Calculus 1-10

Basic topological concepts

Open and closed sets

Definition. The set $B(x, r):=\{y \in \mathbb{R}:|x-y|<r\}=(x-r, x+r)$ is called an open ball with center x and radius $r>0$. This interval is also called an open neighbourhood of x with radius r.

Definitions. The set $A \subset \mathbb{R}$ is
(1) open if for all $x \in A$ there exists $r>0$ such that $B(x, r) \subset A$.
(2) closed if its complement $\mathbb{R} \backslash A$ is open.
(3) bounded if there exists $r>0$ and $x \in \mathbb{R}$ such that $A \subset B(x, r)$.

Examples. (1) $(0,1)$ is open, $[0,1]$ is closed, $(0,1]$ is not open and not closed
(2) \mathbb{Q} is not open and not closed
(3) The empty set \varnothing and \mathbb{R} are both open and closed (and they are the only such sets) \mathbb{R} is open, since it contains all open balls $\Longrightarrow \mathbb{R} \backslash \mathbb{R}=\varnothing$ is closed. \varnothing is open, since it does not contain any points $\Longrightarrow \mathbb{R} \backslash \varnothing=\mathbb{R}$ is closed.

Intersection and union

Theorem. (1) The intersection of any finite collection of open subsets of \mathbb{R} is open.
(2) The union of arbitrarily many open subsets of \mathbb{R} is open.

Proof. (1) Suppose $A_{1}, A_{2}, \ldots, A_{n}$ are open sets and let $x \in \bigcap_{i=1}^{n} A_{i}$.
Then for all $i=1, \ldots, n$ there exists $r_{i}>0$ such that $B\left(x, r_{i}\right) \subset A_{i}$. If $R=\min \left\{r_{i}: i=1, \ldots, n\right\}$ then $R>0$ and $B(x, R) \subset \bigcap_{i=1}^{n} A_{i}$, so $\bigcap_{i=1}^{n} A_{i}$ is open.
(2) Suppose $\left\{A_{i}: i \in /\right\}$ is a collection of open sets, indexed by I. If $x \in \bigcup_{i \in I} A_{i}$ then $x \in A_{k}$ for some $k \in I$. Since A_{k} is open, there exists $r>0$, such that $B(x, r) \subset A_{k} \subset \bigcup_{i \in I} A_{i}$, so $\bigcup_{i \in I} A_{i}$ is open.

Theorem.

(1) The union of any finite collection of closed subsets of \mathbb{R} is closed.
(2) The intersection of arbitrarily many closed subsets of \mathbb{R} is closed.

Proof. (1) Suppose $\bigcup_{i=1}^{n} A_{i}$ is a finite union of closed sets. Then $\mathbb{R} \backslash \bigcup_{i=1}^{n} A_{i}=\bigcap_{i=1}^{n}\left(\mathbb{R} \backslash A_{i}\right)$.
The complement of $\bigcup_{i=1}^{n} A_{i}$ is finite intersection of open sets, so it is open, and therefore $\bigcup_{i=1}^{n} A_{i}$ is closed.
(2) Suppose $\left\{A_{i}: i \in I\right\}$ is a collection of closed sets, indexed by I. Then $\mathbb{R} \backslash \bigcap_{i \in I} A_{i}=\bigcup_{i \in I}\left(\mathbb{R} \backslash A_{i}\right)$. The complement of $\bigcap A_{i \in I}$ is a union of a collection of open sets, so it is open, and therefore $\bigcap_{i \in l} A_{i}$ is closed.

Remarks. (1) An infinite intersection of open sets is not necessarily open.
For example, $A_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$ are open but $\bigcap_{n=1}^{\infty} A_{n}=\{0\}$ is closed.
(2) An infinite union of closed sets is not necessarily closed.

For example, $A_{n}=\left[-1+\frac{1}{n}, 1-\frac{1}{n}\right]$ are closed but $\bigcup_{n=1}^{\infty} A_{n}=(-1,1)$ is open.

Examples. (1) If $x \in \mathbb{R}$, then $\{x\} \subset \mathbb{R}$ is closed, since $\mathbb{R} \backslash\{x\}$ is the union of two open intervals.
(2) \mathbb{Z} is closed, since $\mathbb{R} \backslash \mathbb{Z}=\bigcup_{n=1}^{\infty}((-n-1,-n) \cup(n-1, n))$ is a union of open sets, so $\mathbb{R} \backslash \mathbb{Z}$ is open.

Interior, exterior and boundary points

Definition. Let $A \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then
(1) x is an interior point of A, if there exists $r>0$ such that $B(x, r) \subset A$. The set of interior points of A is denoted by int A.
(2) x is an exterior point of A, if there exists $r>0$ such that $B(x, r) \cap A=\varnothing$.

The set of exterior points of A is denoted by ext A.
(3) x is a boundary point of A, if for all $r>0: B(x, r) \cap A \neq \varnothing$ and $B(x, r) \cap(\mathbb{R} \backslash A) \neq \varnothing$. It means that any interval $(x-r, x+r)$ contains a point in A and a point not in A. The set of boundary points of A is denoted by ∂A.

Remarks. (1) ext $A=\operatorname{int}(\mathbb{R} \backslash A)$
(2) \mathbb{R} is a disjoint union of int $A, \partial A$ and ext A.
(3) int A and $\operatorname{ext} A$ are open, ∂A is closed.
(4) $\partial A=\partial(\mathbb{R} \backslash A)$

Limit points and isolated points

Definition. Let $A \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then
(1) x is a limit point or accumulation point of A, if for all $r>0:(B(x, r) \backslash\{x\}) \cap A \neq \varnothing$ It means that any interval $(x-r, x+r)$ contains a point in A that is distinct from x. The set of limit points of A is denoted by A^{\prime}.
(2) x is an isolated point of A, if there exists $r>0$ such that $B(x, r) \cap A=\{x\}$ It means that x is not a limit point of A.

Remarks. (1) int $A \subset A^{\prime}$, that is, every interior point of A is a limit point of A.
(2) If x is a boundary point of A, then x is a limit point or an isolated point of A.

The closure of a set

Definition. The closure of the set $A \subset \mathbb{R}$ is $\bar{A}:=\{x \in \mathbb{R} \mid \forall r>0: B(x, r) \cap A \neq \varnothing\}$.

Remarks. (1) $\bar{A}=\operatorname{int} A \cup \partial A$
(2) $\bar{A}=A \cup A^{\prime}$
(3) \bar{A} is closed.

Exercise 1

Let $A=[2,5) \cup(5,11) \cup\{14\}$. Find the set of interior points, boundary points, exterior points, limit points, isolated points of A and the closure of A.

Solution.

- $\operatorname{int} A=(2,5) \cup(5,11)$, since these points have a neighbourhood that is a subset of A.
- $\partial A=\{2,5,11,14\}$, since any neighbourhood of these points contains a point in A and a point not in A.
- $\operatorname{ext} A=(-\infty, 2) \cup(11,14) \cup(14, \infty)$, since these points have a neighbourhood that is disjoint from A.

- $A^{\prime}=[2,11]$, since if $x \in A^{\prime}$ then any interval $(x-r, x+r)$ contains a point in A that is distinct from x.

- The only isolated point of A is $x=14$, since there exists an interval $(x-r, x+r)$ such that $(x-r, x+r) \cap A=\{x\}$.
- $\bar{A}=[2,11] \cup\{14\}$, since if $x \in \bar{A}$ then any interval $(x-r, x+r)$ contains a point in A.

Let us observe that $\bullet \operatorname{int} A \subset A^{\prime}$

- If $x \in \partial A$ then $x \in A^{\prime}$ of x is an isolated point of A.

Exercise 2

Let $A=\left\{\frac{1}{n}: n \in \mathbb{Z}^{+}\right\}$. Find the set of interior points, boundary points, limit points and isolated points of A.

Solution.

- Set of interior points: $\operatorname{int} A=\varnothing$, since there is no interval that is a subset of A.
- Set of boundary points: $\partial A=A \cup\{0\}$.
a) All points of A are boundary points, since for all $r>0$, the interval $B\left(\frac{1}{n}, r\right)=\left(\frac{1}{n}-r, \frac{1}{n}+r\right)$ contains a point in A, that is, $\frac{1}{n}$, and a point not in A, that is, a real number that is different from the points of A.
b) The point $0 \notin A$ is also a boundary point of A. Since for all $r>0$ there exists $n \in \mathbb{N}$ such that $0<\frac{1}{n}<r$, then $B(0, r)$ contains a point in A and a point not in A, say 0 .
- Set of isolated points: A. All points of A are isolated points, since if $r=\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)}$, then $B\left(\frac{1}{n}, r\right) \cap A=\left\{\frac{1}{n}\right\}$.
- Set of limit points: $A^{\prime}=\{0\}$. The point $0 \notin A$ is the only limit point of A, since for all $r>0$ there exists $n \in \mathbb{N}$ such that $0<\frac{1}{n}<r$, so $B(0, r) \cap(A \backslash\{0\}) \neq \varnothing$.

Set of isolated points: A

Exercise 3

Let $A=[0,1] \cap \mathbb{Q}$. Find the set of interior points, boundary points, limit points and isolated points of A.

Solution.

Using that any (non-empty) open interval contains both rational and irrational numbers, we get the following:

- Set of interior points: int $A=\varnothing$.
- Set of boundary points: $\partial A=[0,1]$.
- Set of isolated points: \varnothing.
- Set of limit points: $A^{\prime}=[0,1]$.

Some examples

	Set of interior points	Set of boundary points	Set of limit points	Set of isolated points
$A=(1,2) \cup(2,3)$	A	$\{1,2,3\}$	$[1,3]$	\varnothing
$A=\left\{\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$	\varnothing	$A \cup\{0\}$	$\{0\}$	A
\mathbb{Z}	\varnothing	\mathbb{Z}	\varnothing	\mathbb{Z}
\mathbb{Q}	\varnothing	\mathbb{R}	\mathbb{R}	\varnothing

Theorems about open and closed sets

Theorem. Let $A \subset \mathbb{R}$. Then
(1) int A is open;
(2) int A is the largest open set contained in A;
(3) \bar{A} is closed;
(4) \bar{A} is the smallest closed set containing A.

Consequence. Let $A \subset \mathbb{R}$. Then

(1) A is open if and only if $A=\operatorname{int} A$;
(2) A is closed if and only if $A=\bar{A}$.

Theorem. A set $A \subset \mathbb{R}$ is closed if and only if it contains all of its limit points.
Proof. a) Assume that A is closed. Then $\mathbb{R} \backslash A$ is open
\Longrightarrow for all $x \in \mathbb{R} \backslash A$ there exists $r>0$ such that $B(x, r) \subset \mathbb{R} \backslash A$
\Longrightarrow if x is not in A, then x is not a limit point of A
\Longrightarrow if x is a limit point of A, then x is in $A \Longrightarrow A^{\prime} \subset A$.
b) Assume that $A^{\prime} \subset A$ and let $x \in \mathbb{R} \backslash A$. Since $x \notin A$ and $x \notin A^{\prime}$ then
there exists $r>0$ such that $B(x, r) \cap A=\varnothing$
\Longrightarrow for all $x \in \mathbb{R} \backslash A$ there exists $r>0$ such that $B(x, r) \subset \mathbb{R} \backslash A$
$\Longrightarrow \mathbb{R} \backslash A$ is open $\Longrightarrow A$ is closed.
Example. The set $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ is not closed, since $0 \in A^{\prime} \backslash A$. It is not open either, since it has no interior points.

Theorem. Let $A \subset \mathbb{R}$ be bounded. Then
(1) if $A \subset \mathbb{R}$ is closed then $\inf A, \sup A \in A$ (that is, A has a minimum and maximum);
(2) if $A \subset \mathbb{R}$ is open then $\inf A, \sup A \notin A$.

Dense sets

Definition. Let $X, Y \subset \mathbb{R}$. Then
(1) \boldsymbol{X} is dense in \boldsymbol{Y} if $\bar{X}=Y$;
(2) X is dense if $\bar{X}=\mathbb{R}$.

Theorem. (1) \mathbb{Q} is dense in \mathbb{R};
(2) $\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}.

Compact sets

Definition. A set $A \subset \mathbb{R}$ is sequentially compact if every sequence in A has a convergent subsequence whose limit belongs to A.

Theorem (Bolzano-Weierstrass).

A set $A \subset \mathbb{R}$ is sequentially compact if and only if it is closed and bounded.
Definition. A cover of the set $X \subset \mathbb{R}$ is a collection of sets $C=\left\{A_{i} \subset \mathbb{R}: i \in I\right\}$, whose union contains X, that is, $X \subset \bigcup_{i \in 1} A_{i}$.
An open cover of X is a cover such that A_{i} is open for every $i \in I$.
A subcover S of the cover C is a sub-collection $S \subset C$ that covers X, that is,

$$
S=\left\{A_{i_{k}} \in C: k \in J\right\}, \quad x \subset \bigcup_{k \in J} A_{i_{k}}
$$

A finite subcover is a subcover $\left\{A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{n}}\right\}$ that consists of finitely many sets.
Definition. A set $A \subset \mathbb{R}$ is compact if every open cover of A has a finite subcover.

Theorem (Heine-Borel or Borel-Lebesgue theorem).

A subset of \mathbb{R} is compact if and only if it is closed and bounded.

Consequence. A subset of \mathbb{R} is compact if and only if it is sequentially compact.

The extended set of real numbers

Definition. Let $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ denote the extended set of real numbers. We define $-\infty \leq x \leq \infty$ for all $x \in \overline{\mathbb{R}}$. The arithmetic operations on \mathbb{R} can be partially extended to $\overline{\mathbb{R}}$ as follows.
(1) $a+\infty=+\infty+a=\infty$,
$a \neq-\infty$
(5) $\frac{a}{ \pm \infty}=0, \quad a \in \mathbb{R}$
(2) $a-\infty=-\infty+a=-\infty, \quad a \neq+\infty$
(6) $\frac{ \pm \infty}{a}= \pm \infty, \quad a \in(0,+\infty)$
(3) $a \cdot(\pm \infty)= \pm \infty \cdot a= \pm \infty, \quad a \in(0,+\infty]$
(7) $\frac{ \pm \infty}{a}=\mp \infty, \quad a \in(-\infty, 0)$
(4) $a \cdot(\pm \infty)= \pm \infty \cdot a=\mp \infty, \quad a \in[-\infty, 0)$

Definitions. The interval ($a-\varepsilon, a+\varepsilon$) is called a neighbourhood of a if $\varepsilon>0$.
For any $P \in \mathbb{R}$, the interval (P, ∞) is called a neighbourhood of $+\infty$ and the interval $(-\infty, P)$ is called a neighbourhood of $-\infty$.

Remark. The definition of a limit point can be extended to $\overline{\mathbb{R}}$ as follows. Let $A \subset \overline{\mathbb{R}}$ and $x \in \overline{\mathbb{R}}$. Then x is a limit point of A, if any neighbourhood of x contains a point in A that is distinct from x.

Remark. Examples for the set of limit points in $\overline{\mathbb{R}}: \quad\left(\mathbb{N}^{+}\right)^{\prime}=\{\infty\}, \mathbb{Z}^{\prime}=\{\infty,-\infty\}, \mathbb{Q}^{\prime}=\overline{\mathbb{R}}, \mathbb{R}^{\prime}=\overline{\mathbb{R}}$.

