Calculus 1-08

Comparison test

Theorem. Assume that $0 \leq c_{n} \leq a_{n} \leq b_{n}$ for $n>N$ where N is some fixed integer. Then
(1) If $\sum_{n=1}^{\infty} b_{n}$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(2) If $\sum_{n=1}^{\infty} c_{n}$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Proof. Denote by $s_{n}^{a}, s_{n}^{b}, s_{n}^{c}$ the nth partial sums of the numerical series $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ and $\sum_{n=1}^{\infty} c_{n}$ respectively.
(1) 1st proof. We use the Cauchy criterion. Let $\varepsilon>0$ be fixed, then by the convergence of $\sum_{n=1}^{\infty} b_{n}$ there exists $N(\varepsilon) \in \mathbb{N}$ such that if $m>n>N(\varepsilon)$, then $\left|s_{m}^{b}-s_{n}^{b}\right|<\varepsilon$, so if $m>n>\max \{N, N(\varepsilon)\}$ then $\left|s_{m}^{a}-s_{n}^{a}\right|=\sum_{k=n+1}^{m} a_{k} \leq \sum_{k=n+1}^{m} b_{k}=\left|s_{m}^{b}-s_{n}^{b}\right|<\varepsilon$, so $\sum_{n=1}^{\infty} a_{n}$ is convergent.

2nd proof. Changing finitely many terms does not affect the convergence or divergence of a series, so it may be assumed that $0 \leq a_{n} \leq b_{n}$ holds for all $n \in \mathbb{N}$. (If the series does not start at $n=1$ then it can be reindexed.)

From the condition $\left\{\begin{array}{c}a_{1} \leq b_{1} \\ a_{2} \leq b_{2} \\ \ldots \\ a_{n} \leq b_{n}\end{array} \Rightarrow s_{n}^{a}=a_{1}+a_{2}+\ldots+a_{n} \leq b_{1}+b_{2}+\ldots+b_{n}=s_{n}^{b}\right.$.
Assume that $\sum_{n=1}^{\infty} b_{n}$ is convergent $\Longrightarrow\left(s_{n}^{b}\right)$ is bounded $\Longrightarrow\left(s_{n}^{a}\right)$ is bounded
$\Longrightarrow\left(s_{n}^{a}\right)$ is convergent since it is monotonically increasing $\Longrightarrow \sum_{n=1}^{\infty} a_{n}$ is convergent.
(2) $\left(s_{n}^{c}\right)$ is monotonically increasing if $n>N$ and not bounded, so $s_{n}^{a}-s_{N}^{a}>s_{n}^{c}-s_{N}^{c} \rightarrow \infty$ and thus $s_{n}^{a} \longrightarrow \infty$.

Remark. The convergence of the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ can be investigated easily with the comparison test for $p \leq 1$ and $p \geq 2$.

- If $p \leq 1$ then $0<\frac{1}{n} \leq \frac{1}{n^{p}}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent so $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is divergent.
- If $p=2$ then $\frac{1}{n^{2}} \leq \frac{2}{n(n+1)}$ for all $n \in \mathbb{N}^{+}$and $\sum_{n=1}^{\infty} \frac{2}{n(n+1)}=2 \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent, so $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
- If $p>2$ then $0<\frac{1}{n^{p}} \leq \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent so $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent.

Remark. Leonhard Euler proved in 1734 that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

Examples

1) Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{2 n+1}=\sum_{n=1}^{\infty} a_{n}$.

Solution. Here infinitely many terms are omitted from the harmonic series. By the comparison test we show that this series is still divergent.
$a_{n}=\frac{1}{2 n+1}>\frac{1}{2 n+n}=\frac{1}{3 n}$ and $\sum_{n=1}^{\infty} \frac{1}{3 n}=\frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n}$ diverges $\Longrightarrow \sum_{n=1}^{\infty} a_{n}$ diverges.
2) Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{n+2}{3 n^{4}+5}=\sum_{n=1}^{\infty} a_{n}$.

Solution. $a_{n}=\frac{n+2}{3 n^{4}+5}<\frac{n+2 n}{3 n^{4}+0}=\frac{1}{n^{3}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges $(p=3>1) \Longrightarrow \sum_{n=1}^{\infty} a_{n}$ converges.
3) Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{2 n^{2}-32}{n^{3}+8}=\sum_{n=1}^{\infty} a_{n}$.

Solution. If $n \geq 4$ then the terms of the series are positive. By the comparison test we show that the series diverges. If $n \geq 6$ then $n^{2}>32$, so

$$
a_{n}=\frac{2 n^{2}-32}{n^{3}+8}>\frac{2 n^{2}-n^{2}}{n^{3}+8 n^{3}}=\frac{1}{9 n} \text { and } \sum_{n=1}^{\infty} \frac{1}{9 n}=\frac{1}{9} \sum_{n=1}^{\infty} \frac{1}{n} \text { diverges } \Longrightarrow \sum_{n=1}^{\infty} a_{n} \text { diverges. }
$$

4) Investigate the convergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}+3^{n+1}}{2^{2 n+3}+5}=\sum_{n=1}^{\infty} a_{n}$.

Solution. $a_{n}=\frac{2^{n}+3 \cdot 3^{n}}{8 \cdot 4^{n}+5}<\frac{3^{n}+3 \cdot 3^{n}}{8 \cdot 4^{n}+0}=\frac{1}{2}\left(\frac{3}{4}\right)^{n}$ and

$$
\sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{3}{4}\right)^{n} \text { is a convergent geometric series }\left(q=\frac{3}{4},|q|<1\right) \Longrightarrow \sum_{n=1}^{\infty} a_{n} \text { converges. }
$$

Error estimation for series with nonnegative terms

Remark. Usually we don't know the limit $s=\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} s_{n}$ but if n is large then s_{n} gives an estimation of s. The error for the approximation $s \approx s_{n}$ is $|E|=\left|s-s_{n}\right|$. If $0 \leq a_{k} \leq b_{k}$ for $k \geq n$ then the error can be estimated with the comparison test:

$$
|E|=\left|s-s_{n}\right|=s-s_{n}=\sum_{k=1}^{\infty} a_{k}-\sum_{k=1}^{n} a_{k}=\sum_{k=n+1}^{\infty} a_{k} \leq \sum_{k=n+1}^{\infty} b_{k} .
$$

Here $s_{n} \leq s$, since $\left(s_{n}\right)$ is monotonically increasing.
Example. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n!}$ is convergent and estimate the error if the sum of the series is approximated by the sum of the first 6 terms $\left(s \approx s_{6}\right)$.

Solution. Estimate the terms from above by the terms of a convergent series:
$\frac{1}{n!}=\frac{1}{n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1} \leq \frac{1}{n(n-1) \cdot 1 \cdot \ldots \cdot 1 \cdot 1}=\frac{1}{n^{2}-n} \leq \frac{1}{n^{2}-\frac{n^{2}}{2}}=\frac{2}{n^{2}}$.
Since $\sum_{n=0}^{\infty} \frac{2}{n^{2}}$ converges then by the comparison test $\sum_{n=0}^{\infty} \frac{1}{n!}$ also converges.
Error estimation for the approximation $s \approx s_{n}$:

$$
\begin{aligned}
|E| & =\left|s-s_{n}\right|=\sum_{k=n+1}^{\infty} a_{k}=\frac{1}{(n+1)!}\left(1+\frac{1}{n+2}+\frac{1}{(n+2)(n+3)}+\frac{1}{(n+2)(n+3)(n+4)}+\ldots\right) \leq \\
& \leq \frac{1}{(n+1)!}\left(1+\frac{1}{n+2}+\frac{1}{(n+2)^{2}}+\frac{1}{(n+2)^{3}}+\ldots\right)=\frac{1}{(n+1)!} \sum_{k=0}^{\infty}\left(\frac{1}{n+2}\right)^{k}= \\
& =\frac{1}{(n+1)!} \cdot \frac{1}{1-\frac{1}{n+2}}=\frac{1}{(n+1)!} \cdot \frac{n+2}{n+1}
\end{aligned}
$$

If $n=6$ then $\left|s-s_{n}\right| \leq \frac{1}{7!} \cdot \frac{8}{7} \approx 0.000226757$ and
$S_{6}=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\frac{1}{6!} \approx 2.718 \ldots \approx e$ (here 3 digits are accurate).

Absolute convergence

Definition. We say that the numerical series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent if the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent.

Example. $\sum_{n=1}^{\infty} a_{1} q^{n-1}$ is absolutely convergent if $|q|<1$.

Theorem. If $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent then it is convergent.
Proof. Let $\varepsilon>0$ be fixed. If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent then by the Cauchy criterion there exists $N \in \mathbb{N}$ such that if $m>n>N$ then $\left|\left|a_{n+1}\right|+\left|a_{n+2}\right| \ldots+\left|a_{m}\right|\right|<\varepsilon$. Then for all $m>n>N$
$\left|s_{m}-s_{n}\right|=\left|a_{n+1}+a_{n+2} \ldots+a_{m}\right| \leq\left|\left|a_{n+1}\right|+\left|a_{n+2}\right| \ldots+\left|a_{m}\right|\right|<\varepsilon$ also holds, so by the Cauchy criterion $\sum_{n=1}^{\infty} a_{n}$ is convergent.

Consequence. If $\left|a_{n}\right| \leq b_{n}$ for $n>N$ and $\sum_{n=1}^{\infty} b_{n}$ is convergent then $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent and therefore also convergent.

Definition. If $\sum_{n=1}^{\infty} a_{n}$ is convergent but not absolutely convergent then it is conditionally convergent.

Example. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots=\sum_{n=1}^{\infty}\left(\frac{1}{2 n-1}-\frac{1}{2 n}\right)=\sum_{n=1}^{\infty} \frac{1}{2 n(2 n-1)}$ is convergent, since $0<\frac{1}{2 n(2 n-1)} \leq \frac{1}{2 n \cdot n} \leq \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
On the other hand $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n+1}}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}$ which is divergent, so the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent.

Rearrangements

Definition. If $\pi: \mathbb{N} \longrightarrow \mathbb{N}$ is a permutation of the natural numbers (that is, every natural number appears exactly once in this sequence) then we say that $\sum_{n=1}^{\infty} a_{\pi(n)}$ is a rearrangement of $\sum_{n=1}^{\infty} a_{n}$.

Theorem (Riemann rearrangement theorem). Suppose that $\sum_{n=1}^{\infty} a_{n}$ is conditionally convergent and $-\infty \leq \alpha \leq \beta \leq \infty$. Then there exists a rearrangement $\sum_{n=1}^{\infty} a_{n}{ }^{\prime}$ with partial sums $s_{n}{ }^{\prime}$ such that $\liminf s_{n}{ }^{\prime}=\alpha, \quad \limsup s_{n}{ }^{\prime}=\beta$.

Theorem. If $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent then every rearrangement of $\sum_{n=1}^{\infty} a_{n}$ converges and they all converge to the same sum.

Alternating series

Definition. $\sum_{n=1}^{\infty} a_{n}$ is an alternating series if $a_{n} a_{n+1}<0$ for all $n \in \mathbb{N}$.

Theorem (Leibniz). Let (a_{n}) be a monotonically decreasing sequence of positive numbers
such that $a_{n} \xrightarrow{n \rightarrow \infty} 0$. Then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-a_{6}+\ldots$ is convergent.

Remark. A series with this property is called a Leibniz series.
The theorem is called the alternating series test or Leibniz's test or Leibniz criterion.
Proof. Since $a_{n} \geq a_{n+1}>0$ for all $n \in \mathbb{N}$ then

$$
s_{2 n} \leq s_{2 n}+\left(a_{2 n+1}-a_{2 n+2}\right)=s_{2 n+2}=s_{2 n+1}-a_{2 n+2} \leq s_{2 n+1}=s_{2 n-1}-\left(a_{2 n}-a_{2 n+1}\right) \leq s_{2 n-1}
$$ that is, $0 \leq \boldsymbol{s}_{\mathbf{2}} \leq \boldsymbol{s}_{\mathbf{4}} \leq \boldsymbol{s}_{6} \leq \boldsymbol{s}_{8} \leq \ldots \leq \boldsymbol{s}_{7} \leq \boldsymbol{s}_{5} \leq \boldsymbol{s}_{3} \leq \boldsymbol{s}_{1}=a_{1}$.

So $\left(s_{2 n}\right)$ is monotonically increasing and bounded above \Longrightarrow it is convergent, and $\left(s_{2 n+1}\right)$ is monotonically decreasing and bounded below \Longrightarrow it is convergent.

Since $s_{2 n+1}-s_{2 n}=a_{2 n+1} \xrightarrow{n \rightarrow \infty} 0$ then $\lim _{n \rightarrow \infty} s_{2 n}=\lim _{n \rightarrow \infty} s_{2 n+1}=\lim _{n \rightarrow \infty} s_{n} \Longrightarrow$ the series is convergent. (Or, by the Cantor axiom $\bigcap_{n=1}^{\infty}\left[s_{2 n}, s_{2 n-1}\right]$ is not empty and since $s_{2 n-1}-s_{2 n}=a_{2 n} \xrightarrow{n \rightarrow \infty} 0$ then is has only one element which is the limit of $\left(s_{n}\right)$.)

Error estimation:

Let $s=\lim _{n \rightarrow \infty} s_{n}$. If n is odd then $s_{n+1} \leq s \leq s_{n}$ and if n is even then $s_{n} \leq s \leq s_{n+1}$. In both cases the error for the approximation $s \approx s_{n}$ is

$$
|E|=\left|s-s_{n}\right| \leq\left|s_{n+1}-s_{n}\right|=a_{n+1}
$$

Examples

1. The alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent, since $a_{n}=\frac{1}{n}$ is monotonically decreasing and $a_{n} \longrightarrow 0$.
2. Is the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt[3]{2 n+1}}=\sum_{n=1}^{\infty}(-1)^{n+1} c_{n}$ convergent?

Solution. Since $c_{n}=\frac{1}{\sqrt[3]{2 n+1}}$ is monotonically decreasing and $c_{n} \rightarrow 0$ then this is a Leibniz series so it is convergent.
3. Is the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt[n]{2 n+1}}=\sum_{n=1}^{\infty}(-1)^{n+1} c_{n}$ convergent?

Solution. Since $\frac{1}{\sqrt[n]{3} \cdot \sqrt[n]{n}}=\frac{1}{\sqrt[n]{2 n+n}} \leq \frac{1}{\sqrt[n]{2 n+1}}=c_{n} \leq \frac{1}{\sqrt[n]{0+1}}=1$ and $\frac{1}{\sqrt[n]{3} \cdot \sqrt[n]{n}} \rightarrow \frac{1}{1 \cdot 1}=1$ then by the sandwich theorem $\lim _{n \rightarrow \infty} c_{n}=1$.
So $\lim _{n \rightarrow \infty}(-1)^{n+1} c_{n}$ doesn't exist, and thus by the nth term test the series diverges.
4. Is the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n+1}{n^{2}+2}=\sum_{n=1}^{\infty}(-1)^{n+1} c_{n}$ convergent?

Solution. 1) $0<c_{n}=\frac{n+1}{n^{2}+2}=\frac{\frac{1}{n}+\frac{1}{n^{2}}}{1+\frac{2}{n^{2}}} \rightarrow \frac{0+0}{1+0}=0$.
2) It is not obvious that $\left(c_{n}\right)$ is monotonically decreasing, since both the numerator and the denominator increases.

$$
\begin{aligned}
c_{n+1} \leq c_{n} & \Longleftrightarrow \frac{(n+1)+1}{(n+1)^{2}+2} \leq \frac{n+1}{n^{2}+2} \\
& \Longleftrightarrow(n+2)\left(n^{2}+2\right) \leq(n+1)\left(n^{2}+2 n+3\right) \\
& \Longleftrightarrow n^{3}+2 n^{2}+2 n+4 \leq n^{3}+n^{2}+2 n^{2}+2 n+3 n+3 \\
& \Longleftrightarrow 0 \leq n^{2}+3 n-1 \text { and this is true for all } n \in \mathbb{N} .
\end{aligned}
$$

Since the steps are equivalent then $c_{n+1} \leq c_{n}$ also holds for all $n \in \mathbb{N}$, so $\left(c_{n}\right)$ is monotonically decreasing. Then by the Leibniz criterion the series converges.

Remark. If the sum of the series is approximated by s_{100} then the error is

$$
|E|=\left|s-s_{100}\right| \leq c_{101}=\frac{101+1}{101^{2}+2} .
$$

Root test (Cauchy)

Theorem (Root test): Assume that $a_{n}>0$ and lim sup $\sqrt[n]{a_{n}}=R$. Then
(1) if $R<1$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent;
(2) if $R>1$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Proof. (1) • Suppose that $R<1$, then there exists $\varepsilon>0$ such that $R+\varepsilon<1$.

- By the definition of the limsup, for this ε there exists $N \in \mathbb{N}$ such that if $n>N$ then $\sqrt[n]{a_{n}}<R+\varepsilon$, since if $\sqrt[n]{a_{n}} \geq R+\varepsilon$ would hold for infinitely many n then this subsequence would have a limit point greater than R.
- Thus $a_{n} \leq(R+\varepsilon)^{n}$ if $n>N$, and since $\sum_{n=1}^{\infty}(R+\varepsilon)^{n}$ is a convergent geometric series then by the comparison test, $\sum_{n=1}^{\infty} a_{n}$ is also convergent.
(2) • Suppose that $R>1$, then there exists $\varepsilon>0$ and a subsequence of $\sqrt[n]{a_{n}}$ such that $\sqrt[n_{k}]{a_{n_{k}}} \geq R-\varepsilon>1$.
- Then for the terms of this subsequence $a_{n_{k}} \geq(R-\varepsilon)^{n_{k}}>1$
$\Longrightarrow \lim _{n_{k} \rightarrow \infty} a_{n_{k}} \neq 0 \Longrightarrow \lim _{n \rightarrow \infty} a_{n} \neq 0 \Longrightarrow$ the series is divergent by the nth term test.

Consequence. Assume limsup $\sqrt[n]{\left|a_{n}\right|}=R$. Then
(1) if $R<1$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent, since it is absolutely convergent;
(2) if $R>1$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent, since if $\lim _{n \rightarrow \infty}\left|a_{n}\right| \neq 0$, then $\lim _{n \rightarrow \infty} a_{n} \neq 0$.

Remark. If $R=1$ then we don't know anything about the convergence of the series, for example

1) $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent and $\sqrt[n]{\frac{1}{n}} \rightarrow 1$
2) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent and $\sqrt[n]{\frac{1}{n^{2}}} \rightarrow 1$

Ratio test (D'Alambert)

Theorem (Ratio test): Assume that $a_{n}>0$. Then
(1) if $\lim \sup \frac{a_{n+1}}{a_{n}}<1$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent;
(2) if $\lim \inf \frac{a_{n+1}}{a_{n}}>1$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Proof. (1) • Suppose that $R=\lim \sup \frac{a_{n+1}}{a_{n}}<1$, then similarly as in the previous proof, there exists $\varepsilon>0$ and $N \in \mathbb{N}$ such that if $n \geq N$ then $\frac{a_{n+1}}{a_{n}}<R+\varepsilon<1$.

- Thus $a_{N+1}<(R+\varepsilon) a_{N}$

$$
\begin{aligned}
& a_{N+2}<(R+\varepsilon) a_{N+1}<(R+\varepsilon)^{2} a_{N} \\
& \ldots \\
& a_{n+1}<(R+\varepsilon) a_{n}=(R+\varepsilon)^{n+1-N} a_{N}=\frac{a_{N}}{(R+\varepsilon)^{N}} \cdot(R+\varepsilon)^{n+1}
\end{aligned}
$$

so we can apply the comparison test similarly as in the proof of the root test.
(2) • Suppose that $\lim \inf \frac{a_{n+1}}{a_{n}}>1$, then there exists $\varepsilon>0$ and $N \in \mathbb{N}$ such that if $n \geq N$ then $\frac{a_{n+1}}{a_{n}}>R-\varepsilon>1$.

- Since $a_{n}>0$ then $a_{n+1}>a_{n}$, so $\left(a_{n}\right)$ is monotonic increasing $\Longrightarrow \lim _{n \rightarrow \infty} a_{n} \neq 0$
\Longrightarrow the series is divergent by the nth term test.

Consequence. Assume $a_{n} \neq 0$ for all $n \in \mathbb{N}$. Then
(1) if lim sup $\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent, since it is absolutely convergent;
(2) if lim inf $\left|\frac{a_{n+1}}{a_{n}}\right|>1$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent, since if $\lim _{n \rightarrow \infty}\left|a_{n}\right| \neq 0$, then $\lim _{n \rightarrow \infty} a_{n} \neq 0$.

Remark. If $\lim \sup \frac{a_{n+1}}{a_{n}}=1$ or $\lim \inf \frac{a_{n+1}}{a_{n}}=1$ then we don't know anything about the convergence of the series, for example

1) $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent and $\frac{a_{n+1}}{a_{n}}=\frac{\frac{1}{n+1}}{\frac{1}{n}}=\frac{n}{n+1} \rightarrow 1$
2) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent and $\frac{a_{n+1}}{a_{n}}=\frac{\frac{1}{(n+1)^{2}}}{\frac{1}{n^{2}}}=\frac{n^{2}}{(n+1)^{2}} \rightarrow 1$

Remark. The ratio test is a consequence of the root test and the following theorem.
The proof of this theorem contains a very interesting step.

1) Recall that

- if $x<B$ (or $x \leq B$) for all $B>0$ then $x \leq 0$.

2) Similarly, we can prove $x \leq y$ in the following way:

- if $x \leq B$ for all $B>y$ then $x \leq y$.

Theorem. Assume that $a_{n}>0$. Then $\liminf \frac{a_{n+1}}{a_{n}} \leq \lim \inf \sqrt[n]{a_{n}} \leq \lim \sup \sqrt[n]{a_{n}} \leq \lim \sup \frac{a_{n+1}}{a_{n}}$.
Proof. 1) We prove that $\lim \sup \sqrt[n]{a_{n}} \leq \lim \sup \frac{a_{n+1}}{a_{n}}$.
Let $\lim \sup \frac{a_{n+1}}{a_{n}}=C$ and let $B>C$ be an arbitrary real number.
Then by the definition of the \lim sup, there exists $N \in \mathbb{N}$ such that if $k \geq N$ then $\frac{a_{k+1}}{a_{k}}<B$.
$\Longrightarrow a_{N+1}<B a_{N}, \quad a_{N+2}<B a_{N+1}<B^{2} a_{N}, \quad \cdots$
So if $n>N$ then $a_{n}<B^{n-N} a_{N} \Longrightarrow \sqrt[n]{a_{n}}<\sqrt[n]{B^{n-N}} \sqrt[n]{a_{N}}=B \cdot \sqrt[n]{\frac{a_{N}}{B^{N}}}$
$\Longrightarrow \lim \sup \sqrt[n]{a_{n}} \leq \lim _{n \rightarrow \infty} B \cdot \sqrt[n]{\frac{a_{N}}{B^{N}}}=B$.
We obtained that the following implication holds for all $B>C$:
$\lim \sup \frac{a_{n+1}}{a_{n}}<B \Longrightarrow \lim \sup \sqrt[n]{a_{n}} \leq B$.
From this it follows that $\lim \sup \sqrt[n]{a_{n}} \leq \lim \sup \frac{a_{n+1}}{a_{n}}$.
2) $\lim \inf \sqrt[n]{a_{n}} \leq \lim \sup \sqrt[n]{a_{n}}$ is obvious.
3) The proof of $\lim \inf \frac{a_{n+1}}{a_{n}} \leq \lim \inf \sqrt[n]{a_{n}}$ is similar to case 1).

Consequence. If $a_{n}>0$ for all n and $\exists \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\alpha \in \mathbb{R}$ then $\exists \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\alpha$.
Remark. It is a consequence of the previous inequalities that the root test is "stronger" than the ratio test. Consider the series

$$
\sum_{n=1}^{\infty} a_{n}=\frac{1}{2}+\frac{1}{3}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\ldots, \text { where } a_{2 k-1}=\frac{1}{2^{k}} \text { and } a_{2 k}=\frac{1}{3^{k}}, k \geq 1 .
$$

With the root test: • If n is odd, then $\sqrt[n]{a_{n}}=\sqrt[2 k-1]{a_{2 k-1}}=\sqrt[2 k-1]{\frac{1}{2^{k}}} \rightarrow \frac{1}{\sqrt{2}}$ and

- if n is even, then $\sqrt[n]{a_{n}}=\sqrt[2 k]{a_{2 k}}=\sqrt[2 k]{\frac{1}{3^{k}}}=\frac{1}{\sqrt{3}}$. $\Rightarrow \lim \sup \sqrt[n]{a_{n}}=\frac{1}{\sqrt{2}}<1 \Rightarrow$ the series is convergent.
With the ratio test: • If n is even, then $\frac{a_{n+1}}{a_{n}}=\frac{a_{2 k+1}}{a_{2 k}}=\frac{\frac{1}{2^{k+1}}}{\frac{1}{3^{k}}}=\frac{3^{k}}{2^{k+1}} \rightarrow \infty$ and
- if n is odd, then $\frac{a_{n+1}}{a_{n}}=\frac{a_{2 k}}{a_{2 k-1}}=\frac{\frac{1}{3^{k}}}{\frac{1}{2^{k}}}=\frac{2^{k}}{3^{k}} \rightarrow 0$.
$\Rightarrow \lim \sup \frac{a_{n+1}}{a_{n}}=\infty>1$ and $\lim \inf \frac{a_{n+1}}{a_{n}}=0<1$
\Rightarrow the ratio test cannot be used here.

Cauchy product

Definition: The Cauchy product of the series $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ is the series $\sum_{n=0}^{\infty} c_{n}$ where
$c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\ldots+a_{n} b_{0}=\sum_{k=0}^{n} a_{k} b_{n-k}$

	a_{θ}	a_{1}	a_{2}	a_{3}	\ldots
b_{θ}	$a_{\theta} b_{\theta}$	$a_{1} b_{\theta}$	$a_{2} b_{\theta}$	$a_{3} b_{\theta}$	
b_{1}	$a_{\theta} b_{1}$	$a_{1} b_{1}$	$a_{2} b_{1}$		
b_{2}	$a_{\theta} b_{2}$	$a_{1} b_{2}$			
b_{3}	$a_{\theta} b_{3}$				
\ldots					

Mertens' theorem

Theorem (Mertens). If $\sum_{n=0}^{\infty} a_{n}$ is absolutely convergent and $\sum_{n=0}^{\infty} b_{n}$ is convergent, then their Cauchy product is convergent and its sum is $\sum_{n=0}^{\infty} c_{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{k} b_{n-k}=\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)$.

Proof. Let $A=\sum_{n=0}^{\infty} a_{n}, \quad B=\sum_{n=0}^{\infty} b_{n}$,

$$
A_{n}=\sum_{k=0}^{n} a_{k}, \quad B_{n}=\sum_{k=0}^{n} b_{k}, \quad C_{n}=\sum_{k=0}^{n} c_{k}=\sum_{k=0}^{n} \sum_{i=0}^{k} a_{i} b_{k-i}, \quad \beta_{n}=B_{n}-B .
$$

Then

$$
\begin{aligned}
C_{n} & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right)+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)+\ldots+\left(a_{0} b_{n}+a_{1} b_{n-1}+\ldots+a_{n} b_{0}\right)= \\
& =a_{0} B_{n}+a_{1} B_{n-1}+a_{n} B_{n-2}+\ldots+a_{n} B_{0}= \\
& =a_{0}\left(B+\beta_{n}\right)+a_{1}\left(B+\beta_{n-1}\right)+a_{2}\left(B+\beta_{n-2}\right)+\ldots+a_{n}\left(B+\beta_{0}\right)= \\
& =A_{n} B+\left(\boldsymbol{a}_{\mathbf{0}} \boldsymbol{\beta}_{\boldsymbol{n}}+\boldsymbol{a}_{\mathbf{1}} \boldsymbol{\beta}_{\boldsymbol{n - 1}}+\boldsymbol{a}_{\mathbf{2}} \boldsymbol{\beta}_{\boldsymbol{n - 2}}+\ldots+\boldsymbol{a}_{\boldsymbol{n}} \boldsymbol{\beta}_{\mathbf{0}}\right) .
\end{aligned}
$$

Let $\boldsymbol{\gamma}_{\boldsymbol{n}}=\boldsymbol{a}_{\mathbf{0}} \boldsymbol{\beta}_{\boldsymbol{n}}+\boldsymbol{a}_{\mathbf{1}} \boldsymbol{\beta}_{\boldsymbol{n - 1}}+\boldsymbol{a}_{\mathbf{2}} \boldsymbol{\beta}_{\boldsymbol{n - 2}}+\ldots+\boldsymbol{a}_{\boldsymbol{n}} \boldsymbol{\beta}_{\mathbf{0}}$.

We have to show that $C_{n} \longrightarrow A B$. Since $A_{n} B \rightarrow A B$, it is enough to show that $\lim _{n \rightarrow \infty} \gamma_{\boldsymbol{n}}=\mathbf{0}$.

Let $\alpha=\sum_{n=0}^{\infty}\left|a_{n}\right|$. (Here we use that $\sum_{n=0}^{\infty} a_{n}$ is absolutely convergent.) Let $\varepsilon>0$ be given.
Since $B=\sum_{n=0}^{\infty} b_{n}$ then $\beta_{n} \rightarrow 0$, so there exists $N \in \mathbb{N}$ such that $\left|\beta_{n}\right| \leq \varepsilon$ if $n \geq N$. In this case
$\left|\gamma_{n}\right| \leq\left|\beta_{0} a_{n}+\ldots \beta_{N} a_{n-N}\right|+\left|\beta_{N+1} a_{n-N-1}+\ldots+\beta_{n} a_{0}\right| \leq$

$$
\begin{aligned}
& \leq\left|\beta_{0} a_{n}+\ldots \beta_{N} a_{n-N}\right|+\left|\beta_{N+1}\right| \cdot\left|a_{n-N-1}\right|+\ldots+\left|\beta_{n}\right| \cdot\left|a_{0}\right| \leq \\
& \leq\left|\beta_{0} a_{n}+\ldots \beta_{N} a_{n-N}\right|+\varepsilon \cdot \sum_{n=0}^{n-N-1}\left|a_{n}\right| \leq \\
& \leq\left|\beta_{0} a_{n}+\ldots \beta_{N} a_{n-N}\right|+\varepsilon \alpha .
\end{aligned}
$$

If N is fixed and $n \longrightarrow \infty$ then $\left|\beta_{0} a_{n}+\ldots \beta_{N} a_{n-N}\right| \longrightarrow 0$ since $a_{k} \longrightarrow \infty$ as $k \longrightarrow \infty$.
So we get that $\lim \sup \left|\gamma_{n}\right| \leq \varepsilon \alpha$. Since ε is arbitrary, it follows that $\lim _{n \rightarrow \infty} \gamma_{n}=0$.

Remark. If both $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ are absolutely convergent then their Cauchy product is also absolutely convergent.

Theorem (Abel). Assume that $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ are two convergent series and their Cauchy product is also convergent. Then its sum is $\sum_{n=0}^{\infty} c_{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} a_{k} b_{n-k}=\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)$.

Remark. In general it is not true that the Cauchy-product of two convergent series is convergent. For example let $\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{\infty} b_{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$. These are Leibniz series, so they are convergent. Then $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}=\sum_{k=0}^{n} \frac{(-1)^{n}}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}}=(-1)^{n} \sum_{k=0}^{n} \frac{1}{\sqrt{k+1} \cdot \sqrt{n-k+1}}$.

Using the AM-GM inequality $\frac{a+b}{2} \geq \sqrt{a b}$, we get that $\left|c_{n}\right|=\sum_{k=0}^{n} \frac{1}{\sqrt{k+1} \cdot \sqrt{n-k+1}} \geq \sum_{k=0}^{n} \frac{2}{(k+1)+(n-k+1)}=\sum_{k=0}^{n} \frac{2}{n+2}=\frac{2}{n+2}(n+1)$, since the terms are independent of k.

Therefore $\left|c_{n}\right| \geq 2 \cdot \frac{n+1}{n+2} \longrightarrow 2$, so $\lim _{n \rightarrow \infty} c_{n} \neq 0 \Longrightarrow$ the Cauchy-product is divergent.

Examples

Example 1. If $|x|<1$ then $\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\ldots=\frac{1}{1-x}$ and

$$
\sum_{k=0}^{\infty}(-x)^{k}=1-x+x^{2}-x^{3}+\ldots=\frac{1}{1+x}
$$

	1	x	x^{2}	x^{3}	\ldots
1	1	\boldsymbol{x}	x^{2}	x^{3}	
$-x$	$-x$	$-x^{2}$	$-x^{3}$		
x^{2}	x^{2}	x^{3}			
$-x^{3}$	$-x^{3}$				
\ldots					

The Cauchy-product is $\sum_{n=0}^{\infty} \sum_{k=0}^{n} x^{k}(-x)^{n-k}=1+(x-x)+\left(x^{2}-x^{2}+x^{2}\right)+\left(x^{3}-x^{3}+x^{3}-x^{3}\right)+\ldots=$

$$
=1+0+x^{2}+0+x^{4}+0+x^{6}+\ldots=\sum_{k=0}^{\infty} x^{2 k}=\sum_{k=0}^{\infty}\left(x^{2}\right)^{k}=\frac{1}{1-x^{2}}=\frac{1}{1-x} \cdot \frac{1}{1+x}=\left(\sum_{k=0}^{\infty} x^{k}\right)\left(\sum_{k=0}^{\infty}(-x)^{k}\right)
$$

Example 2. Since $\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}$ if $|x|<1$ then

$$
\frac{1}{(1-x)^{2}}=\left(\sum_{k=0}^{\infty} x^{k}\right)^{2}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} x^{k} x^{n-k}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} x^{n}=\sum_{n=0}^{\infty}(n+1) x^{n}
$$

Example 3. $\left(\sum_{k=0}^{\infty} \frac{1}{n!}\right)^{2}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!(n-k)!}=\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!}=\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n}\binom{n}{k}=\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$

