Calculus 1-12

Properties of continuous functions

Topological characterization

Theorem. Suppose that $f: U \subset \mathbb{R} \longrightarrow \mathbb{R}$ is a function. Then the following statements are equivalent.
(1) f is continuous on U;
(2) for all open set $V \subset f(U):=\{f(x): x \in U\}$, the preimage of V, $f^{-1}(V):=\{x \in U: f(x) \in V\}$ is open.

Proof. (1) \Longrightarrow (2)
Suppose that f is continuous on U and $V \subset f(U)$ is open. Let $a \in f^{-1}(V)$ then $f(a) \in V$.
Since V is open, then there exists $\varepsilon>0$ such that $B(f(a), \varepsilon) \subset V$.
Since f is continuous at a, then for this ε there exists $\delta>0$ such that if $x \in B(a, \delta)$, then $f(x) \in B(f(a), \varepsilon) \subset V$.
It means that $B(a, \delta) \subset f^{-1}(V)$, so $f^{-1}(V)$ is open.
(2) $\Longrightarrow(1)$

Suppose that the preimage of each open set is open.
It means that if $a \in U$, then the preimage of $B(f(a), \varepsilon)$ is open, so for this ε there exists $\delta>0$ such that $f(B(a, \delta)) \subset B(f(a), \varepsilon)$, so f is continuous at a.

Intermediate value theorem

Theorem (Intermediate value theorem or Bolzano's theorem).
Assume that f is continuous on $[a, b], f(a) \neq f(b)$ and $f(a)<c<f(b)$ or $f(b)<c<f(a)$. Then there exists $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=c$.

Proof. We prove the case $f(a)<c<f(b)$. The point x_{0} can be found with an interval halving method (bisection method).

1st step: Consider the midpoint $\frac{a+b}{2}$ of the interval $[a, b]$. There are three cases:
If $f\left(\frac{a+b}{2}\right)>c \Longrightarrow a_{1}:=a, b_{1}:=\frac{a+b}{2}$
If $f\left(\frac{a+b}{2}\right)<c \Longrightarrow a_{1}:=\frac{a+b}{2}, b_{1}:=b$
If $f\left(\frac{a+b}{2}\right)=c \Longrightarrow x_{0}:=\frac{a+b}{2}$
2nd step: Consider the midpoint $\frac{a_{1}+b_{1}}{2}$ of the interval $\left[a_{1}, b_{1}\right]$. There are again three cases:
If $f\left(\frac{a_{1}+b_{1}}{2}\right)>c \Longrightarrow a_{2}:=a_{1}, b_{2}:=\frac{a_{1}+b_{1}}{2}$
If $f\left(\frac{a_{1}+b_{1}}{2}\right)<c \Longrightarrow a_{2}:=\frac{a_{1}+b_{1}}{2}, b_{2}:=b_{1}$
If $f\left(\frac{a_{1}+b_{1}}{2}\right)=c \Rightarrow x_{0}:=\frac{a_{1}+b_{1}}{2}$
Continuing the above procedure, we either reach x_{0} in one of the steps, or we define the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ such that

$$
[a, b] \supset\left[a_{1}, b_{1}\right] \supset\left[a_{2}, b_{2}\right] \supset \ldots \supset\left[a_{n}, b_{n}\right] \supset\left[a_{n+1}, b_{n+1}\right] \supset \ldots,
$$

and

$$
b_{1}-a_{1}=\frac{b-a}{2}, b_{2}-a_{2}=\frac{b_{1}-a_{1}}{2}=\frac{b-a}{2^{2}}, \ldots, b_{n}-a_{n}=\frac{b-a}{2^{n}}, \ldots
$$

From this it follows that $\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0$, so by the Cantor axiom there exists a unique element $x_{0} \in[a, b]$ such that $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]=\left\{x_{0}\right\}$.
Then $a_{n} \longrightarrow x_{0}, b_{n} \longrightarrow x_{0}$, so by the continuity of f we have that $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(x_{0}\right)=\lim _{n \rightarrow \infty} f\left(b_{n}\right)$, and since $f\left(a_{n}\right) \leq c \leq f\left(b_{n}\right)$, it follows that $f\left(x_{0}\right)=c$.

Consequence 1. (Bolzano's theorem)

Assume that f is continuous on $[a, b]$ and $f(a) f(b)<0$.
Then there exists $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=0$.
Remark. The above two theorems are equivalent.

Consequence 2. Every polynomial of odd degree has at least one real root.
Proof: Let $f(x)=a_{2 k+1} x^{2 k+1}+a_{2 k} x^{2 k}+\ldots+a_{1} x+a_{0}$, and let $a_{2 k+1}>0$.
$\Longrightarrow \bullet \lim _{x \rightarrow \infty} f(x)=\infty$, so there exists a number b such that $f(b)>1$, and

- $\lim _{x \rightarrow-\infty} f(x)=-\infty$, so there exists a number a such that $f(a)<-1$.

Since f is a polynomial then it is everywhere continuous, so it is also continuous on the closed interval $[a, b]$ and $f(a) f(b)<0$.
Thus by Consequence 1 . there exists $x \in(a, b)$, for which $f(x)=0$.

Remark. If f is not continuous on the closed interval $[a, b]$ then the theorem is not true, as the following example shows. Here $f(a)$ and $f(b)$ have different signs but f is not continuous at a and f doesn't have a root on the interval (a, b).

Applications

Example 1. Find a real root of the polynomial $f(x)=x^{3}+4 x^{2}-6 x-2$.
Solution. We apply an interval halving method. First we find two numbers a and b such that $f(a)$ and $f(b)$ have opposite signs.

1) $f(0)=-2<0, f(2)=10>0 \Longrightarrow f$ has a root in the interval $[0,2]$.

Bisect the interval and examine the sign of f at $x=\frac{0+2}{2}=1$.
2) $f(1)=-3<0, f(2)=10>0 \Longrightarrow f$ has a root in the interval $[1,2]$.

Bisect the interval again and examine the sign of f at $x=\frac{1+2}{2}=1.5$.
3) $f(1)=-3<0, f(1.5)=1.375>0 \Longrightarrow f$ has a root in the interval $[1,1.5]$.

Bisect the interval again and examine the sign of f at $x=\frac{1+1.5}{2}=1.25$.
4) $f(1.25) \approx-1.29688<0, f(1.5)=1.375>0 \Longrightarrow f$ has a root in the interval $[1.25,1.5]$.

Continuing the process, the root can be approximated as $\approx 1.38318 \ldots$..

Example 2. Show that the equation $2^{x}=x^{2}+\lg (x)$ has a real solution.

Solution. Set the equation to zero and consider the function $f(x)=2^{x}-x^{2}-\lg (x)$. We have to show that there exists a real number x such that $f(x)=0$, that is, we have to find two numbers a and b such that $f(a)$ and $f(b)$ have opposite signs.

For example

- $f(1)=2-1-0=1>0$
- $f(3)=8-9-\lg (3) \approx-1.47712<0$
\Longrightarrow by Bolzano's theorem f has a root in the interval $(1,3)$ and thus the equation has a real solution.

Weierstrass extreme value theorem

Remark. Recall by the Heine-Borel theorem that $K \subset \mathbb{R}$ is compact $\Longleftrightarrow K$ is closed and bounded. \Longrightarrow the interval $[a, b]$ is compact.

Theorem (Weierstrass boundedness theorem).

If f is continuous on $[a, b]$, then f is bounded on $[a, b]$.
Proof. 1) Indirectly, suppose that for example f is not bounded above.
Then for all $n \in \mathbb{N}$ there exists $x_{n} \in[a, b]$, such that $f\left(x_{n}\right)>n$.
2) Obviously $x_{n} \in[a, b]$ for all $n \in \mathbb{N}$, so the sequence $\left(x_{n}\right)$ is bounded, and thus by the Bolzano-Weierstrass theorem there exists a convergent subsequence $\left(x_{n_{k}}\right)$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=\alpha \in[a, b]$.
3) Since f is continuous at α and $x_{n_{k}} \xrightarrow{k \rightarrow \infty} \alpha$ then $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f(\alpha)$, so the sequence $\left(f\left(x_{n_{k}}\right)\right)$ is bounded.
4) Since the index sequence $\left(n_{k}\right)$ is strictly monotonically increasing, then $n_{k} \geq k$ $\Longrightarrow f\left(x_{n_{k}}\right)>n_{k} \geq k$ for all $k \in \mathbb{N} \Longrightarrow$ the sequence $\left(f\left(x_{n_{k}}\right)\right)$ is not bounded above (it diverges to $+\infty$). This is a contradiction, so f is bounded above on $[a, b]$.

Theorem (Weierstrass extreme value theorem).
If f is continuous on the closed interval $[a, b]$ then there exist numbers $\alpha \in[a, b]$ and $\beta \in[a, b]$, such that $f(\alpha) \leq f(x) \leq f(\beta)$ for all $x \in[a, b]$,
that is, f has both a minimum and a maximum on $[a, b]$.

Proof. 1) Let $A=f([a, b])=\{f(x): x \in[a, b]\}$.
By the previous theorem A is bounded, so by the least-upper-bound property of the real numbers, $\exists \sup A:=M \in \mathbb{R}$. We prove that $\exists \beta \in[a, b]$, such that $f(\beta)=M$.
2) Since M is the least upper bound, then for all $n \in \mathbb{N}, M-\frac{1}{n}$ is not an upper bound for A, so $\exists x_{n} \in[a, b]$ such that $f\left(x_{n}\right)>M-\frac{1}{n}$.
Since M is an upper bound for A, we have $M-\frac{1}{n}<f\left(x_{n}\right) \leq M$ for all $n \in \mathbb{N}$.
3) The sequence $\left(x_{n}\right) \subset[a, b]$ is bounded, so by the Bolzano-Weierstrass theorem there exists a convergent subsequence $\left(x_{n_{k}}\right)$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=\beta \in[a, b]$.
4) Then $M-\frac{1}{n_{k}}<f\left(x_{n_{k}}\right) \leq M$ for all $k \in \mathbb{N}$. Since $\frac{1}{n_{k}} \xrightarrow{k \rightarrow \infty} 0$, then by the sandwich theorem $f\left(x_{n_{k}}\right) \xrightarrow{k \rightarrow \infty} M$.
5) Since f is continuous at β and $x_{n_{k}} \xrightarrow{k \rightarrow \infty} \beta$ then $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f(\beta)$.

The limit is unique, so $f(\beta)=M$.
6) The existence of $\alpha \in[a, b]$ can be proved similarly.

Remark. If f is not continuous or if the interval is not compact, then the theorem is not true. For example, let $f(x)=\left\{\begin{array}{ll}\frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ and investigate f on the following intervals.
a) The interval (0,1] is bounded but not closed. f is continuous here but not bounded above and thus it doesn't have a maximum.
b) The interval $[-1,1]$ is compact, but f is not continuous here and doesn't have a minimum and a maximum.
c) The interval $[1, \infty)$ is not bounded. f is continuous here, but doesn't have a minimum.

1) $f: \mathbb{R} \longrightarrow \mathbb{R}$
2) $f:(0,1] \longrightarrow \mathbb{R}$
3) $f:[-1,1] \longrightarrow \mathbb{R}$
4) $f:[1, \infty) \longrightarrow \mathbb{R}$

Remark. It follows from the intermediate value theorem and the extreme value theorem that if f is continuous on $[a, b]$, then the range of f is a closed and bounded interval: $f([a, b])=[c, d]$, where $c=\min \{f(x): x \in[a, b]\}$ and $d=\max \{f(x): x \in[a, b]\}$.

Continuous image of a compact set is compact

Theorem. Suppose that $f: E \subset \mathbb{R} \longrightarrow \mathbb{R}$ is a function and $H \subset E$ is a compact set. If f is continuous on H, then $f(H)$ is compact.

Proof. 1) Let $K=f(H)=\{f(x): x \in H\}$.
To prove compactness of K, it is enough to show that every sequence in K has a convergent subsequence whose limit belongs to K.
2) Let $\left(y_{n}\right) \subset K$ be a sequence, then $\exists x_{n} \in H$ such that $f\left(x_{n}\right)=y_{n}$ for all $n \in \mathbb{N}$.
3) Since H is compact and $\left(x_{n}\right) \subset H$, then there exists a convergent subsequence $\left(x_{n_{k}}\right)$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=\alpha \in H$.
4) Since f is continuous at α, then $\lim _{k \rightarrow \infty} y_{n_{k}}=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=f(\alpha) \in K$, so K is compact.

Uniform continuity

Introduction. Recall that $f: H \subset \mathbb{R} \longrightarrow \mathbb{R}$ is continuous on H if f is continuous for all $x \in H$, that is, $\forall x \in H \quad \forall \varepsilon>0 \quad \exists \delta>0$ such that $\forall y \in H, \quad|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\varepsilon$. Here $\delta=\delta(\varepsilon, x)$, that is, continuity at a point is a local property. In some cases δ can be chosen independent of x.

Definition. The function $f: E \subset \mathbb{R} \longrightarrow \mathbb{R}$ is uniformly continuous on the set $H \subset E$, if $\forall \varepsilon>0 \quad \exists \delta>0$ such that $\forall x, y \in H: \quad|x-y|<\delta \Longrightarrow|f(x)-f(x)|<\varepsilon$.

Remarks. a) Here δ depends only on ε and not on x.
b) The definition implies that $\exists \inf _{x \in H} \delta(\varepsilon, x)>0$.
c) H is usually an interval.
d) If f is uniformly continuous on the interval I (open or closed) and $J \subset /$ then f is uniformly continuous on J. The same δ is suitable for J.
e) If f is uniformly continuous on H then f is continuous for all $x \in H$.

Example. Let $f(x)=x^{2}$.
a) Prove that f is continuous for all $x_{0} \in[1,2]$.
b) Does there exist $\inf _{x_{0} \in[1,2]} \delta\left(\varepsilon, x_{0}\right)>0$, that is, does there exist a $\delta(\varepsilon)$ that is suitable for all $x_{0} \in[1,2]$? Is f uniformly continuous on [1, 2]?
c) If f uniformly continuous on (1,2)?
d) Is f uniformly continuous on $(1, \infty)$?

Solution. a) $\left|f(x)-f\left(x_{0}\right)\right|=\left|x^{2}-x_{0}^{2}\right|=\left|x-x_{0}\right| \cdot\left|x+x_{0}\right|=\left|x-x_{0}\right| \cdot\left(x+x_{0}\right)<$ $<\left|x-x_{0}\right| \cdot\left(x_{0}+1+x_{0}\right)<\varepsilon$ if $\left|x-x_{0}\right|<\frac{\varepsilon}{2 x_{0}+1}=\boldsymbol{\delta}\left(\varepsilon, x_{0}\right)$
b) $\delta\left(\varepsilon, x_{0}\right)=\frac{\varepsilon}{2 x_{0}+1} \stackrel{x_{0} \in[1,2]}{\geq} \frac{\varepsilon}{2 \cdot 2+1}=\frac{\varepsilon}{5}=\delta(\varepsilon, 2)$,
this is a common $\delta(\varepsilon)$ that is suitable for all $x \in[1,2]$, so f is uniformly continuous on [1, 2].
c) Yes, $\delta(\varepsilon, 2)$ is also suitable here, see Remark d).
d) f is not uniformly continuous on $(1, \infty)$.

Let $x_{n}=n+\frac{1}{n} \rightarrow \infty$ and $y_{n}=n \longrightarrow \infty$. Then $x_{n}-y_{n}=\frac{1}{n} \longrightarrow 0$, that is, the terms get arbitrarily close to each other if n is large enough, but
$\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=\left|\left(n+\frac{1}{n}\right)^{2}-n^{2}\right|=2+\frac{1}{n^{2}}>2$
so if $\varepsilon<2$ then there is no suitable δ.
Another choice: $x_{n}=\sqrt{n+1}, \quad y_{n}=\sqrt{n}$.

Example. Prove that $f(x)=\sqrt{x}$ is uniformly continuous on $[0, \infty)$.
Solution. Let $\varepsilon>0$. If $\delta=\varepsilon^{2}$ and $|x-y|<\delta$ then

$$
\begin{aligned}
& |f(x)-f(y)|=|\sqrt{x}-\sqrt{y}|=\sqrt{|\sqrt{x}-\sqrt{y}| \cdot|\sqrt{x}-\sqrt{y}|} \leq \\
& \leq \sqrt{|\sqrt{x}-\sqrt{y}| \cdot|\sqrt{x}+\sqrt{y}|}=\sqrt{|x-y|}<\sqrt{\delta}=\varepsilon
\end{aligned}
$$

Example. Let $f(x)=\frac{1}{x}$. Prove that
a) f is uniformly continuous on $[1, \infty)$;
b) f is not uniformly continuous on $(0,1)$.

Solution. a) $|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=\frac{|x-y|}{x y} \leq \frac{|x-y|}{1 \cdot 1}=|x-y|<\varepsilon=\delta$.
b) $|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=\frac{|x-y|}{x y}<\varepsilon$ if $|x-y|<\varepsilon x y$, but $\delta(y)=\varepsilon x y \longrightarrow 0$ if $y \longrightarrow 0$, so there is no common δ that is independent of y. For example, if $x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n+1}$ then $x_{n}-y_{n}=\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)} \rightarrow 0$, but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=|n-(n+1)|=1$, so if $\varepsilon<1$ then there is no suitable δ.

Theorem (Heine). If f is continuous on the compact set H then f is uniformly continuous on H.
Proof. 1) Indirectly assume that f is not uniformly continuous on K, that is,
$\exists \varepsilon>0$ such that $\forall \delta>0 \quad \exists x, y \in H$ such that $|x-y|<\delta$ but $|f(x)-f(y)| \geq \varepsilon$.
2) Let $\delta=\frac{1}{n}$ for all $n \in \mathbb{N}^{+}$.

Then for this $\delta \exists x_{n}, y_{n} \in H$ such that $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon$.
3) Since H is compact, then by the Bolzano-Weierstrass theorem the sequence $\left(x_{n}\right) \subset H$ has a convergent subsequence whose limit belongs to H, that is, there is an index sequence $\left(n_{k}\right)$ such that $\left(x_{n_{k}}\right)$ is convergent and $\lim _{k \rightarrow \infty} x_{n_{k}}=\alpha \in H$.
4) We show that with the same index sequence $\left(n_{k}\right)$, the sequence $\left(y_{n_{k}}\right)$ is also convergent and $\lim _{k \rightarrow \infty} y_{n_{k}}=\alpha$. For all $n \in \mathbb{N}^{+}$we have

$$
\left|y_{n_{k}}-\alpha\right| \leq\left|y_{n_{k}}-x_{n_{k}}\right|+\left|x_{n_{k}}-\alpha\right|<\frac{1}{n_{k}}+\left|x_{n_{k}}-\alpha\right|
$$

Since $\frac{1}{n_{k}} \xrightarrow{k \rightarrow \infty} 0$ and $\left|x_{n_{k}}-\alpha\right| \xrightarrow{k \rightarrow \infty} 0$ then their sum also tends to 0 , so $\left|y_{n_{k}}-\alpha\right| \xrightarrow{k \rightarrow \infty} 0$.
5) Since $x_{n_{k}} \xrightarrow{k \rightarrow \infty} \alpha$ and $y_{n_{k}} \xrightarrow{k \rightarrow \infty} \alpha$ and f is continuous at $\alpha \in H$, then $f\left(x_{n_{k}}\right) \xrightarrow{k \rightarrow \infty} f(\alpha)$ and $f\left(y_{n_{k}}\right) \xrightarrow{k \rightarrow \infty} f(\alpha)$, from where $\lim _{k \rightarrow \infty}\left(f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right)=f(\alpha)-f(\alpha)=0$,
however, this is a contradiction, since for all $n \in \mathbb{N}^{+}\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon$.
It means that the indirect assumption is false, so the statement of the theorem is true.

Theorem. If f is continuous on $[a, \infty)$ and $\exists \lim _{x \rightarrow \infty} f(x)=A \in \mathbb{R}$ then f is uniformly continuous on $[a, \infty)$.

Lipschitz continuity

Definition. The function f is Lipschitz continuous on the set A if there exists $L \geq 0$ (Lipschitz constant), such that $|f(x)-f(y)| \leq L|x-y|$ for all $x, y \in A$.

Theorem. If f is Lipschitz continuous on A, then f is uniformly continuous on A.
Proof. a) If $L=0$ then δ can be arbitrary, f is constant, so it is uniformly continuous.
b) If $L>0$ then let $\delta=\frac{\varepsilon}{L}$. If $|x-y|<\frac{\varepsilon}{L}$ for all $x, y \in A$, then

$$
|f(x)-f(y)|<L|x-y| \leq L \cdot \frac{\varepsilon}{L}=\varepsilon .
$$

Remark. The converse of the theorem is not true.
For example $f(x)=\sqrt{x}$ is uniformly continuous on [0,1] but not Lipschitz continuous. Let $x=0, y>0$ and $L>0$. Then

$$
|\sqrt{y}-\sqrt{x}| \leq L|y-x| \Longleftrightarrow \sqrt{y} \leq L \cdot y \Longleftrightarrow \frac{1}{L^{2}} \leq y
$$

It means that there is no positive number that is less than $\frac{1}{L^{2}}$, which is a contradiction.
Remark. f is Lipschitz continuous on $A \Longrightarrow f$ is uniformly continuous on $A \Longrightarrow f$ is continuous on A.

Continuity of the inverse function

Definition. The function f is invertible if for all $x, y \in D_{f}, x \neq y \Longrightarrow f(x) \neq f(y)$.
(Or, equivalently, for all $x, y \in D_{f}:(f(x)=f(y) \Longrightarrow x=y)$).
The inverse function f^{-1} of f is defined as follows:
$D_{f^{-1}}=R_{f}$ and $\left(f^{-1} \circ f\right)(x)=x$ for all $x \in D_{f}$.
Remark. If f is invertible and continuous at x_{0} then from this it doesn't follow that
f^{-1} is continuous at $f\left(x_{0}\right)$. For example, the function $f(x)=\left\{\begin{array}{ll}x+1 & \text { if } x \geq 0 \\ x+2 & \text { if } x<-1\end{array}\right.$ is invertible.
If we express x from the equation $y=f(x)$, then we get that the inverse of f is
$f^{-1}(y)=\left\{\begin{array}{ll}y-1 & \text { if } y \geq 1 \\ y-2 & \text { if } y<1\end{array} \Longrightarrow f\right.$ is continuous but f^{-1} is not continuous.

Theorem. Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous and strictly monotonic. Then f^{-1} is continuous on R_{f}.

Proof. 1) Since f is continuous on $[a, b]$ then it follows from the intermediate value theorem and extreme value theorem that the range of f is a closed and bounded interval. Let $[c, d]=R_{f}$.
Since f is strictly monotonic then it is bijective, so it has an inverse, $f^{-1}:[c, d] \longrightarrow[a, b]$.
2) Let $v \in[c, d]$ arbitrary, $u:=f^{-1}(v)$ and assume that $\left(y_{n}\right) \subset[c, d], y_{n} \longrightarrow v$ is an arbitrary sequence. To prove the continuity of f^{-1} at v, it is enough to show that $x_{n}:=f^{-1}\left(y_{n}\right) \longrightarrow f^{-1}(v)=u$.
3) Assume indirectly that the sequence $\left(x_{n}\right) \subset[a, b]$ does not tend to u. Then $\exists \delta>0 \quad \forall k \in \mathbb{N} \exists n_{k}>k$, such that $\left|x_{n_{k}}-u\right| \geq \delta$.
4) Since the sequence $\left(x_{n_{k}}\right) \subset[a, b] \backslash(u-\delta, u+\delta)$ is bounded, then it has a convergent subsequence $\left(x_{n_{k_{1}}}\right)$. Let $\lim _{l \rightarrow \infty} x_{n_{k_{l}}}=\alpha$. Obviously $\alpha \in[a, b]$, but $\alpha \neq u$.
5) Since f is continuous at α then $f\left(x_{n_{k_{1}}}\right)=y_{n_{k_{1}}} \rightarrow f(\alpha)$.

Since $y_{n} \xrightarrow{n \rightarrow \infty} v$ and $\left(y_{n_{k_{l}}}\right)$ is a subsequence of $\left(y_{n}\right)$, then $y_{n_{k_{l}}} \longrightarrow v$, so $f(\alpha)=v$.
6) We obtained that $\alpha \neq u$, but $f(\alpha)=f(u)=v$, which means that f is not bijective.

This is a contradiction, so the indirect assumption is false.
Therefore, $x_{n} \longrightarrow u$ and thus f^{-1} is continuous at v.

Convexity and continuity

Definition. The function f is convex on the interval $I \subset D_{f}$ if for all $x, y \in I$ and $t \in[0,1]$

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

The function f is concave on the interval $I \subset D_{f}$ if for all $x, y \in I$ and $t \in[0,1]$

$$
f(t x+(1-t) y) \geq t f(x)+(1-t) f(y)
$$

f is strictly convex / strictly concave if equality doesn't hold.

Remark. Let $a, b \in I$, then the secant line passing through the points $(a, f(a))$ and $(b, f(b))$ is $h_{a, b}(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$.
The function f is $\left\{\begin{array}{l}\text { convex } \\ \text { concave }\end{array}\right.$ on the interval $/ \subset D_{f}$ if
$\forall a, b \in I, a<x<b \Longrightarrow\left\{\begin{array}{l}f(x) \leq h_{a, b}(x) \\ f(x) \geq h_{a, b}(x)\end{array}\right.$, that is, the secant lines of f always lie $\left\{\begin{array}{l}\text { above } \\ \text { below }\end{array}\right.$ the graph of f.

Theorem. If f is convex on the open interval l, then f is continuous on $/$.
Proof. Let $a, b, c \in I$ such that $a<c<b$. If $x \in(c, b)$, then $h_{a, c} \leq f(x) \leq h_{c, b}(x)$.
Since $\lim _{x \rightarrow c+} h_{a, c}(x)=\lim _{x \rightarrow c+} h_{c, b}(x)=f(c)$, then by the sandwich theorem $\lim _{x \rightarrow c+} f(x)=f(c)$, and similarly $\lim _{x \rightarrow c-} f(x)=f(c)$.

Remark. If f is convex on a closed interval, then f can be discontinuous only at the endpoints of the interval.

Jensen's inequality

Theorem (Jensen's inequality).

The function f is convex on the interval $/$ if and only if for all $a_{1}, a_{2}, \ldots a_{n} \in I$, and for all $t_{1}, t_{2}, \ldots, t_{n} \geq 0$, if $t_{1}+t_{2}+\ldots+t_{n}=1$ then

$$
f\left(t_{1} a_{1}+t_{2} a_{2}+\ldots+t_{n} a_{n}\right) \leq t_{1} f\left(a_{1}\right)+t_{2} f\left(a_{2}\right)+\ldots+t_{n} f\left(a_{n}\right)
$$

Examples 1. $f(x)=x^{2}$ is convex on \mathbb{R}. Applying Jensen's inequality with $t_{1}=t_{2}=\ldots=t_{n}=\frac{1}{n}$:

$$
\left(\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}\right)^{2} \leq \frac{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}{n}
$$

from where we obtain the inequality of the arithmetic and quadratic means:

$$
\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \leq \sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}{n}}
$$

2. $f(x)=\frac{1}{x}$ is convex on $(0, \infty)$. Applying Jensen's inequality with $t_{1}=t_{2}=\ldots=t_{n}=\frac{1}{n}$:

$$
\frac{1}{\frac{a_{1}}{n}+\frac{a_{2}}{n}+\ldots+\frac{a_{n}}{n}}=\frac{n}{a_{1}+a_{2}+\ldots+a_{n}} \leq \frac{1}{n} \cdot \frac{1}{a_{1}}+\frac{1}{n} \cdot \frac{1}{a_{2}} \ldots+\frac{1}{n} \cdot \frac{1}{a_{n}}=\frac{1}{n}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)
$$

from where we obtain the inequality of the arithmetic and harmonic means:

$$
\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \geq \frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{1}}+\ldots+\frac{1}{a_{1}}}
$$

The exponential function

Definition. The function $f(x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$ is called the exponential function of base e.

$$
\text { Notation: } e^{x}, \exp _{e}(x) \text { or } \exp (x)
$$

Statement. $e^{x+y}=e^{x} e^{y} \quad \forall x, y \in \mathbb{R}$.
Proof. Using the identity $a^{n}-b^{n}=(a-b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}$ and choosing n large enough such that $1+\frac{x+y}{n}>0,1+\frac{x}{n}>0$ and $1+\frac{y}{n}>0$, we get that

$$
\left|\left(1+\frac{x+y}{n}\right)^{n}-\left(1+\frac{x}{n}\right)^{n}\left(1+\frac{y}{n}\right)^{n}\right|=\frac{|x y|}{n^{2}} \sum_{k=0}^{n-1}\left(1+\frac{x+y}{n}\right)^{k}\left(\left(1+\frac{x}{n}\right) \cdot\left(1+\frac{y}{n}\right)\right)^{n-1-k}
$$

Here

$$
\left(1+\frac{a}{n}\right)^{k} \leq\left\{\begin{array}{ll}
1 & \text { if } a \leq 0 \\
e^{a} & \text { if } a>0
\end{array} \text {, so }\left(1+\frac{x+y}{n}\right)^{k}\left(\left(1+\frac{x}{n}\right) \cdot\left(1+\frac{y}{n}\right)\right)^{n-1-k} \leq K\right.
$$

where $K=\max \left\{1, e^{x+y}\right\} \cdot \max \left\{1, e^{x}\right\} \cdot \max \left\{1, e^{y}\right\}$, therefore

$$
\left|\left(1+\frac{x+y}{n}\right)^{n}-\left(1+\frac{x}{n}\right)^{n}\left(1+\frac{y}{n}\right)^{n}\right| \leq \frac{|x y|}{n^{2}} \cdot n K=\frac{K|x y|}{n} \xrightarrow{n \rightarrow \infty} 0 .
$$

Statement. If $x \in \mathbb{R}$, then $e^{x}>0, e^{x} \geq 1+x$, and if $x<1$, then $e^{x} \leq \frac{1}{1-x}$.
Proof. 1) If $x \geq 0$ then from the definition it follows that $e^{x}>0$.
If $x<0$ then $e^{x}=\frac{1}{e^{-x}}>0$, since $e^{-x}>0$.
2) If $n \in \mathbb{N}^{+}$such that $n \geq-x$, then $\frac{x}{n} \geq-1$, so by the Bernoulli inequality

$$
\left(1+\frac{x}{n}\right)^{n} \geq 1+n \cdot \frac{x}{n}=1+x
$$

By the monotonicity of the limit $e^{x} \geq 1+x$.
3) If $x<1$ then $e^{-x} \geq 1+(-x)>0 \Rightarrow e^{x}=\frac{1}{e^{-x}} \leq \frac{1}{1-x}$.

Statement. $f(x)=e^{x}$ is continuous at 0.
Proof. If $x<1$ then $1+x \leq e^{x} \leq \frac{1}{1-x}$, so from the sandwich theorem $\lim _{x \rightarrow 0} e^{x}=e^{0}=1$.
Consequence. $f(x)=e^{x}$ is continuous.
Proof. $\lim _{x \rightarrow x_{0}} e^{x}=e^{x_{0}} \lim _{x \rightarrow x_{0}} e^{x-x_{0}}=e^{x_{0}} \lim _{x \rightarrow 0} e^{x}=e^{x_{0}}$.
Statement. $f(x)=e^{x}$ is strictly monotonically increasing and its range is $(0, \infty)$.
Proof. 1) Let $x, y \in \mathbb{R}$ such that $x<y$. We have to show that $e^{x}<e^{y}$.

$$
\text { Since } y-x>0 \text { then } e^{y-x} \geq 1+(y-x)>1
$$

and since $e^{x}>0$ then $e^{y}=e^{(y-x)+x}=e^{y-x} e^{x}>1 \cdot e^{x}=e^{x}$.
2) $\sup R_{f}=\infty$. Since $e^{x} \geq 1+x$ and $\lim _{x \rightarrow 0}(1+x)=\infty$, so $\lim _{x \rightarrow 0} e^{x}=\infty$.
3) inf $R_{f}=0$. Since $f(x)=e^{x}$ is strictly monotonically increasing, then

$$
\lim _{x \rightarrow-\infty} e^{x}=\lim _{x \rightarrow \infty} e^{-x}=\lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0
$$

4) By the intermediate value theorem the range of f is an interval, so $R_{f}=(0, \infty)$.

The logarithm function

Definition. Denote $\ln =\log _{e}$ the inverse of $f(x)=e^{x}$, so $e^{\ln x}=\ln e^{x}=x$.

$$
D_{\mathrm{ln}}=R_{\exp }=(0, \infty) \text { and } R_{\mathrm{ln}}=D_{\exp }=\mathbb{R}
$$

