r <x <r. Rotating the graph of f about the x axis, we get a sphere
with radius r. Calculate the volume and surface area of the sphere.

b
Solution: 1. The volume can be calculated as V=1t j £2(x) dx
a

Theintegrandis (f(x))? = r* - x*

. T
The volumeis V = J'rf_rr(r2 -x*)dx = n[rzx - ;]_r =

)

b
2. The surface area can be calculated as A=2 n,[ f(x) AL+ (F' (x))? dx

1 1 1
The derivative of fis f'(x)= ((r2 —xz)'z)' = (rP=x*)2-(-2x)=-

= 1+(f'(x))*=1+ - = =

.
The surface area is A=2rrj rdx=27[rxl’, =2m(r* = (-r))=4r*m
-r

Additional exercises: Chapter 5, from page 86:
https://math.bme.hu/~tasnadi/merninf_anal_1/anall_gyak.pdf



