Calculus 1-11

Limits of real functions

Definitions

A function $f: A \longrightarrow B$ is a mapping that assigns exactly one element of B to every element from A.
The set A is called the domain of f (notation: D_{f} or $\operatorname{Dom}(f)$) and the set $f(A)=\{f(x): x \in A\}$ is called the range of f (notation: R_{f} or $\left.\operatorname{Ran}(f)\right)$.

A function $f: A \longrightarrow B$ is one-to one or injective if for all $x, y \in A:(f(x)=f(y) \Longrightarrow x=y)$.
A function $f: A \longrightarrow B$ is onto or surjective if $f(A)=B$.
A function f is bijective if it is injective and surjective.

The function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is

- even, if $\forall x \in D_{f},-x \in D_{f}$ and $f(x)=f(-x) \quad$ (for example, $f(x)=x^{2}$ or $f(x)=\cos x$)
- odd, if $\forall x \in D_{f},-x \in D_{f}$ and $f(-x)=-f(x) \quad$ (for example, $f(x)=x^{3}$ or $f(x)=\sin x$)
- monotonically increasing if $\forall x, y \in D_{f}(x<y \Longrightarrow f(x) \leq f(y))$
- monotonically decreasing if $\forall x, y \in D_{f}(x<y \Longrightarrow f(x) \geq f(y))$
- strictly monotonically increasing if $\forall x, y \in D_{f}(x<y \Longrightarrow f(x)<f(y))$ (for example, $\left.f(x)=\sqrt{x}, f(x)=x^{3}\right)$
- strictly monotonically decreasing if $\forall x, y \in D_{f}(x<y \Longrightarrow f(x)>f(y))$
- periodic with period $p>0$ if $\forall x \in D_{f}, x+p \in D_{f}$ and $f(x)=f(x+p) \quad$ (for example, $f(x)=\sin x$)

Limit at a finite point

Definition. The limit of the function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ at the point $x_{0} \in \mathbb{R}$ is $A \in \mathbb{R}$ if
(1) x_{0} is a limit point of $D_{f}\left(x \in D_{f}^{\prime}\right)$
(2) for all $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that
if $x \in D_{f}$ and $0<\left|x-x_{0}\right|<\delta(\varepsilon)$ then $|f(x)-A|<\varepsilon$
Notation: $\lim _{x \rightarrow x_{0}} f(x)=A$
Remark: $0<\left|x-x_{0}\right|<\delta$ means that $x_{0}-\delta<x<x_{0}$ or $x_{0}<x<x_{0}+\delta$.

One-sided limits:

Definition. Suppose $x_{0} \in \mathbb{R}$ is a limit point of $\left\{\begin{array}{l}D_{f} \cap\left[x_{0}, \infty\right) \\ D_{f} \cap\left(-\infty, x_{0}\right]\end{array}\right.$. Then
$\left\{\begin{array}{l}\lim _{x \rightarrow x_{0}+} f(x)=A \\ \lim _{x \rightarrow x_{0}-} f(x)=A\end{array}\right.$ if for all $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that if $x \in D_{f}$ and $\left\{\begin{array}{l}x_{0}<x<x_{0}+\delta(\varepsilon) \\ x_{0}-\delta(\varepsilon)<x<x_{0}\end{array}\right.$ then $|f(x)-A|<\varepsilon$.

Consequence. If x_{0} is a limit point of D_{f} then $\lim _{x \rightarrow x_{0}} f(x)$ exists if and only if $\lim _{x \rightarrow x_{0}+} f(x)$ and $\lim _{x \rightarrow x_{0}-} f(x)$ exist and $\lim _{x \rightarrow x_{0}+} f(x)=\lim _{x \rightarrow x_{0}-} f(x)$.

Definition. Let $f: X \rightarrow Y$ be a function and $A \subset X$. The restriction of \boldsymbol{f} to A is the function $\left.f\right|_{A}: A \rightarrow Y,\left.f\right|_{A}(x)=f(x)$.

Remark. $\lim _{x \rightarrow x_{0}+} f(x)=\left.\lim _{x \rightarrow x_{0}} f\right|_{D_{f}\left\{\left[x_{0}, \infty\right)\right.}(x)$ and $\lim _{x \rightarrow x_{0}-} f(x)=\left.\lim _{x \rightarrow x_{0}} f\right|_{\left.D_{f \cap\left(-\infty, x_{0}\right]}\right]}(x)$

Example 1. Using the definition, show that $\lim _{x \rightarrow-2} \frac{8-2 x^{2}}{x+2}=8$.
Solution. We have to show that if x is "close" to x_{0}, that is, $\left|x-x_{0}\right|$ is "small", then $f(x)$ is "close" to A, that is, $|f(x)-A|$ is also "small". That is, we have to show that for all $\varepsilon>0$ there exists $\delta>0$ such that if $0<\left|x-x_{0}\right|<\delta$, then $|f(x)-A|<\varepsilon$.
Here $x_{0}=-2$. If $\varepsilon>0$ then

$$
\begin{aligned}
& |f(x)-A|=\left|\frac{8-2 x^{2}}{x+2}-8\right|=\left|\frac{2 \cdot\left(4-x^{2}\right)}{x+2}-8\right|=|2 \cdot(2-x)-8|= \\
& =|-2 x-4|=|(-2)(x+2)|=2|x+2|=2|x-(-2)|<\varepsilon \text {, if }|x+2|<\frac{\varepsilon}{2} \\
& \Rightarrow \text { with the choice } \delta=\delta(\varepsilon)=\frac{\varepsilon}{2} \text { the definition holds. Remark: }-2 \notin D_{f} \text {. } \\
& \text { For example if } \varepsilon=10^{-2} \text { then } \delta=5 \cdot 10^{-3} \text {. }
\end{aligned}
$$

Example 2. Using the definition, show that $\lim _{x \rightarrow-3} \sqrt{1-5 x}=4$.
Solution. Let $\varepsilon>0$. Then
$|f(x)-A|=|\sqrt{1-5 x}-4|=\left|\frac{1-5 x-16}{\sqrt{1-5 x}+4}\right|=\frac{5|x-(-3)|}{\sqrt{1-5 x}+4} \leq \frac{5|x+3|}{0+4}<\varepsilon$,
if $|x+3|<\frac{4 \varepsilon}{5} \Rightarrow$ with the choice $\delta(\varepsilon)=\frac{4 \varepsilon}{5}$ the definition holds.

Definition. Suppose $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is a function and $x_{0} \in D_{f}^{\prime}$. Then $\lim _{x \rightarrow x_{0}} f(x)=\left\{\begin{array}{l}\infty \\ -\infty\end{array}\right.$ if for all $P>0$ there exists $\delta(P)>0$ such that if $x \in D_{f}$ and $0<\left|x-x_{0}\right|<\delta(P)$ then $\left\{\begin{array}{l}f(x)>P \\ f(x)<-P\end{array}\right.$.

Remark. The one-sided limits can be defined similarly:

- $\lim _{x \rightarrow x_{0}+} f(x)=\left\{\begin{array}{l}\infty \\ -\infty\end{array}\right.$ if $\forall P>0 \exists \delta(P)>0$ such that if $x \in D_{f}$ and $x_{0}<x<x_{0}+\delta(P)$ then $\left\{\begin{array}{l}f(x)>P \\ f(x)<-P\end{array}\right.$.
- $\lim _{x \rightarrow x_{0}-} f(x)=\left\{\begin{array}{l}\infty \\ -\infty\end{array}\right.$ if $\forall P>0 \exists \delta(P)>0$ such that if $x \in D_{f}$ and $x_{0}-\delta(P)<x<x_{0}$ then $\left\{\begin{array}{l}f(x)>P \\ f(x)<-P\end{array}\right.$.

Example 3. $\lim _{x \rightarrow 2} \frac{1}{(x-2)^{2}}=\infty$, since if $P>0$, then $f(x)=\frac{1}{(x-2)^{2}}>P \Longleftrightarrow 0<|x-2|<\frac{1}{\sqrt{P}}$ \Longrightarrow with the choice $\delta(P)=\frac{1}{\sqrt{P}}$ the definition holds.

Limit at ∞ and $-\infty$

Definitions. Assume that D_{f} is not bounded above.
(1) $\lim _{x \rightarrow \infty} f(x)=A \in \mathbb{R}$ if for all $\varepsilon>0$ there exists $K(\varepsilon)>0$ such that if $x>K(\varepsilon)$ then $|f(x)-A|<\varepsilon$.
(2) $\lim _{x \rightarrow \infty} f(x)=\infty$ if for all $P>0$ there exists $K(P)>0$ such that if $x>K(P)$ then $f(x)>P$.
(3) $\lim _{x \rightarrow \infty} f(x)=-\infty$ if for all $P>0$ there exists $K(P)>0$ such that if $x>K(P)$ then $f(x)<-P$.

Remark. If f is a sequence, that is, $D_{f}=\mathbb{N}^{+}$, then the only accumulation point of D_{f} is ∞, so we can investigate the limit only here.

Definitions. Assume that D_{f} is not bounded below.
(1) $\lim _{x \rightarrow-\infty} f(x)=A \in \mathbb{R}$ if for all $\varepsilon>0$ there exists $K(\varepsilon)>0$ such that if $x<-K(\varepsilon)$ then $|f(x)-A|<\varepsilon$.
(2) $\lim _{x \rightarrow-\infty} f(x)=\infty$ if for all $P>0$ there exists $K(P)>0$ such that if $x<-K(P)$ then $f(x)>P$.
(3) $\lim _{x \rightarrow-\infty} f(x)=-\infty$ if for all $P>0$ there exists $K(P)>0$ such that if $x<-K(P)$ then $f(x)<-P$.

Summary

The above definitions of the limit can be summarized as follows.
Theorem. Assume that $a \in \overline{\mathbb{R}}$ is a limit point of D_{f} and $b \in \overline{\mathbb{R}}$. Then $\lim _{x \rightarrow a} f(x)=b$ if and only if for any neighbourhood J of b there exists a neighbourhood I of a such that if $x \in I \cap D_{f}$ and $x \neq a$ then $f(x) \in J$.

Examples

- $\lim _{x \rightarrow 0-0} \frac{1}{x^{2}}=\lim _{x \rightarrow 0+0} \frac{1}{x^{2}}=+\infty \quad \Longrightarrow \lim _{x \rightarrow 0} \frac{1}{x^{2}}=+\infty$
- $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=\lim _{x \rightarrow-\infty} \frac{1}{x^{2}}=0$
- $\lim _{x \rightarrow 2-0} \frac{1}{2-x}=+\infty, \lim _{x \rightarrow 2+0} \frac{1}{2-x}=-\infty \Rightarrow \lim _{x \rightarrow 2} \frac{1}{2-x}$ doesn't exist
- $\lim _{x \rightarrow \infty} \frac{1}{2-x}=\lim _{x \rightarrow-\infty} \frac{1}{2-x}=0$

The sequential criterion for the limit of a function

In the syllabus it is called transference principle.
Theorem. Suppose $f: D_{f} \subset \mathbb{R} \rightarrow \mathbb{R}$ is a function, $a, b \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$, and $a \in D_{f}{ }^{\prime}$. Then the following two statements are equivalent.
(1) $\lim _{x \rightarrow a} f(x)=b$
(2) For all sequences $\left(x_{n}\right) \subset D_{f} \backslash\{a\}$ for which $x_{n} \rightarrow a, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=b$.

Proof. We prove it for $a, b \in \mathbb{R}$.
$(1) \Longrightarrow(2): \bullet$ Assume that for all $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that if $0<|x-a|<\delta(\varepsilon)$
then $|f(x)-b|<\varepsilon$.

- Let $\left(x_{n}\right)$ be a sequence for which $x_{n} \in D_{f} \backslash\{a\}$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow a$.
- Then for $\delta(\varepsilon)>0$ there exists a threshold index $N(\delta(\varepsilon)) \in \mathbb{N}$ such that if $n>N(\delta(\varepsilon))$ then $\left|x_{n}-a\right|<\delta(\varepsilon)$.
- Thus for all $n>N(\delta(\varepsilon)),\left|f\left(x_{n}\right)-b\right|<\varepsilon$ also holds, so $f\left(x_{n}\right) \longrightarrow b$.
$(2) \Longrightarrow(1): \bullet$ Indirectly, assume that (2) holds but $\lim _{x \rightarrow a} f(x) \neq b$, that is,

$$
\text { there exists } \varepsilon>0 \text { such that for all } \delta>0 \text { there exists } x \in D_{f} \text { for which }
$$

$$
0<|x-a|<\delta \text { and }|f(x)-b| \geq \varepsilon
$$

- Let $\delta_{n}=\frac{1}{n}>0$ for all $n \in \mathbb{N}^{+}$. Then for δ_{n} there exists $x_{n} \in D_{f}$ such that

$$
0<\left|x_{n}-a\right|<\delta_{n}=\frac{1}{n} \text { and }\left|f\left(x_{n}\right)-b\right| \geq \varepsilon .
$$

- It means that $x_{n} \rightarrow a$, but $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq b$, which is a contradiction, so $\lim _{x \rightarrow a} f(x)=b$.

Remark. The theorem is useful for problems where we prove that the limit doesn't exist.

Examples

1. Show that the limit $\lim _{x \rightarrow \infty} \sin (x)$ does not exist.

Solution. We give two different sequences tending to infinity such that the sequence of the corresponding function values have different limits. For example:

1) If $a_{n}=\frac{\pi}{2}+n \cdot 2 \pi$, then $a_{n} \rightarrow \infty$ and $\sin \left(a_{n}\right)=1 \longrightarrow 1$.
2) If $b_{n}=n \cdot \pi$, then $b_{n} \longrightarrow \infty$ and $\sin \left(b_{n}\right)=0 \longrightarrow 0$.
3) If $c_{n}=\frac{3 \pi}{2}+n \cdot 2 \pi$, then $c_{n} \rightarrow \infty$ and $\sin \left(c_{n}\right)=-1 \longrightarrow-1 . \Longrightarrow \lim _{x \rightarrow \infty} \sin (x)$ doesn't exist.
2. Let $f(x)=\sin \left(\frac{1}{x}\right), D_{f}=\mathbb{R} \backslash\{0\}$. Show that f does not have a limit at 0 .

Example. Let $x_{n}=\frac{1}{n \pi} \longrightarrow 0$ and $y_{n}=\frac{1}{\frac{\pi}{2}+2 n \pi} \longrightarrow 0$. Then

- $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} \sin \left(\frac{1}{x_{n}}\right)=\lim _{x \rightarrow \infty} \sin (n \pi)=0$ and
- $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=\lim _{x \rightarrow \infty} \sin \left(\frac{1}{y_{n}}\right)=\lim _{x \rightarrow \infty} \sin \left(\frac{\pi}{2}+2 n \pi\right)=1 \neq 0 \Longrightarrow \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ doesn't exist.

Consequences

Theorem. Suppose $x_{0} \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ is a limit point of $D_{f} \cap D_{g}$ and $\lim _{x \rightarrow x_{0}} f(x)=A \in \mathbb{R}$, $\lim _{x \rightarrow x_{0}} g(x)=B \in \mathbb{R}, c \in \mathbb{R}$. Then
(1) $\lim _{x \rightarrow x_{0}}(c f)(x)=c \cdot A$
(2) $\lim _{x \rightarrow x_{0}}(f \pm g)(x)=A \pm B$
(3) $\lim _{x \rightarrow x_{0}}(f \cdot g)(x)=A \cdot B$
(4) $\lim _{x \rightarrow x_{0}}\binom{f}{g}(x)=\frac{A}{B}$ if $B \neq 0$
(5) If $\lim _{x \rightarrow x_{0}} f(x)=0$ and g is bounded in a neighbourhood of x_{0} then $\lim _{x \rightarrow x_{0}}(f g)(x)=0$.

Remark. The statements (1)-(4) are also true if $A, B \in \overline{\mathbb{R}}$ and the corresponding operations are defined in $\overline{\mathbb{R}}$.

Theorem. Suppose $x_{0} \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ is a limit point of $D_{f} \cap D_{g}$ and $\lim _{x \rightarrow x_{0}} f(x)=A \in \overline{\mathbb{R}}, \lim _{x \rightarrow x_{0}} g(x)=B \in \overline{\mathbb{R}}$.
If $f(x) \leq g(x)$ for all $x \in D_{f} \cap D_{g}$ then $A \leq B$.

Theorem (Sandwich theorem for limits). Suppose that
(1) $x_{0} \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ is a limit point of $D_{f} \cap D_{g} \cap D_{h}$,
(2) $f(x) \leq g(x) \leq h(x)$ for all x in a neighbourhood of x_{0} and
(3) $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} h(x)=b \in \overline{\mathbb{R}}$.

Then $\lim _{x \rightarrow x_{0}} g(x)=b$.

Remark. The theorem is also true for one-sided limits and if $b= \pm \infty$ then only one estimation is enough.

Example. Show that a) $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$ and b) $\lim _{x \rightarrow \infty} \frac{1}{x} \sin (x)=0$.
a)

b)

Solution.

a) $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$, since $-|x| \leq x \sin \left(\frac{1}{x}\right) \leq|x|$, and $\lim _{x \rightarrow 0}(|x|)=\lim _{x \rightarrow 0}(-|x|)=0$ Or: $x \rightarrow 0$ and $\sin \left(\frac{1}{x}\right)$ is bounded, so the product also tends to 0 .
b) $\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}=0$, since $-\frac{1}{x} \leq \frac{\sin (x)}{x} \leq \frac{1}{x}$ if $x>0$, and $\lim _{x \rightarrow \infty}\left(-\frac{1}{x}\right)=\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)=0$.

Or: $\underset{x}{\frac{1}{x \rightarrow \infty} 0} 0$ and $\sin (x)$ is bounded, so the product also tends to 0 .

Example

Theorem. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
Proof. Since $f(x)=\frac{\sin x}{x}$ is even, it is enough to consider the right-hand limit $\lim _{x \rightarrow 0+} \frac{\sin x}{x}$. Let $0<x<\frac{\pi}{2}$.

The area of the $P O A$ triangle is $T_{1}=\frac{1 \cdot \sin x}{2}$.
The area of the $P O A$ circular sector is $T_{2}=\frac{1^{2} \cdot x}{2}$.
The area of the $O A B$ triangle is $T_{3}=\frac{1 \cdot \tan x}{2}$.

Obviously $T_{1}<T_{2}<T_{3} \Longrightarrow \frac{1 \cdot \sin x}{2}<\frac{1^{2} \cdot x}{2}<\frac{1 \cdot \tan x}{2}$.
Multiplying both sides by $\frac{2}{\sin x}>0: 1<\frac{x}{\sin x}<\frac{1}{\cos x}$.
Since $\lim _{x \rightarrow 0+} \frac{1}{\cos x}=1$ then $\lim _{x \rightarrow 0+} \frac{x}{\sin x}=1 \Longrightarrow \lim _{x \rightarrow 0+} \frac{\sin x}{x}=1=\lim _{x \rightarrow 0-} \frac{\sin x}{x}$
Remark. If $0<x<\frac{\pi}{2}$, then $\sin x<x \Longrightarrow|\sin x| \leq|x| \quad \forall x \in \mathbb{R}$.

Continuity

Definition. The function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is $\left\{\begin{array}{l}\text { continuous } \\ \text { continuous from the left } \\ \text { continuous from the right }\end{array}\right.$ at the point $x_{0} \in D_{f}$ if
for all $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that if $x \in D_{f}$ and $\left\{\begin{array}{c}\left|x-x_{0}\right|<\delta(\varepsilon) \\ x_{0}-\delta(\varepsilon)<x \leq x_{0} \\ x_{0} \leq x<x_{0}+\delta(\varepsilon)\end{array}\right.$ then $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.

Remarks. 1) f is continuous at $x_{0} \in D_{f} \Longleftrightarrow$ for all $\varepsilon>0$ there exists $\delta>0$ such that if $x \in\left(B\left(x_{0}, \delta\right) \cap D_{f}\right.$ then $f(x) \in B\left(f\left(x_{0}\right), \varepsilon\right)$.
2) f is $\left\{\begin{array}{l}\text { continuous from the right } \\ \text { continuous from the left }\end{array}\right.$ at $x_{0} \in D_{f} \Longleftrightarrow\left\{\begin{array}{l}\left.f\right|_{D_{f}\left[x_{0}, \infty\right)} \\ \left.f\right|_{D_{f f}\left(-\infty, x_{0}\right]}\end{array}\right.$ is continuous at x_{0}.
3) f is continuous at $x_{0} \in D_{f} \Longleftrightarrow f$ is continuous at x_{0} from the right and from the left.

Theorem. Suppose $f: D_{f} \subset \mathbb{R} \rightarrow \mathbb{R}$ and $x_{0} \in D_{f} \cap D_{f}$ '. Then f is continuous at x_{0} if and only if $\lim _{x \rightarrow x_{0}} f(x)$ exists and $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Definition. f is continuous if f is continuous for all $x \in D_{f}$.
Notation. If $A \subset \mathbb{R}$ then $C(A, \mathbb{R})$ or $C(A)$ denotes the set of continuous functions $f: A \rightarrow \mathbb{R}$. For example, $f \in C([a, b])$ means that $f:[a, b] \rightarrow \mathbb{R}$ is continuous.

The sequential criterion for continuity
Theorem: The function $f: D_{f} \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x_{0} \in D_{f}$ if and only if for all sequences $\left(x_{n}\right) \subset D_{f}$ for which $x_{n} \rightarrow x_{0}, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.

Consequences

Theorem. If f and g are continuous at $x_{0} \in D_{f} \cap D_{g}$ then $c f, f \pm g$ and $f g$ is continuous at $x_{0}(c \in \mathbb{R})$. If $g\left(x_{0}\right) \neq 0$ then $\frac{f}{g}$ is also continuous at x_{0}.

Theorem (Sandwich theorem for continuity): Suppose that
(1) there exists $\delta>0$ such that $I=\left(x_{0}-\delta, x_{0}+\delta\right) \subset D_{f} \cap D_{g} \cap D_{h}$
(2) f and h are continuous at x_{0}
(3) $f\left(x_{0}\right)=h\left(x_{0}\right)$
(4) $f(x) \leq g(x) \leq h(x)$ for all $x \in I$

Then g is continuous at x_{0}.
Definition. The composition of the functions f and g is $(f \circ g)(x)=f(g(x))$ whose domain is $D_{f \circ g}=\left\{x \in D_{g}: g(x) \in D_{f}\right\}$.

Theorem. If g is continuous at $x_{0} \in D_{g}$ and f is continuous at $g\left(x_{0}\right) \in D_{f}$ then $f \circ g$ is continuous at x_{0}.

Theorem (Limit of a composition). Let a be a limit point of $D_{f \circ g}$ for which $\lim _{x \rightarrow a} g(x)=b$.
Assume that
(1) $b \in D_{f}, f$ is continuous at b and $f(b)=c$ or
(2) $b \in D_{f} \backslash D_{f}$ and $\lim _{x \rightarrow b} f(x)=c$ or
(3) g is injective, $b \in D_{f}^{\prime}$ and $\lim _{x \rightarrow b} f(x)=c$.

Then $\lim _{x \rightarrow a}(f \circ g)(x)=c$.

Examples

1. Show that the constant function $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=c$ is continuous for all $x_{0} \in \mathbb{R}$.

Solution. Let $\varepsilon>0$, then with any $\delta>0$ if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|=|c-c|=0<\varepsilon$.

2. Show that the function $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=x$ is continuous for all $x_{0} \in \mathbb{R}$.

Solution. Let $\varepsilon>0$, then with $\delta(\varepsilon)=\varepsilon$ if $\left|x-x_{0}\right|<\delta(\varepsilon)=\varepsilon$, then $\left|f(x)-f\left(x_{0}\right)\right|=\left|x-x_{0}\right|<\varepsilon$.
3. $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x)=x^{n}$ is continuous for all $x_{0} \in \mathbb{R}, n \in \mathbb{N}$, since
$f(x)=x^{n}=x \cdot x \cdot \ldots \cdot x \longrightarrow x_{0} \cdot x_{0} \cdot \ldots \cdot x_{0}=x_{0}^{n}=f\left(x_{0}\right)$
4. Polynomials $\left(P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, a_{i} \in \mathbb{R}\right)$ are continuous for all $x_{0} \in \mathbb{R}$.
5. $f(x)=\sin x$ and $g(x)=\cos x$ are continuous for all $x \in \mathbb{R}$.

Proof. We show that $f(x)=\sin x$ is continuous at $a \in \mathbb{R}$. Let $x \in \mathbb{R}, x \neq a$ and consider the right-angled triangle with vertices $(\cos a, \sin a),(\cos x, \sin x),(\cos x, \sin a)$. Then the lengths of the legs are less than the length of the hypotenuse, which is less then the arc length $x-a$, that is,
$|\sin x-\sin a| \leq|x-a|$.
If $\varepsilon>0$ and $\delta=\varepsilon$ then for all $x \in \mathbb{R}$ for which $|x-a|<\delta$ we have that $|f(x)-f(a)|=|\sin x-\sin a| \leq|x-a|<\varepsilon$, so f is continuous at a.

6. Investigate the continuity of the following functions:
a) the sign function or signum function: $\operatorname{sgn}(x)=\left\{\begin{array}{r}1, \text { ha } x>0 \\ 0, \text { ha } x=0 \\ -1, \text { ha } x<0\end{array}\right.$
b) the floor function: $f(x)=[x]$, where $[x]=\max \{k \in \mathbb{Z}: k \leq x\}$
c) the fractional part function: $f(x)=\{x\}=x-[x]$

Solution. a) $\lim _{x \rightarrow 0+} \operatorname{sgn}(x)=1 \neq \operatorname{sgn}(0)=0 \Longrightarrow f(x)=\operatorname{sgn}(x)$ is not continuous at 0 from the right (and similarly not continuous at 0 from the left) $\Longrightarrow f$ is not continuous at 0 . If $x \neq 0$ then f is continuous at x.
b) If $k \in \mathbb{Z}$ then $\lim _{x \rightarrow k-0}[x]=k-1, \lim _{x \rightarrow k+0}[x]=k=[k]$
$\Longrightarrow f(x)=[x]$ is continuous at k from the right but not from the left.
c) If $k \in \mathbb{Z}$ then $\lim _{x \rightarrow k-0}\{x\}=1, \lim _{x \rightarrow k+0}\{x\}=\{k\}=0$
$\Longrightarrow f(x)=\{x\}$ is continuous at k from the right but not from the left.

7. $f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is continuous for all $x \in \mathbb{R}$.
8. Show that the Dirichlet function $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{array}\right.$ is not continuous at any $x \in \mathbb{R}$.

Solution. - If $x_{0} \in \mathbb{Q}$, then let $x_{n} \in \mathbb{R} \backslash \mathbb{Q} \forall n$ such that $x_{n} \longrightarrow x_{0}$. Then $f\left(x_{n}\right)=0 \longrightarrow 0 \neq 1=f\left(x_{0}\right)$.

- If $x_{0} \in \mathbb{R} \backslash \mathbb{Q}$, then let $x_{n} \in \mathbb{Q} \forall n$ such that $x_{n} \longrightarrow x_{0}$. Then $f\left(x_{n}\right)=1 \longrightarrow 1 \neq 0=f\left(x_{0}\right)$.

9. Show an example for a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ that is continuous only at one point.

Solution. Let $f(x)=\left\{\begin{array}{c}x, \text { ha } x \in \mathbb{Q} \\ -x,\end{array}\right.$ ha $x \in \mathbb{R} \backslash \mathbb{Q}$. Then f is continuous only at 0

Since $f(x)=|x|$ for all $x \in \mathbb{R}$, then
$x_{n} \longrightarrow 0 \Longleftrightarrow\left|x_{n}\right| \longrightarrow 0 \Longleftrightarrow\left|f\left(x_{n}\right)\right| \longrightarrow 0 \Longleftrightarrow f\left(x_{n}\right) \longrightarrow 0$.
Similar examples: $f(x)=\left\{\begin{array}{c}x, \text { ha } x \in \mathbb{Q} \\ 0, \text { ha } x \in \mathbb{R} \backslash \mathbb{Q}\end{array}, f(x)=\left\{\begin{array}{c}x, \text { ha } x \in \mathbb{Q} \\ 2 x, \text { ha } x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.\right.$ etc.

Types of discontinuities

Definition. We say that the function f is discontinuous at $x_{0} \in \mathbb{R}$ or f has a discontinuity at $x_{0} \in \mathbb{R}$ if x_{0} is a limit point of D_{f} and f is not continuous at x_{0}.

Classification of discontinuities:

1) Discontinuity of the first kind:
a) f has a removable discontinuity at x_{0} if $\exists \lim _{x \rightarrow x_{0}} f(x) \in \mathbb{R}$ but $\lim _{x \rightarrow x_{0}} f(x) \neq f\left(x_{0}\right)$ or $f\left(x_{0}\right)$ is not defined.
b) f has a jump discontinuity at x_{0} if $\exists \lim _{x \rightarrow x_{0}-} f(x) \in \mathbb{R}$ and $\exists \lim _{x \rightarrow x_{0}+} f(x) \in \mathbb{R}$ but $\lim _{x \rightarrow x_{0}-} f(x) \neq \lim _{x \rightarrow x_{0}+} f(x)$.
2) Discontinuity of the second kind:
f has an essential discontinuity or a discontinuity of the second kind at x_{0} if f has a discontinuity at x_{0} but not of the first kind.

Remarks: 1 . In the case of a discontinuity of the first kind, both one-sided limits exist and are finite.
2. In the case of an essential discontinuity, at least one of the one-sided limits doesn't exist or exists but is not finite.

Examples

1. Discontinuity of the first kind

a) $f(x)=\frac{x^{2}-1}{x-1}$ has a removable discontinuity at $x_{0}=1$.

b) $f(x)=\operatorname{sgn}(x)$ has a jump discontinuity at $x=0$.
c) $f(x)=[x]$ has a jump discontinuity for all $x \in \mathbb{Z}$.

2. Discontinuity of the second kind

a) $f_{1}(x)=\frac{1}{x}, f_{2}(x)=\frac{1}{x^{2}}$ and $f_{3}=\sin \frac{1}{x}$ have an essential discontinuity at $x=0$.

b) The Dirichlet function has essential discontinuities for all $x \in \mathbb{R}$.
c) The function $f(x)=e^{\frac{1}{x}}$ has an essential discontinuity at $x=0$.

- If $x \rightarrow 0+$, then $\frac{1}{x} \longrightarrow \infty$, and since $\lim _{x \rightarrow \infty} e^{x}=\infty$, then $\lim _{x \rightarrow 0+0} e^{\frac{1}{x}}=\infty$.
- If $x \rightarrow 0-$, then $\frac{1}{x} \longrightarrow-\infty$, and since $\lim _{x \rightarrow-\infty} e^{x}=0$, then $\lim _{x \rightarrow 0-0} e^{\frac{1}{x}}=0$.

