Calculus 1-07

Numerical series

Definition

Definition. Suppose that $\left(a_{n}\right)$ is a sequence and define the sequence of partial sums as

$$
\begin{aligned}
& s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots a_{n} \\
& \text { If }\left(s_{n}\right) \text { is convergent, then the numerical series } \sum_{n=1}^{\infty} a_{n} \text { is convergent, } \\
& \text { and its sum is } \sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} s_{n}=s \in \mathbb{R} .
\end{aligned}
$$

Examples

1. a) $\sum_{k=1}^{\infty} 1=$?
b) $\sum_{k=1}^{\infty}(-1)^{k+1}=$?

Solution. a) $\sum_{k=1}^{\infty} 1=1+1+1+1+\ldots=\infty$
Here $s_{n}=\sum_{k=1}^{n} 1=n \Longrightarrow \lim _{n \rightarrow \infty} s_{n}=\infty \Longrightarrow$ the series is divergent (and its sum is infinity).
b) $\sum_{k=1}^{\infty}(-1)^{k+1}=1-1+1-1+\ldots+(-1)^{k}+\ldots$

Here $s_{2 k+1}=1 \longrightarrow 1$ and $s_{2 k}=0 \longrightarrow 0$, so $\left(s_{n}\right)$ has two limit points.
\Longrightarrow The series is divergent (and its sum doesn't exist).
2. $\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{2}\right)^{k}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\ldots+\left(\frac{1}{2}\right)^{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{2} \cdot \frac{\left(\frac{1}{2}\right)^{n}-1}{\frac{1}{2}-1}=\frac{1}{2} \cdot \frac{0-1}{-\frac{1}{2}}=1$, so the series is convergent.

A telescoping series

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}=\lim _{n \rightarrow \infty}\left(\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}\right)= \\
& =\lim _{n \rightarrow \infty}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4} \ldots+\frac{1}{n}-\frac{1}{n+1}\right)=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1 \text {, so the series is convergent. }
\end{aligned}
$$

The harmonic series

Theorem. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
Proof. $\quad s_{2^{n}}=\sum_{k=1}^{2^{n}} \frac{1}{k}=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\ldots+\left(\frac{1}{2^{n-1}+1}+\ldots+\frac{1}{2^{n}}\right) \geq$

$$
\geq 1+\frac{1}{2}+2 \cdot \frac{1}{4}+4 \cdot \frac{1}{8}+\ldots+2^{n-1} \cdot \frac{1}{2^{n}}=1+\frac{n_{n \rightarrow \infty}}{2} \infty, \text { so } \lim _{n \rightarrow \infty} s_{2^{n}}=\infty .
$$

If $n>2^{k}$ then $s_{n} \geq s_{2^{k}}$, so $\lim _{n \rightarrow \infty} s_{n}=\infty$ and therefore $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$.

Remark. The name of the harmonic series comes from the fact that for all $n \geq 2, a_{n}$ is the harmonic mean of a_{n-1} and a_{n+1}, that is,

$$
a_{n}=\frac{2}{\frac{1}{a_{n-1}}+\frac{1}{a_{n+1}}}=\frac{2}{\frac{1}{\frac{1}{n-1}}+\frac{1}{\frac{1}{n+1}}}=\frac{2}{(n-1)+(n+1)}=\frac{1}{n} .
$$

The divergence of the series is very slow, for example

$$
\sum_{n=1}^{100} \frac{1}{n} \approx 5.18738, \quad \sum_{n=1}^{10^{4}} \frac{1}{n} \approx 9.78761, \quad \sum_{n=1}^{10^{5}} \frac{1}{n} \approx 12.0901, \quad \sum_{n=1}^{10^{6}} \frac{1}{n} \approx 14.3927
$$

Remark. If a finite number of terms in a series are omitted or changed then the fact of convergence or divergence doesn't change. However, the sum of a convergent series changes.

The geometric series

Theorem. $1+q+q^{2}+\ldots=\sum_{n=0}^{\infty} q^{n}=\frac{1}{1-q}$ if $|q|<1$ and the series is divergent otherwise.
Proof. If $a_{n}=q^{n}$ then $s_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=0}^{n} q^{k}= \begin{cases}\frac{q^{n+1}-1}{q-1} & \text { if } q \neq 1 \\ n+1 & \text { if } q=1\end{cases}$

1) If $q=1$ then $\lim _{n \rightarrow \infty} s_{n}=\infty$.
2) If $q>1$ then $\lim _{n \rightarrow \infty} s_{n}=\infty$, since $\lim _{n \rightarrow \infty} q^{n+1}=\infty$.
3) If $-1<q<1$ then $\lim _{n \rightarrow \infty} s_{n}=\frac{1}{1-q}$, since $\lim _{n \rightarrow \infty} q^{n+1}=0$.
4) If $q \leq-1$ then $\lim _{n \rightarrow \infty} s_{n}$ does not exist, since $\lim _{n \rightarrow \infty} q^{n}$ does not exist.

Similarly, $\sum_{n=0}^{\infty} a \cdot q^{n}=\frac{a}{1-q}, \quad \sum_{n=k}^{\infty} a \cdot q^{n}=\frac{a \cdot q^{k}}{1-q}$ if $|q|<1 . \quad\left(\right.$ sum $\left.=\frac{\text { first term }}{1-\text { ratio }}\right)$

Sum and constant multiple

Theorem: Assume $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent, $\sum_{n=1}^{\infty} d_{n}$ is divergent, and $c \in \mathbb{R} \backslash\{0\}$. Then
(1) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$
(2) $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$
(3) $\sum_{n=1}^{\infty}\left(a_{n}+d_{n}\right)$ is divergent
(4) $\sum_{n=1}^{\infty} c d_{n}$ is divergent

Proof. All statements follow from the properties of the sequences.

Example. $\sum_{k=2}^{\infty} \frac{3^{k+1}+5(-2)^{k+3}}{4^{k}}=$?
Solution. $\sum_{k=2}^{\infty} \frac{3^{k+1}+5(-2)^{k+3}}{4^{k}}=\sum_{k=2}^{n} \frac{3 \cdot 3^{k}-5 \cdot 8 \cdot(-2)^{k}}{4^{k}}=3 \cdot \sum_{k=2}^{\infty}\left(\frac{3}{4}\right)^{k}-40 \cdot \sum_{k=2}^{\infty}\left(-\frac{2}{4}\right)^{k}=$

$$
=3 \cdot \frac{\left(\frac{3}{4}\right)^{2}}{1-\frac{3}{4}}-40 \cdot \frac{\left(-\frac{1}{2}\right)^{2}}{1-\left(-\frac{1}{2}\right)}=\frac{1}{12}
$$

The series is the sum of two convergent geometric series.

Cauchy criterion

Theorem: The numerical series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if for all $\varepsilon>0$ there exists $N \in \mathbb{N}$

$$
\text { such that if } m>n>N \text { then }\left|s_{m}-s_{n}\right|=\sum_{k=n+1}^{m} a_{k}=\left|a_{n+1}+a_{n+2}+\ldots+a_{m}\right|<\varepsilon
$$

Proof: It is trivially true, since the Cauchy criterion for number sequences can be applied for $\left(s_{n}\right)$.

Example. Is the series $\sum_{k=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ convergent or divergent? (alternating harmonic series)

Solution. The series is convergent. Let $m>n$ and $m=n+k$. Then

$$
\begin{aligned}
\left|s_{m}-s_{n}\right| & =\left|s_{n+k}-s_{n}\right|=\left|a_{n+1}+a_{n+2}+\ldots+a_{n+k}\right|=\left|\frac{(-1)^{n+2}}{n+1}+\frac{(-1)^{n+3}}{n+2}+\frac{(-1)^{n+4}}{n+3}+\ldots+\frac{(-1)^{n+k+1}}{n+k}\right|= \\
& =\left|\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\ldots+\frac{(-1)^{k+1}}{n+k}\right|
\end{aligned}
$$

Using that $\frac{1}{n+1}-\frac{1}{n+2}>0, \frac{1}{n+2}-\frac{1}{n+3}>0$ etc. we get the following.

1) If k is even then

$$
\begin{aligned}
\left|s_{n+k}-s_{n}\right| & =\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\left(\frac{1}{n+3}-\frac{1}{n+4}\right)+\ldots+\left(\frac{1}{n+k-1}-\frac{1}{n+k}\right)= \\
& =\frac{1}{n+1}-\left(\frac{1}{n+2}-\frac{1}{n+3}\right)-\ldots-\left(\frac{1}{n+k}\right)<\frac{1}{n+1}
\end{aligned}
$$

2) If k is odd then

$$
\begin{aligned}
\left|s_{n+k}-s_{n}\right| & =\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\left(\frac{1}{n+3}-\frac{1}{n+4}\right)+\ldots+\left(\frac{1}{n+k-2}-\frac{1}{n+k-1}\right)+\frac{1}{n+k}= \\
& =\frac{1}{n+1}-\left(\frac{1}{n+2}-\frac{1}{n+3}\right)-\ldots-\left(\frac{1}{n+k-1}-\frac{1}{n+k}\right)<\frac{1}{n+1}
\end{aligned}
$$

Then $\left|s_{n+k}-s_{n}\right|<\frac{1}{n+1}<\varepsilon$ if $n>\frac{1}{\varepsilon}-1$, so with the choice $N(\varepsilon) \geq\left[\frac{1}{\varepsilon}-1\right]$ the statement holds.

Later we will see that this is a Leibniz series, so it is convergent.

The nth term test

Theorem: If $\sum_{n=1}^{\infty} a_{n}$ is convergent then $\lim _{n \rightarrow \infty} a_{n}=0$.
1st proof: Apply the Cauchy criterion with the choice $m=n+1$. Then

$$
\left|s_{n+1}-s_{n}\right|=\left|a_{n+1}\right|<\varepsilon \text { if } n>N(\varepsilon) \text {, so } \lim _{n \rightarrow \infty} a_{n}=0
$$

2nd proof: Let $\lim _{n \rightarrow \infty} s_{n}=s \in \mathbb{R}$, then $s_{n}=s_{n-1}+a_{n} \Longrightarrow a_{n}=s_{n}-s_{n-1} \longrightarrow s-s=0$.

Remark. The theorem can also be stated in the following form:
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or if the limit doesn't exist then $\sum_{n=1}^{\infty} a_{n}$ diverges.
Remark. The condition $\lim _{n \rightarrow \infty} a_{n}=0$ is necessary but not sufficient for the convergence of $\sum_{n=1}^{\infty} a_{n}$. For example, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent but $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

Series with nonnegative terms

Theorem. A series with nonnegative terms converges if and only if its partial sums form a bounded sequence.

Proof. If $a_{n} \geq 0$ for all $n \in \mathbb{N}$ then $s_{n+1}=a_{n+1}+s_{n} \geq s_{n}$ for all $n \in \mathbb{N}$, so $\left(s_{n}\right)$ is monotonically increasing. If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\left(s_{n}\right)$ converges $\Longrightarrow\left(s_{n}\right)$ is bounded.
If $\left(s_{n}\right)$ is bounded, then $\left(s_{n}\right)$ converges since it is monotonically increasing.
Remark. If $a_{n} \geq 0$ then $\sum_{n=1}^{\infty} a_{n}$ either converges or its sum is ∞.

Cauchy Condensation Test

Theorem. Suppose $a_{1} \geq a_{2} \geq a_{3} \geq \ldots \geq 0$. Then the series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the series $\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}=a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+\ldots$ converges.

Proof. Let $s_{n}=a_{1}+a_{2}+\ldots+a_{n}=\sum_{k=1}^{n} a_{k}$ and $t_{n}=a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+\ldots+2^{n} a_{2^{n}}=\sum_{k=1}^{n} 2^{k} a_{2^{k}}$

1) $\left(s_{n}\right)$ is monotonically increasing, since the terms of $\left(a_{n}\right)$ are nonnegative and $n \leq 2^{n}-1$ for all $n \in \mathbb{N}^{+}$so $s_{n} \leq s_{2^{n}-1}$. Then

$$
\begin{aligned}
s_{n} \leq s_{2^{n}-1} & =\boldsymbol{a}_{1}+\left(\boldsymbol{a}_{2}+\boldsymbol{a}_{3}\right)+\left(\boldsymbol{a}_{4}+\boldsymbol{a}_{5}+\boldsymbol{a}_{6}+\boldsymbol{a}_{7}\right)+\ldots+\left(a_{2^{n-1}}+\ldots+a_{2^{n}-1}\right) \leq \\
& \leq \boldsymbol{a}_{1}+\left(\boldsymbol{a}_{2}+\boldsymbol{a}_{2}\right)+\left(\boldsymbol{a}_{4}+\boldsymbol{a}_{4}+\boldsymbol{a}_{4}+\boldsymbol{a}_{4}\right)+\ldots+\left(a_{2^{n-1}}+\ldots+a_{2^{n-1}}\right)= \\
& =\boldsymbol{a}_{1}+2 \boldsymbol{a}_{2}+\mathbf{4} \boldsymbol{a}_{4}+\ldots+2^{n-1} a_{2^{n-1}}= \\
& =\frac{1}{2}\left(a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+\ldots+2^{n} a_{2^{n}}\right)=t_{n-1}
\end{aligned}
$$

Assume that $\sum_{k=1}^{n} 2^{k} a_{2^{k}}$ is convergent $\Longrightarrow\left(t_{n}\right)$ is convergent, so it is bounded $\Longrightarrow\left(s_{n}\right)$ is bounded above since $s_{n} \leq s_{2^{n}-1} \leq t_{n-1} \Longrightarrow\left(s_{n}\right)$ is convergent since it is monotonically increasing.
2) $s_{2^{n}}=a_{1}+a_{2}+\left(a_{3}+a_{4}\right)+\left(a_{5}+a_{6}+a_{7}+a_{8}\right)+\ldots+\left(a_{2^{n-1}+1}+\ldots+a_{2^{n}}\right) \geq$

$$
\begin{aligned}
& \geq \frac{1}{2} a_{1}+a_{2}+\left(a_{4}+a_{4}\right)+\left(a_{8}+a_{8}+a_{8}+a_{8}\right)+\ldots+\left(a_{2^{n}}+\ldots+a_{2^{n}}\right)= \\
& =\frac{1}{2} a_{1}+a_{2}+2 a_{4}+4 a_{8}+\ldots+2^{n-1} a_{2^{n}}=\frac{1}{2} t_{n}
\end{aligned}
$$

Assume that $\sum_{n=1}^{\infty} a_{n}$ is convergent $\Longrightarrow\left(s_{n}\right)$ is convergent, so it is bounded $\Longrightarrow\left(t_{n}\right)$ is bounded above since $\frac{1}{2} t_{n} \leq s_{2^{n}} \Longrightarrow\left(t_{n}\right)$ is convergent since it is monotonically increasing $\Longrightarrow \sum_{k=0}^{\infty} 2^{k} a_{2^{k}}$ is convergent.

The p-series (or hyperharmonic series)

Theorem. $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
Proof. 1) If $p \leq 0$ then $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=\lim _{n \rightarrow \infty} n^{|p|} \neq 0$, so by the nth term test, the series diverges.
2) If $p>0$ then $a_{n}=\frac{1}{n^{p}}$ is monotonically decreasing, so the Cauchy condensation theorem is applicable, that is, $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ and $\sum_{k=1}^{\infty} 2^{k} \cdot \frac{1}{\left(2^{k}\right)^{p}}$ are both convergent or both divergent. Then

$$
\sum_{k=1}^{\infty} 2^{k} \cdot \frac{1}{\left(2^{k}\right)^{p}}=\sum_{k=1}^{\infty} \frac{1}{2^{-k}} \cdot \frac{1}{2^{k p}}=\sum_{k=1}^{\infty} \frac{1}{2^{(p-1) k}}=\sum_{k=1}^{\infty}\left(\left(\frac{1}{2}\right)^{p-1}\right)^{k} .
$$

This is a geometric series with ratio $r=\left(\frac{1}{2}\right)^{p-1}$ and it is convergent if and only if $|r|=\left(\frac{1}{2}\right)^{p-1}<1 \Longleftrightarrow p-1>0 \Longleftrightarrow p>1$.

Examples

1. Is the series $\sum_{n=n_{1}}^{\infty} \frac{1}{n \cdot \log _{2} n}$ convergent or divergent?

Solution. The sequence $a_{n}=\frac{1}{n \cdot \log _{2} n}$ is monotonic decreasing and the terms are nonnegative, so the Cauchy Condensation Test can be applied.
$\sum_{k=k_{1}}^{\infty} 2^{k} \cdot a_{2^{k}}=\sum_{k=k_{1}}^{\infty} 2^{k} \cdot \frac{1}{2^{k} \cdot \log _{2}\left(2^{k}\right)}=\sum_{k=k_{1}}^{\infty} \frac{1}{k}$, this the harmonic series which is divergent
\Longrightarrow the series $\sum_{n=n_{1}}^{\infty} a_{n}$ is divergent.
2. Show that $\sum_{n=n_{1}}^{\infty} \frac{1}{n \cdot\left(\log _{2} n\right)^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.

Solution. If $p>0$ then the sequence $a_{n}=\frac{1}{n \cdot\left(\log _{2} n\right)^{p}}$ is monotonic decreasing and the terms are nonnegative, so the Cauchy Condensation Test can be applied.
$\sum_{k=k_{1}}^{\infty} 2^{k} \cdot a_{2^{k}}=\sum_{k=k_{1}}^{\infty} 2^{k} \cdot \frac{1}{2^{k} \cdot \log _{2}\left(2^{k}\right)^{p}}=\sum_{k=k_{1}}^{\infty} \frac{1}{k^{p}}$, this the p-series which converges if $p>1$ and diverges if $p \leq 1$.

If $p \leq 0$ then for example the comparison test can be used to show divergence (see later).
Then $a_{n} \geq \frac{1}{n}$ and $\sum_{n=n_{1}}^{\infty} \frac{1}{n}$ diverges $\Longrightarrow \sum_{n=n_{1}}^{\infty} a_{n}$ also diverges.
3. Is the series $\sum_{n=n_{1}}^{\infty} \frac{1}{n \cdot \log _{2} n \cdot \log _{2} \log _{2} n}$ convergent or divergent?

Solution. The sequence $a_{n}=\frac{1}{n \cdot \log _{2} n \cdot \log _{2} \log _{2} n}$ is monotonic decreasing and the terms are nonnegative, so the Cauchy Condensation Test can be applied.
$\sum_{k=k_{1}}^{\infty} 2^{k} \cdot a_{2^{k}}=\sum_{k=k_{1}}^{\infty} 2^{k} \cdot \frac{1}{2^{k} \cdot \log _{2}\left(2^{k}\right) \cdot \log _{2}\left(\log _{2}\left(2^{k}\right)\right)}=\sum_{k=k_{1}}^{\infty} \frac{1}{k \cdot \log _{2} k}$, this is divergent (see example 1.)
\Rightarrow the series $\sum_{n=n_{1}}^{\infty} a_{n}$ is also divergent.

