Calculus 1 - 14

Applications of differential calculus

L'Hospital's rule

Theorem (L'Hospital's rule).

Assume that $a \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$, *I* is a neighbourhood of *a*, the functions *f* and *g* are differentiable on $I \setminus \{a\}$ and $g(x) \neq 0$, $g'(x) \neq 0$ for all $x \in I \setminus \{a\}$. Assume moreover that

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0 \quad \text{or} \quad \lim_{x\to a} \mid f(x) \mid = \lim_{x\to a} \mid g(x) \mid = \infty.$$

If
$$\exists \lim_{x \to a} \frac{f'(x)}{g'(x)} = b \in \overline{\mathbb{R}}$$
 then $\exists \lim_{x \to a} \frac{f(x)}{g(x)} = b$.

Remark. The theorem holds for right-hand and left-hand limits as well.

Proof. We prove it in the case when $a \in \mathbb{R}$ (for right-hand limit).

Assume that
$$a \in \mathbb{R}$$
, $\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$ and $\exists \lim_{x \to a+} \frac{f'(x)}{g'(x)} = b \in \mathbb{R}$.

Extend the functions f and g such that f(a) = g(a) = 0 and let $x \in I$, x > a.

Then f and g are continuous on [a, x] and differentiable on (a, x),

so by Cauchy's mean value theorem there exists $c \in (a, x)$ such that

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Let (x_n) be a sequence such that $x_n \longrightarrow a$ and choose $c_n \in (a, x_n)$ for all n.

Then
$$c_n \longrightarrow a$$
 and $\frac{f(x_n)}{g(x_n)} = \frac{f'(c_n)}{g'(c_n)}$ for all $n \in \mathbb{N}$.

Therefore $\lim_{n\to\infty} \frac{f(x_n)}{g(x_n)} = \lim_{n\to\infty} \frac{f'(c_n)}{g'(c_n)} = b$ and by the sequential criterion for the limit, $\lim_{x\to a} \frac{f(x)}{g(x)} = b$.

Undefined forms

Remark. The theorem can be applied for limits of the following type:

1)
$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$ \Longrightarrow L'Hospital's rule can be applied directly

2)
$$0 \cdot \infty$$
 \implies transformation: $f(x) g(x) = \frac{f(x)}{\frac{1}{g(x)}}$ or $f(x) g(x) = \frac{g(x)}{\frac{1}{f(x)}}$

3)
$$\infty - \infty \implies f(x) - g(x) = \frac{1}{h(x)} - \frac{1}{k(x)} = \frac{k(x) - h(x)}{h(x) k(x)} \quad \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

4)
$$0^{\circ}$$
, 1° , ∞° \Longrightarrow $(f(x))^{g(x)} = e^{g(x) \cdot \ln(f(x))}$

Exercises

Pages 171-172 of the pdf file (first 9 examples): https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_elm.pdf

Pages 72-73 of the pdf file, exercise 26: https://math.bme.hu/~tasnadi/merninf_anal_1/anal1_gyak.pdf In exercises 26. g), h) the L'Hospital's rule cannot be applied.

Local properties and the derivative

Definition. Assume that $x_0 \in D_f$ and there exists $\delta > 0$ such that for all $x, y \in D_f$, if $x_0 - \delta < x < x_0 < y < x_0 + \delta$,

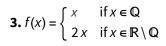
then
$$\begin{cases} f(x) \leq f(x_0) \leq f(y) \\ f(x) \geq f(x_0) \geq f(y) \\ f(x) < f(x_0) < f(y) \end{cases}$$
. Then we say that f is
$$\begin{cases} \text{locally increasing} \\ \text{locally decreasing} \\ \text{strictly locally increasing} \\ \text{strictly locally decreasing} \end{cases}$$
 at x_0 .

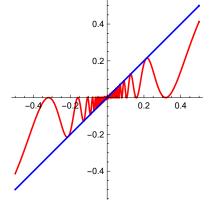
Remarks. (1) If f is monotonically increasing on (a, b), then f is locally increasing for all $x_0 \in (a, b)$.

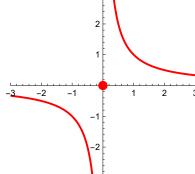
- (2) If f is locally increasing **for all** $x_0 \in (a, b)$, then f is monotonically increasing on (a, b).
- (3) However, if f is locally increasing at x_0 then it doesn't imply that there exists a neighbourhood $B(x_0, r)$ where f is monotonically increasing. The following functions are locally increasing at $x_0 = 0$ but on any interval that contains 0, the functions are not monotonically increasing.

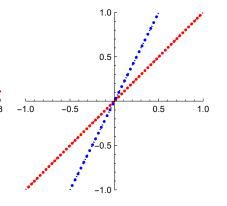
1.
$$f(x) = \begin{cases} x \sin^2 \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
 2. $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

2.
$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$









Theorem. Assume that f is differentiable at x_0 .

- (1) If f is locally increasing at x_0 then $f'(x_0) \ge 0$.
- (2) If f is locally decreasing at x_0 then $f'(x_0) \le 0$.
- (3) If $f'(x_0) > 0$ then f is strictly locally increasing at x_0 .
- (4) If $f'(x_0) < 0$ then f is strictly locally decreasing at x_0 .

Proof. (1) If f is locally increasing at x_0 then $\exists \delta > 0$ such that

$$0 < |x - x_0| < \delta \implies \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

(If $x < x_0$ then $x - x_0 < 0$ and $f(x) - f(x_0) \le 0$ and

if $x > x_0$ then $x - x_0 > 0$ and $f(x) - f(x_0) \ge 0$.)

Since f is differentiable at x_0 then $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$.

(2) Similar to case (1).

(3) If
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} > 0$$
, then there exists $\delta > 0$ such that

if
$$0 < |x - x_0| < \delta$$
 then $\frac{f(x) - f(x_0)}{x - x_0} > 0$.

$$\implies \text{if } \begin{cases} x_0 < x < x_0 + \delta \\ x_0 - \delta < x < x_0 \end{cases} \text{ then } \begin{cases} f(x) > f(x_0) \\ f(x) < f(x_0) \end{cases}$$

 \implies f is strictly locally increasing at x_0 .

(3) Similar to case (4).

Remarks. Assume that f is differentiable at x_0 .

(1) If f is strictly locally increasing at x_0 then it doesn't imply that $f'(x_0) > 0$.

If f is strictly locally increasing at x_0 then $f'(x_0) \ge 0$, since $\exists \delta > 0$ such that

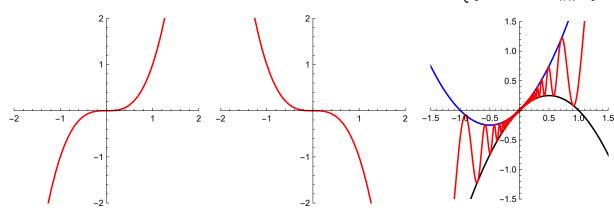
$$0 < |x-x_0| < \delta \implies \frac{f(x)-f(x_0)}{x-x_0} > 0$$
, but for the limit $\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} \ge 0$.

For example $f(x) = x^3$ is strictly locally increasing at $x_0 = 0$, but $f'(0) = 3x^2 \mid_{x=0} = 0$.

1.
$$f(x) = x^3$$

2.
$$f(x) = -x^3$$

$$\mathbf{3.} f(x) = \begin{cases} x + x^2 \sin\left(\frac{10}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$



- (2) If $f'(x_0) \ge 0$ then it doesn't imply that f is locally increasing at x_0 . For example $f(x) = -x^3$ is not locally increasing at $x_0 = 0$, but $f'(0) = \ge 0$.
- (3) If $f'(x_0) > 0$ then it doesn't imply that f is monotonically increasing on an interval containing x_0 .

For example, let f be a function such that $x - x^2 \le f(x) \le x + x^2 \ \forall x \implies f(0) = 0$.

If
$$x > 0$$
 then $1 - x \le \frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0} \le 1 + x$,

If x < 0 then $1 - x \ge \frac{f(x) - f(0)}{x - 0} \ge 1 + x$, so by the sandwich theorem

$$f'(0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 1 > 0. \text{ For example, let } f(x) = \begin{cases} x + x^2 \sin\left(\frac{10}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Darboux's theorem

Theorem. Assume that $f : [a, b] \longrightarrow \mathbb{R}$ is differentiable and f'(a) < y < f'(b) or f'(b) < y < f'(a). Then there exists $c \in (a, b)$ such that f'(c) = y.

Remark. We say that f' has the intermediate value property of Darboux property.

Proof. 1) Let $g:[a,b] \to \mathbb{R}$, $g(x) = f(x) - y \cdot x \implies g$ is differentiable and g'(x) = f'(x) - y.

- 2) Assume that $f'(a) < y < f'(b) \implies g'(a) = f'(a) y < 0 < f'(b) y < g'(b)$
- 3) g is differentiable, so it is continuous on [a, b]
 - \implies by Weierstrass extreme value theorem it has a minimum and a maximum on [a, b].

4) Since
$$\begin{cases} g'(a) < 0 \\ g'(b) > 0 \end{cases}$$
 then $\begin{cases} g \text{ is strictly locally decreasing at } a \end{cases}$

- \implies g does not have a minimum at a and b but on the open interval (a, b)
- \implies there exists $c \in (a, b)$ such that g has a local minimum at c
- \implies $g'(c) = 0 = f'(c) y \implies f'(c) = y$ for some $c \in (a, b)$.

Example. The sign function or signum function is defined as $sgn x = \begin{cases} -1 & if x < 0 \\ 0 & if x = 0. \\ 1 & if x > 0 \end{cases}$

This function is not continuous at $x_0 = 0$, so there is no function $f : \mathbb{R} \longrightarrow \mathbb{R}$ for which $f'(x) = \operatorname{sgn} x$ on \mathbb{R} (or on any interval that contains $x_0 = 0$).

Remark. From Darboux's theorem it follows that if f' is not continuous at a point then f' cannot have a discontinuity of the first type at that point, so at least one of the one-sided limits doesn't exist or exists but is not finite $\Rightarrow f'$ has an essential discontinuity at the given point.

Statement. If f is differentiable on $[a, a + \delta)$ $(\delta > 0)$ and f' has a discontinuity at a then the limit $\lim_{x\to a+0} f(x) \text{ doesn't exist or } \exists \lim_{x\to a+0} f(x) \notin \mathbb{R}.$

Continuously differentiable functions

Definition. Assume that I is a neighbourhood of $a \in D_f$ and f is differentiable on $I \cap D_f$.

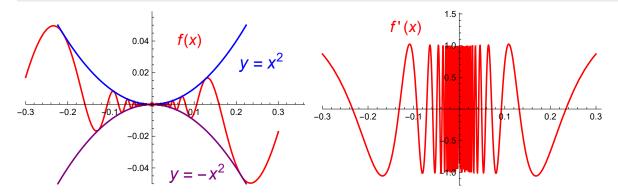
Then f is **continuous differentiable at** a if f' is continuous at a.

f is **continuously differentiable** on A if f is continuous differentiable $\forall x \in A$.

Notation: $C^1(A) = \{f : f \text{ is continuously differentiable on } A\}$.

Example: The function $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ is differentiable but f' is not continuous

at
$$x_0 = 0$$
, since $f'(x) =\begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$



Higher order derivatives

Definition. If f' is differentiable at x then we say that f is twice differentiable at x and the second derivative or second order derivative of f at x_0 is f''(x) = (f')'(x). Differentiating f repeatedly, we get the third, ..., nth derivative of f.

Notation: $f''(x) = f^{(2)}(x) = \frac{d^2 f(x)}{dx^2}$

$$f'''(x) = f^{(3)}(x) = \frac{d^3 f(x)}{d x^3}$$

 $f^{(n)}(x) = \frac{d^n f(x)}{dx^n}$

By definition: $f^{(0)}(x) = f(x)$

Example: $f(x) = \sin x \implies f'(x) = \cos x, \ f''(x) = -\sin x, \ f'''(x) = -\cos x, \ f^{(4)}(x) = \sin x, \ ...$ $f(x) = e^x \implies f^{(n)}(x) = e^x \quad \forall n \in \mathbb{N}$

Investigation of differentiable functions

Monotonicity on an interval

Theorem. Assume that $f:(a,b) \longrightarrow \mathbb{R}$ is differentiable. Then

- (1) f is monotonically increasing $\iff f'(x) \ge 0$ for all $x \in (a, b)$
- (2) f is monotonically decreasing $\iff f'(x) \le 0$ for all $x \in (a, b)$
- (3) f is constant $\iff f'(x) = 0$ for all $x \in (a, b)$
- (4) f'(x) > 0 for all $x \in (a, b) \Longrightarrow f$ is strictly monotonically increasing
- (5) f'(x) < 0 for all $x \in (a, b) \Longrightarrow f$ is strictly monotonically decreasing

Proof. (1)

- (i) If f is monotonically increasing then f is locally monotonically increasing for all $x \in (a, b)$ $\Longrightarrow f'(x) \ge 0 \ \forall x \in (a, b).$
- (ii) Assume that $f'(x) \ge 0$ for all $x \in (a, b)$. Let $a < x_1 < x_2 < b$ and apply Lagrange's mean value theorem for $[x_1, x_2]$. Then there exists $c \in (x_1, x_2) \subset (a, b)$ such that

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c) \ge 0 \implies f(x_2) \ge f(x_1)$$

Therefore if $x_1 < x_2$ then $f(x_1) \le f(x_2)$, so f is monotonically increasing on (a, b).

- (2) Similar to case (1).
- (3) f is constant \iff f is monotonically increasing and decreasing \iff $f'(x) \ge 0$ and $f'(x) \le 0 \ \forall x \in (a, b) \iff f'(x) = 0 \ \forall x \in (a, b)$
- (4) and (5): similar to case (1) (ii)

Remark. Statements (4) and (5) cannot be reversed.

For example, $f(x) = x^3$ is strictly monotonically increasing on \mathbb{R} , however f'(x) > 0does not hold for all $x \in \mathbb{R}$, since $f'(x) = 3x^2 \implies f'(0) = 0$.

Remark. If the domain of f is not an interval then the above theorem is not true, as the following examples show.

- 1) Let $f: \mathbb{R} \setminus \mathbb{Z} \longrightarrow \mathbb{R}$, $f(x) = \{x\} = x [x]$. Then f is differentiable on $\mathbb{R} \setminus \mathbb{Z}$ and f'(x) = 1 > 0 for all $x \in \mathbb{R} \setminus \mathbb{Z}$ but f is not monotonically increasing.
- 2) Let $f: \mathbb{R} \setminus \mathbb{Z} \longrightarrow \mathbb{R}$, f(x) = [x]. Then f is differentiable on $\mathbb{R} \setminus \mathbb{Z}$ and f'(x) = 0 for all $x \in \mathbb{R} \setminus \mathbb{Z}$ but f is not constant.

Local extremum, sufficient conditions

Definition. If f is differentiable at x_0 and $f'(x_0) = 0$ then x_0 is a **stationary point** of f. If $f'(x_0) = 0$ or f is not differentiable at x_0 then x_0 is a **critical point** of f.

Remark. Recall that if f is differentiable at $x_0 \in \text{int } D_f$ and f has a local extremum at x_0 then $f'(x_0) = 0$. This is a necessary condition for the existence of a local extremum.

The next two theorems formulate sufficient conditions.

Theorem (Sufficient condition for a local extremum, first derivative test).

Assume that f is differentiable at $x_0 \in \text{int } D_f$.

If $f'(x_0) = 0$ and f' changes sign at x_0 , then f has a local extremum at x_0 .

Namely, if
$$f'(x_0) = 0$$
 and f' is (strictly) locally $\begin{cases} \text{increasing} \\ \text{decreasing} \end{cases}$ at x_0 then f has a (strict) local $\begin{cases} \text{minimum} \\ \text{maximum} \end{cases}$ at x_0 .

Proof. Assume that $f'(x_0) = 0$ and f' is locally increasing at x_0

(that is, f' changes sign from negative to positive)

$$\Rightarrow \exists \, \delta > 0 \text{ such that } \begin{cases} f'(x) \le 0 \text{ if } x_0 - \delta < x < x_0 \\ f'(x) \ge 0 \text{ if } x_0 < x < x_0 + \delta \end{cases}$$

$$\implies \begin{cases} f \text{ is monotonically decreasing on } (x_0 - \delta, x_0) \\ f \text{ is monotonically increasing on } (x_0, x_0 + \delta) \end{cases}$$

$$\implies \begin{cases} f(x) \ge f(x_0) & \text{if } x_0 - \delta < x < x_0 \\ f(x) \ge f(x_0) & \text{if } x_0 < x < x_0 + \delta \end{cases} \implies f \text{ has a local minimum at } x_0.$$

Theorem (Sufficient condition for a local extremum, second derivative test).

Assume that f is twice differentiable at $x_0 \in \text{int } D_f$.

If $f'(x_0) = 0$ and $f''(x_0) \neq 0$ then f has a local extremum at x_0 . If $\begin{cases} f''(x_0) > 0 \\ f''(x_0) < 0 \end{cases}$ then f has a strict local $\begin{cases} minimum \\ maximum \end{cases}$ at x_0 .

Proof. $f''(x_0) > 0 \implies f'$ is locally increasing at x_0 and $f'(x_0) = 0$ \implies by the previous theorem f has a local minimum at x_0 .

Remark. The sign change of f' at x_0 is only a sufficient but not a necessary condition for the existence of a local extremum at x_0 .

For example, if
$$f(x) = \begin{cases} x^2 \left(2 + \sin\left(\frac{1}{x}\right)\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

then f is differentiable for all $x \in \mathbb{R}$. At x = 0:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \left(2 + \sin\left(\frac{1}{x}\right)\right)}{x} = \lim_{x \to 0} x \left(2 + \sin\left(\frac{1}{x}\right)\right) = 0 \text{ (since it is } 0 \cdot \text{bounded),}$$
 so the necessary condition holds at $x_0 = 0$.

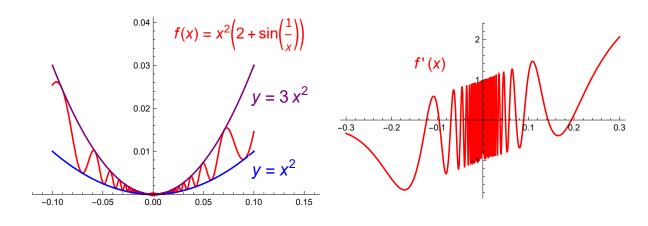
However, in any neighbourhood of $x_0 = 0$:

f has strictly monotonic increasing and decreasing sections \implies

f' has both positive and negative values \Longrightarrow

f' doesn't change sign at $x_0 = 0$.

Yet f has a local extreme value at $x_0 = 0$, and it is even an absolute minimum here.



Local extremum and higher order derivatives

Remark. If $f'(x_0) = 0$ and $f''(x_0) = 0$ then it cannot be decided whether f has a local extremum at x_0 . For example:

- 1) $f(x) = x^3$ does not have a local extremum at $x_0 = 0$,
- 2) $f(x) = x^4$ has a local minimum at $x_0 = 0$,
- 3) $f(x) = -x^4$ has a local maximum at $x_0 = 0$, and in each case f'(0) = f''(0) = 0.

Theorem. (1) Assume that f is 2k times differentiable at $x_0, k \ge 1$.

If
$$f'(x_0) = \dots = f^{(2k-1)}(x_0) = 0$$
 and
$$\begin{cases} f^{(2k)}(x_0) > 0 \\ f^{(2k)}(x_0) < 0 \end{cases}$$
 then f has a strict local
$$\begin{cases} \text{minimum} \\ \text{maximum} \end{cases}$$
 at x_0 .

(2) Assume that f is 2k + 1 times differentiable at $x_0, k \ge 1$. If $f'(x_0) = ... = f^{(2k)}(x_0) = 0$ and $f^{(2k+1)}(x_0) \neq 0$, then f is strictly monotonic in a neighbourhood of x_0 , so f doesn't have a local extremum at x_0 .

Remark. Part (1) in other words: If the first non-zero derivative (after the first one) has an even order then f has a local extremum at x_0 .

Proof. (1) We prove the statement for a strict local minimum by induction.

- (i) If k = 1 then the statement is true.
- (ii) Assume that the statement holds for k-1 and let q=f''.

$$(\Longrightarrow g' = f''', ..., g^{(2k-3)} = f^{(2k-1)}, g^{(2k-2)} = f^{(2k)}.)$$

From the induction hypothesis it follows that

if $g'(x_0) = ... = g^{(2k-3)}(x_0) = 0$ and $g^{(2k-2)}(x_0) > 0$ then the function

g = f'' has a strict local minimum at x_0 .

(iii) We want to prove that if

$$f'(x_0) = f''(x_0) = f'''(x_0) = \dots = f^{(2k-1)}(x_0) = 0$$
 and $f^{(2k)}(x_0) > 0$ then

f has a strict local minimum at x_0 .

Since $f''(x_0) = 0$ and f'' has a strict local minimum at x_0 ,

then $\exists \delta > 0$ such that f''(x) > 0, $\forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$

- \implies f' is strictly monotonically increasing on $(x_0 \delta, x_0 + \delta)$
- \implies f' is strictly locally increasing at x_0
- \Longrightarrow f has a strict local minimum at x_0 .
- (2) Assume that $f'(x_0) = f''(x_0) = \dots = f^{(2k)}(x_0) = 0$ and $f^{(2k+1)}(x_0) \neq 0$. Let g = f', then $g'(x_0) = ... = g^{(2k-1)}(x_0) = 0$ and $g^{(2k)}(x_0) \neq 0$.

 \implies by part (1), g = f' has a strict local extremum at x_0 .

Since $f'(x_0) = 0$, then either f'(x) > 0 or f'(x) < 0, $\forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$

- \implies f is strictly monotonic on $(x_0 \delta, x_0 + \delta)$
- \implies f doesn't have a local extremum at x_0 .

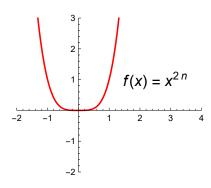
Example. $f(x) = x^n$ is n times differentiable,

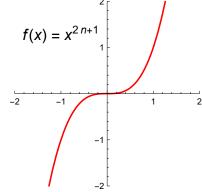
$$f^{(k)}(x) = n(n-1)(n-2)...(n-k+1)x^{n-k}, k = 1, 2, ..., n-1$$

$$f^{(n)}(x) = n!$$

$$\implies$$
 if $x_0 = 0$, then $f'(0) = f''(0) = ... = f^{(n-1)}(0) = 0$, $f^{(n)}(0) = n! > 0$

 \implies at $x_0 = 0$ f has a local minimum if n is even and f doesn't have a local extremum if *n* is odd.





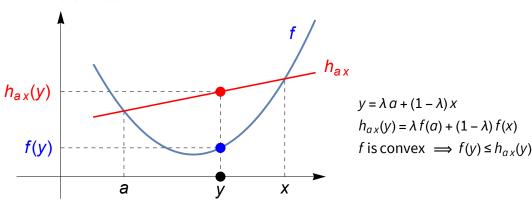
Theorem (Necessary and sufficient condition for convexity).

If f is differentiable on the interval I, then the following statements are equivalent.

- (1) f is convex on I
- (2) $f(x) \ge f(a) + f'(a)(x a)$ if $x, a \in I$
- (3) f' is monotonically increasing on I

Remark. The geometrical meaning of (2) is that for all $a \in I$, the graph of f lies above the tangent line at a.

Proof of $(1) \Longrightarrow (2)$:



If a < x and $y \in (a, x)$ then $\exists \lambda \in (0, 1)$ such that

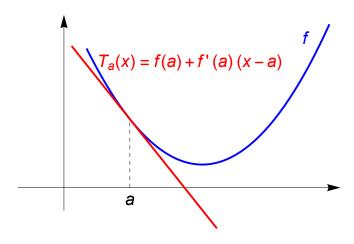
$$y = \lambda a + (1 - \lambda)x \implies y - a = (\lambda - 1) a + (1 - \lambda)x$$
$$\implies y - a = (1 - \lambda) (x - a)$$

$$f$$
 is convex $\implies f(y) \le \lambda f(a) + (1 - \lambda) f(x)$
 $\implies f(y) - f(a) \le (\lambda - 1) f(a) + (1 - \lambda) f(x)$
 $\implies f(y) - f(a) \le (1 - \lambda) (f(x) - f(a))$

Dividing both sides by $y - a = (1 - \lambda)(x - a) > 0$ \implies $\frac{f(y) - f(a)}{y - a} \le \frac{f(x) - f(a)}{x - a}$

If
$$y \longrightarrow a+$$
, then $f'(a) \le \frac{f(x)-f(a)}{x-a} \Longrightarrow f(x) \ge f(a)+f'(a)(x-a)$ if $x, a \in I$.

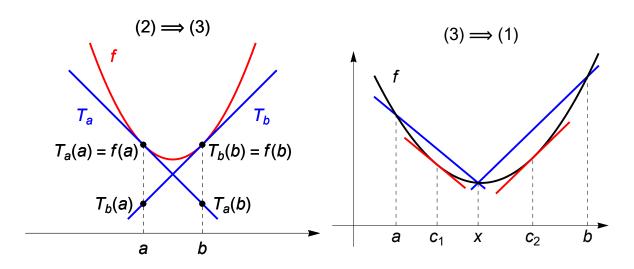
If a > x then the proof is similar and if a = x then the statement is obvious.



Proof of (2) \Longrightarrow **(3):** Let $T_a(x) = f(a) + f'(a)(x - a)$. If $a, b \in I$, $a < b \implies T_a(a) = f(a) \ge T_b(a)$ and $T_a(b) \le f(b) = T_b(b)$

$$\implies f'(a) = \frac{T_a(b) - T_a(a)}{b - a} = \frac{T_a(b) - f(a)}{b - a} \le \frac{f(b) - T_b(a)}{b - a} = \frac{T_b(b) - T_b(a)}{b - a} = f'(b)$$

 \implies f' is monotonically increasing on I



Proof of (3)
$$\Longrightarrow$$
 (1): Let $a, b \in I$, $a < b$, $\lambda \in (0, 1)$ for which $x = \lambda a + (1 - \lambda) b$
 $\Longrightarrow x - a = (1 - \lambda) (b - a)$
 $b - x = \lambda (b - a)$

Then by Lagrange's mean value theorem there exist $c_1 \in (a, x)$ and $c_2 \in (x, b)$ such that $\frac{f(x)-f(a)}{x-a}=f'(c_1)$ and $f'(c_2)=\frac{f(b)-f(x)}{b-x}$.

f' is monotonically increasing $\implies f'(c_1) \le f'(c_2)$

$$\implies \frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(x)}{b - x} \implies \frac{f(x) - f(a)}{(1 - \lambda)(b - a)} \le \frac{f(b) - f(x)}{\lambda(b - a)} \implies f(x) \le \lambda f(a) + (1 - \lambda) f(b)$$

 \implies f is convex on l.

Consequence (Necessary and sufficient condition for convexity).

Assume that f is twice differentiable on the interval I. Then

- (1) $f''(x) \ge 0 \ \forall x \in I$ if and only if f is convex on I.
- (2) $f''(x) \le 0 \ \forall x \in I$ if and only if f is concave on I.

Consequence.

Assume that f is twice differentiable on the interval I. Then

- (1) If $f''(x) > 0 \ \forall x \in I$ then f is strictly convex on I.
- (2) If $f''(x) < 0 \ \forall x \in I$ then f is strictly concave on I.

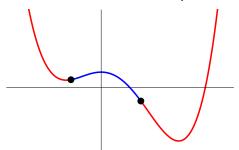
Inflection point

Definition. Assume that f is continuous at $a \in \text{int } D_f$ and there exists $\delta > 0$ such that

f is convex on $(a - \delta, a)$ and concave on $(a, a + \delta)$

or f is concave on $(a - \delta, a)$ and convex on $(a, a + \delta)$.

Then a is called a point of inflection of the function f.



Theorem (Necessary condition for an inflection point, second derivative test).

If f is twice differentiable at x_0 and f has an inflection point at x_0 then $f''(x_0) = 0$.

Proof. If f is convex on $(x_0 - \delta, x_0]$ and concave on $[x_0, x_0 + \delta]$ then

f' is monotonically increasing on $(x_0 - \delta, x_0]$ and monotonically decreasing on $[x_0, x_0 + \delta]$

 \implies f' has a local maximum at $x_0 \implies$ f'' $(x_0) = 0$.

Theorem (Sufficient condition for an inflection point, second derivative test).

If f is twice differentiable in a neighbourhood of x_0 ,

 $f''(x_0) = 0$ and f'' changes sign at x_0 ,

then f has an inflection point at x_0 .

Theorem (Sufficient condition for an inflection point, third derivative test).

If f is three times differentiable in a neighbourhood of x_0 ,

 $f'''(x_0) = 0$ and $f''''(x_0) \neq 0$,

then f has an inflection point at x_0 .

Inflection point and higher order derivatives

Theorem. (1) Assume that f is 2k + 1 times differentiable at $x_0, k \ge 1$.

If $f''(x_0) = \dots = f^{(2k)}(x_0) = 0$ and $f^{(2k+1)}(x_0) \neq 0$

then f has an inflection point at x_0 .

(2) Assume that f is 2 k times differentiable at $x_0, k \ge 1$.

If $f''(x_0) = ... = f^{(2k-1)}(x_0) = 0$ and $f^{(2k)}(x_0) \neq 0$, then f is strictly convex or concave in a neighbourhood of x_0 , so f doesn't have an inflection point at x_0 .

Remark. Part (1) in other words: If the first non-zero derivative (after the second one) has an odd order then f has a local extremum at x_0 .

Linear asymptotes

Definition. The straight line x = a is a **vertical asymptote** of the function f if $\lim_{x\to a+} f(x) = \pm \infty \text{ or } \lim_{x\to a-} f(x) = \pm \infty.$

Definition. The straight line q(x) = Ax + B is a **linear asymptote** of the function f at ∞ or $-\infty$ if $\lim_{x\to\infty} (f(x)-g(x))=0 \text{ or } \lim_{x\to-\infty} (f(x)-g(x))=0.$

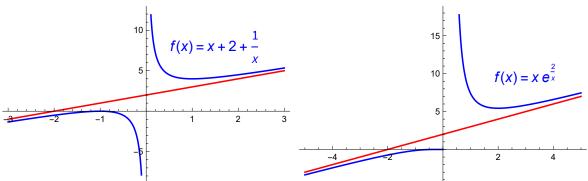
q(x) is a horizontal asymptote if A = 0 and an oblique or slant asymptote if $A \neq 0$.

Statement. g(x) = Ax + B is a linear asymptote of f at $\pm \infty$ if and only if

$$A = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
 and $B = \lim_{x \to \pm \infty} (f(x) - Ax)$

Example. $\lim_{x \to \frac{\pi}{2} \pm} \tan x = \mp \infty \implies x = \frac{\pi}{2}$ is a vertical asymptote of $f(x) = \tan(x)$.

Example. If $f(x) = x + 2 + \frac{1}{x}$ then g(x) = x + 2 is a linear asymptote of f at $\pm \infty$.



Example. If $f(x) = x e^{\frac{2}{x}}$ then g(x) = x + 2 is a linear asymptote of f at $\pm \infty$.

Solution.
$$A = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x e^{\frac{2}{x}}}{x} = \lim_{x \to \pm \infty} e^{\frac{2}{x}} = e^0 = 1$$

$$B = \lim_{x \to \pm \infty} \left(x e^{\frac{2}{x}} - x \right) = \lim_{x \to \pm \infty} \frac{e^{\frac{2}{x}} - 1}{\frac{1}{x}}. \text{ Let } y = \frac{2}{x}, \text{ then } B = \lim_{y \to 0^{\pm}} \frac{e^{y} - 1}{\frac{1}{2} \cdot y} = 2,$$

using that $\lim_{x\to 0} \frac{e^x-1}{x} = 1$. The limit can also be calculate with the L'Hospital's rule. So q(x) = x + 2.

Extreme values on a closed interval

Remark. If f is continuous on a closed and bounded interval then by the

Weierstrass extreme value theorem *f* has a minimum and a maximum.

The possible points are:

- 1) the points where *f* is not differentiable
- 2) the points where the derivative of f is 0
- 3) the endpoints of the interval

Finally the largest and smallest of the possible values must be selected.

Analyzing graphs of functions

Summary of the steps:

- 1) finding the domain of f
- 2) finding the zeros of *f*
- 3) parity, periodicity
- 4) limits at the endpoints of the intervals constituting the domain
- 5) investigation of $f' \implies$ monotonicity, extreme values
- 6) investigation of $f'' \implies$ convexity/concavity, inflection points
- 7) linear asymptotes
- 8) plotting the graph of f, finding the range of f

Exercises

https://math.bme.hu/~nagyi/calculus1/functions.pdf

Examples

1.
$$f(x) = \frac{x}{x^3 + 1}$$

$$D_f = (-\infty, -1) \cup (-1, \infty); \ f(x) = 0 \iff x = 0;$$

$$\lim_{x \to \pm \infty} f(x) = 0, \ \lim_{x \to -1 + 0} f(x) = -\infty, \ \lim_{x \to -1 - 0} f(x) = +\infty$$

Monotonicity, local extremum:

$$f'(x) = \frac{1 - 2x^3}{(x^3 + 1)^2} = 0 \iff x = \frac{1}{\sqrt[3]{2}} \approx 0.79$$

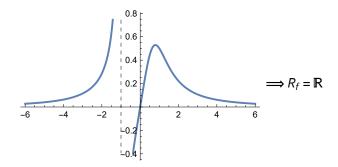
х	x<-1	$-1 < x < \frac{1}{\sqrt[3]{2}}$	$X = \frac{1}{\sqrt[3]{2}}$	$X>\frac{1}{\sqrt[3]{2}}$	
f'	+	+	0	-	
f	7	7	$\max: \frac{\sqrt[3]{4}}{3} \approx 0.53$	K	

Convexity / concavity, inflection points:

$$f''(x) = \frac{6x^2(x^3 - 2)}{(x^3 + 1)^3} = 0 \iff x = 0 \text{ or } x = \sqrt[3]{2} \approx 1.26$$

х	x<-1	-1 <x<0< th=""><th>x=0</th><th>$0 < x < \sqrt[3]{2}$</th><th>$x=\sqrt[3]{2}$</th><th>$x > \sqrt[3]{2}$</th></x<0<>	x=0	$0 < x < \sqrt[3]{2}$	$x=\sqrt[3]{2}$	$x > \sqrt[3]{2}$
f''	+	-	0	-	0	+
f	U	\cap		\cap	infl: $\frac{\sqrt[3]{2}}{3} \approx 0.42$	U

The graph of *f*:



2. $f(x) = 2 \sin x + \sin 2x$

 $D_f = \mathbb{R}$; f is odd;

f is periodic with period $2\pi \implies$ it may be assumed that $0 \le x \le 2\pi$;

 \implies on this interval $f(x) = 0 \iff x = 0$ or $x = \pi$ or $x = 2\pi$

Monotonicity, local extremum:

$$f'(x) = 2\cos x + 2\cos 2x = 2(\cos x + \cos^2 x - (1 - \cos^2 x)) =$$

$$= 2 \cdot (2\cos^2 x + \cos x - 1) = 0 \implies (\cos x)_{1,2} = \frac{-1 \pm 3}{4} \implies \cos x = -1 \text{ or } \cos x = \frac{1}{2}$$

$$\implies x_1 = \frac{\pi}{3}, x_2 = \pi, x_3 = \frac{5\pi}{3}$$

х	0	$\left(0,\frac{\pi}{3}\right)$	$\frac{\pi}{3}$	$\left(\frac{\pi}{3},\pi\right)$	π	$\left(\pi, \frac{5\pi}{3}\right)$	$\frac{5\pi}{3}$	$\left(\frac{5\pi}{3}, 2\pi\right)$	2π
f'	+	+	0	-	0	-	0	+	+
f		7	$\max: \frac{3\sqrt{3}}{2}$	У		У	$min: -\frac{3\sqrt{3}}{2}$	7	

Convexity / concavity, inflection points:

$$f''(x) = -2\sin x - 4\sin 2x = -2\sin x - 8\sin x \cos x =$$

$$= -2\sin x (1 + 4\cos x) = 0 \implies \sin x = 0 \text{ or } \cos x = -\frac{1}{4}$$

$$\implies x_1 = 0, x_2 = \pi, x_3 = 2\pi, x_4 = \arccos\left(-\frac{1}{4}\right) \approx 1.82, x_5 = 2\pi - \arccos\left(-\frac{1}{4}\right) \approx 4.46$$

х	0	(0, 1.82)	1.82	(1.82, π)	π	$(\pi, 4.46)$	4.46	(4.46, 2 π)	2π
f''	0	_	0	+	0	-	0	+	0
f	infl:0	Λ	infl:\n 3 √15 8	U	infl:0	Ω	infl:\n - 3√15 8	U	infl:0

The graph of *f*:

Implicitely given curve

Example. The curve y = y(x) is given by the following implicit equation:

$$x \sinh x - y \cosh y = 0$$

Study the properties of this curve in a neighbourhood of (0, 0).

Solution. The point (0, 0) is on the curve: y(0) = 0.

1) The first derivative of $x \sinh x - y(x) \cosh y(x) = 0$ with respect to x:

$$\sinh x + x \cosh x - y'(x) \cosh y(x) - y(x) y'(x) \sinh y(x) = 0$$

If
$$x = 0$$
, $y = 0 \implies 0 + 0 \cdot 1 - y'(0) \cdot 1 - 0 \cdot y'(0) \cdot 0 = 0 \implies y'(0) = 0$

2) The second derivative with respect to *x*:

$$\cosh x + \cosh x + x \sinh x - y''(x) \cosh y(x) - y'(x) y'(x) \sinh y(x)$$
$$-y'(x) y'(x) \sinh y(x) - y(x) y''(x) \sinh y(x) - y(x) y'(x) y'(x) \cosh y(x) = 0$$

If
$$x = 0$$
, $y = 0 \implies 1 + 1 + 0 - y''(0) - 0 - 0 - 0 - 0 = 0 \implies y''(0) = 2$

Since y'(0) = 0 and y''(0) = 2 > 0 then the curve y = y(x) has local minimum at x = 0 and it is convex in some neighbourhood of x = 0.

