Calculus 1-04

Number sequences, part 1.

The concept and properties of sequences

Definition: A number sequence is a function $f: \mathbb{N} \longrightarrow \mathbb{R}$ defined on the set of natural numbers. Usual notation: $f(n)=a_{n}$ is the nth term of the sequence.
The notation of the sequence is $\left(a_{n}\right)$ or $a_{n}, n=1,2, \ldots$.
Remark: The function $f:\{k, k+1, k+2, \ldots\} \rightarrow \mathbb{R}$ is also a sequence where $k=0,1,2, \ldots$

Examples

1) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$
2) $1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots$
3) $1,-1,1,-1, \ldots$

4) $1,4,9,16, .$.
5) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$
6) $-\frac{1}{2}, \frac{2}{3},-\frac{3}{4}, \frac{4}{5}, \ldots$

7) $\frac{1}{2}, \frac{1}{3}, \frac{1}{8}, \frac{1}{16}, \ldots$
8) $-2,4,-8,16, \ldots$
9) $\sin (1), \sin (2), \sin (3), \ldots$

Monotonicity

Definition:

The sequence $\left(a_{n}\right)$ is $\left\{\begin{array}{l}\text { monotonically increasing, } \\ \text { strictly monotonically increasing, } \\ \text { monotonically decreasing, } \\ \text { strictly monotonically decreasing, }\end{array}\right.$ if for all $n \in \mathbb{N}\left\{\begin{array}{l}a_{n} \leq a_{n+1} \\ a_{n}<a_{n+1} \\ a_{n} \geq a_{n+1} \\ a_{n}>a_{n+1}\end{array}\right.$.
Examples: Strictly monotonically decreasing: 1) $a_{n}=\frac{1}{n}$, 7) $a_{n}=\frac{1}{2^{n}}$
Strictly monotonically increasing:
4) $a_{n}=n^{2}$, 5) $a_{n}=\frac{n}{n+1}$

The other sequences are not monotonic.

Boundedness

Definition: The sequence $\left(a_{n}\right)$ is

- bounded below, if there exists $A \in \mathbb{R}$ such that for all $n \in \mathbb{N}: A \leq a_{n}$.
- bounded above, if there exists $B \in \mathbb{R}$ such that for all $n \in \mathbb{N}$: $a_{n} \leq B$.
- bounded, if there exist $A \in \mathbb{R}$ and $B \in \mathbb{R}$ such that for all $n \in \mathbb{N}$: $A \leq a_{n} \leq B$.

Examples: Bounded sequences: 1) $a_{n}=\frac{1}{n}, \quad$ 2) $a_{n}=\frac{(-1)^{n}}{n}, \quad$ 3) $a_{n}(-1)^{n}, \quad$ 5) $a_{n}=\frac{n}{n+1}$,

$$
\text { 6) } a_{n}=(-1)^{n} \frac{n}{n+1}, \text { 7) } a_{n}=\frac{1}{2^{n}}, \text { 9) } a_{n}=\sin (n)
$$

Convergent sequences

Definition: A sequence $\left(a_{n}\right): \mathbb{N} \longrightarrow \mathbb{R}$ is convergent, and it tends to the limit $A \in \mathbb{R}$ if for all $\varepsilon>0$ there exists a threshold index $N(\varepsilon) \in \mathbb{N}$ such that for all $n>N(\varepsilon), \quad\left|a_{n}-A\right|<\varepsilon$.
Notation: $\lim _{n \rightarrow \infty} a_{n}=A$ or $a_{n} \xrightarrow{n \rightarrow \infty} A$.
If a sequence if not convergent then it is divergent.

Remark: It is equivalent with the definition that for all $\varepsilon>0$, the sequence has only finitely many terms outside of the interval $(A-\varepsilon, A+\varepsilon)$. (And the sequence has infinitely many terms in the interval.)

Examples for convergent sequences: 1) $a_{n}=\frac{1}{n}$, 2) $a_{n}=\frac{(-1)^{n}}{n}$, 5) $a_{n}=\frac{n}{n+1}$, 7) $a_{n}=\frac{1}{2^{n}}$

Exercises

1) Using the definition of the limit, show that \quad a) $\lim _{n \rightarrow \infty} \frac{1}{n}=0 \quad$ b) $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0$.

Solution. Let $\varepsilon>0$ be fixed. In both cases $\left|a_{n}-A\right|=\frac{1}{n}<\varepsilon \Longleftrightarrow n>\frac{1}{\varepsilon}$
so with the choice $N(\varepsilon) \geq\left[\frac{1}{\varepsilon}\right]$ the definition holds.
For example, if $\varepsilon=0.001$, then $N=1000$ (or $N=1500$ or $N=2000$ etc.) is a suitable threshold index.
2) Using the definition of the limit, show that $\lim _{n \rightarrow \infty} \frac{6+n}{5.1-n}=-1$

Solution. Let $\varepsilon>0$ be fixed. Then $\left|a_{n}-A\right|=\left|\frac{6+n}{5.1-n}-(-1)\right|=\left|\frac{11.1}{5.1-n}\right| \stackrel{\text { if } n>5}{=} \frac{11.1}{n-5.1}<\varepsilon \Longrightarrow$ $n>5.1+\frac{11.1}{\varepsilon}$, so $N(\varepsilon) \geq\left[5.1+\frac{11.1}{\varepsilon}\right]$.
3) Using the definition of the limit, show that $\lim _{n \rightarrow \infty} \frac{n^{2}-1}{2 n^{5}+5 n+8}=0$

Solution. Let $\varepsilon>0$ be fixed. Then $\left|a_{n}-A\right|=\left|\frac{n^{2}-1}{2 n^{5}+5 n+8}\right|=\frac{n^{2}-1}{2 n^{5}+5 n+8}<\varepsilon$.
This equation cannot be solved for n. However, it is not necessary to find the least possible threshold index, it is enough to show that a threshold index exists. So for the solution we use the transitive property of the inequalities, for example in the following way:
$\left|a_{n}-A\right|=\left|\frac{n^{2}-1}{2 n^{5}+5 n+8}\right|=\frac{n^{2}-1}{2 n^{5}+5 n+8}<\frac{n^{2}-0}{2 n^{5}+0+0}<\frac{1}{2 n^{3}}<\varepsilon \Longleftrightarrow n>\sqrt[3]{\frac{1}{2 \varepsilon}}$, so
$N(\varepsilon) \geq\left[\sqrt[3]{\frac{1}{2 \varepsilon}}\right]$.
Here we estimated the fraction from above in such a way that we increased the numerator and decreased the denominator.
4) Using the definition of the limit, show that $\lim _{n \rightarrow \infty} \frac{8 n^{4}+3 n+20}{2 n^{4}-n^{2}+5}=4$.

Solution. Let $\varepsilon>0$ be fixed. Then $\left|a_{n}-A\right|=\left|\frac{8 n^{4}+3 n+20}{2 n^{4}-n^{2}+5}-4\right|=\left|\frac{4 n^{2}+3 n}{2 n^{4}-n^{2}+5}\right|=$

$$
=\frac{4 n^{2}+3 n}{2 n^{4}-n^{2}+5}<\frac{4 n^{2}+3 n^{2}}{2 n^{4}-n^{4}+0}=\frac{7}{n^{2}}<\varepsilon \Longleftrightarrow n>\sqrt{\frac{7}{\varepsilon}}, \text { so } N(\varepsilon) \geq\left[\sqrt{\frac{7}{\varepsilon}}\right] .
$$

Divergent sequences

If a sequence if not convergent then it is divergent.
Example: Show that $a_{n}=(-1)^{n}$ is divergent.
Solution. Since the terms of the sequence are $-1,1,-1,1, \ldots$ then the possible limits are only 1 and -1 . We show that $A=1$ is not the limit.
For example for $\varepsilon=1$, the interval $(A-\varepsilon, A+\varepsilon)=(0,2)$ contains infinitely many terms (the terms $a_{2 n}$), however, there are infinitely many terms outside of this interval (the terms $a_{2 n-1}$). It means that there is no suitable threshold index $N(\varepsilon)$ for $\varepsilon=1$, so $A=1$ is not the limit. Similarly, $A=-1$ is not the limit either, so the sequence is divergent.

Definition: The sequence $\left(a_{n}\right): \mathbb{N} \longrightarrow \mathbb{R}$ tends to $+\infty$ if for all $P>0$ there exists a threshold index $N(P) \in \mathbb{N}$ such that for all $n>N(P), a_{n}>P$.
Notation: $\lim _{n \rightarrow \infty} a_{n}=+\infty$ or $a_{n} \xrightarrow{n \rightarrow \infty}+\infty$.

Definition: The sequence $\left(a_{n}\right): \mathbb{N} \longrightarrow \mathbb{R}$ tends to $-\infty$ if for all $M<0$ there exists a threshold index $N(M) \in \mathbb{N}$ such that for all $n>N(M), a_{n}<M$.
Notation: $\lim _{n \rightarrow \infty} a_{n}=-\infty$ or $a_{n} \xrightarrow{n \rightarrow \infty}-\infty$.

Remark: $\quad \lim _{n \rightarrow \infty} a_{n}=-\infty$ if and only if $\lim _{n \rightarrow \infty}\left(-a_{n}\right)=+\infty$.

Exercises

5) Let $a_{n}=2 n^{3}+3 n+5$. Show that $\lim _{n \rightarrow \infty} a_{n}=\infty$.

Solution. Let $P>0$ be fixed. Then $a_{n}=2 n^{3}+3 n+5>2 n^{3}>P \Longleftrightarrow n>\sqrt[3]{\frac{P}{2}}$, so $N(P) \geq\left[\sqrt[3]{\frac{P}{2}}\right]$.
For example, if $P=10^{6}$ then $N(P)=80$ is a suitable threshold index.
6) Let $a_{n}=\frac{6-n^{2}}{2+n}$. Show that $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

Solution. We have to show that $a_{n}=\frac{6-n^{2}}{2+n}<M(<0)$ if $n>N(M)$.
It is equivalent with the following condition: $-a_{n}=\frac{n^{2}-6}{n+2}>-M(>0)$ if $n>N(M)$.
The exercise can be simplified with an estimation since we do not need to find the least possible threshold index: $\frac{n^{2}-6}{n+2}>\frac{n^{2}-\frac{n^{2}}{2}}{n+2 n}=\frac{n}{6}>-M \Longrightarrow n>-6 M$

In the estimation we used that $\frac{n^{2}}{2}>6$ if $n \geq 4$. Therefore, $N(M) \geq \max \{4,[-6 M]\}$ is a suitable threshold index.

Examples

Using the above definitions, the following statements can easily be proved:

1) $\lim _{n \rightarrow \infty} n^{\alpha}= \begin{cases}\infty, & \text { ha } \alpha>0 \\ 1, & \text { ha } \alpha=0 \\ 0, & \text { ha } \alpha<0\end{cases}$

2) Limit of a geometric sequence: $\lim _{n \rightarrow \infty} a^{n}= \begin{cases}\infty & \text { if } a>1 \\ 1 & \text { if } a=1 \\ 0 & \text { if }|a|<1 \\ \text { does not exist } & \text { if } a \leq-1\end{cases}$

Theorems about the limit

Theorem (uniqueness of the limit): If $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} a_{n}=B$ then $A=B$.

Proof. We assume indirectly that $A \neq B$, for example $A<B$. Let $\varepsilon=\frac{B-A}{3}>0$.

Since $a_{n} \rightarrow A$ and $a_{n} \rightarrow B$ then there exist threshold indexes $N_{1} \in \mathbb{N}$ and $N_{2} \in \mathbb{N}$ such that

- if $n>N_{1}$ then $A-\varepsilon<a_{n}<A+\varepsilon$ and
- if $n>N_{2}$ then $B-\varepsilon<a_{n}<B+\varepsilon$.

But in this case if $n>\max \left\{N_{1}, N_{2}\right\}$ then $a_{n}<A+\varepsilon<B-\varepsilon<a_{n}$. This is a contradiction, so $A=B$.

Theorem: If $\left(a_{n}\right)$ is convergent, then it is bounded.
Proof. 1) Let $A=\lim _{n \rightarrow \infty} a_{n}$. Then for $\varepsilon>0$ there exists $N=N(\varepsilon) \in \mathbb{N}$ such that if $n>N$ then $A-\varepsilon<a_{n}<A+\varepsilon$.
2) It means that the set $\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$ is finite, so the smallest element of $\left\{A-\varepsilon, a_{1}, \ldots, a_{N}\right\}$ is a lower bound and the largest element of $\left\{a_{1}, \ldots, a_{N}, A+\varepsilon\right\}$ is an upper bound of the set $\left\{a_{n}: n \in \mathbb{N}\right\}$.
3) Therefore for all n we have $\min \left\{A-\varepsilon, a_{1}, \ldots, a_{N}\right\} \leq a_{n} \leq \max \left\{a_{1}, \ldots, a_{N}, A+\varepsilon\right\}$.

Remark. Boundedness is a necessary but not sufficient condition for the convergence of a sequence. The converse of the statement is false, for example $a_{n}=(-1)^{n}$ is bounded but not convergent.

Example: Is the following sequence convergent or divergent? $a_{n}= \begin{cases}2 n+1, & \text { if } n \text { is even } \\ \frac{1}{3 n^{2}+1}, & \text { if } n \text { is odd }\end{cases}$
Solution. The sequence is divergent, since it is not bounded. If $a_{2 m}=2 \cdot 2 m+1=4 m+1 \leq k \forall m \in \mathbb{N}$ then it contradicts the Archimedian axiom.

Operations with convergent sequences

Theorem 1. If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $b_{n} \xrightarrow{n \rightarrow \infty} B \in \mathbb{R}$ then $a_{n}+b_{n} \xrightarrow{n \rightarrow \infty} A+B$. (Sum Rule)
Proof. Let $\varepsilon>0$ be fixed. Since $a_{n} \xrightarrow{n \rightarrow \infty} A$ and $b_{n} \xrightarrow{n \rightarrow \infty} B$, then for $\frac{\varepsilon}{2}$ there exists $N_{1} \in \mathbb{N}$ and $N_{2} \in \mathbb{N}$ such that

- if $n>N_{1}$, then $\left|a_{n}-A\right|<\frac{\varepsilon}{2}$ and
- if $n>N_{2}$, then $\left|b_{n}-B\right|<\frac{\varepsilon}{2}$.

Thus, if $n>N=\max \left\{N_{1}, N_{2}\right\}$ then $\quad\left|\left(a_{n}+b_{n}\right)-(A+B)\right| \leq\left|a_{n}-A\right|+\left|b_{n}-B\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.

Here we used the triangle inequality: $|a+b| \leq|a|+|b|$.

Theorem 2. If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $c \in \mathbb{R}$ then $c a_{n} \xrightarrow{n \rightarrow \infty} c A$. (Constant Multiple Rule)
Proof. Let $\varepsilon>0$ be fixed.
(i) If $c=0$ then the statement is trivial.
(ii) If $c \neq 0$ then because of the convergence of a_{n}, for $\frac{\varepsilon}{|c|}$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $\left|a_{n}-A\right|<\frac{\varepsilon}{|c|}$. Thus, if $n>N$ then

$$
\left|c a_{n}-c A\right|=\left|c\left(a_{n}-A\right)\right|=|c| \cdot\left|a_{n}-A\right|<|c| \cdot \frac{\varepsilon}{|c|}=\varepsilon
$$

Here we used that $|a b|=|a||b|$.

Consequence. (i) If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ then $-a_{n} \xrightarrow{n \rightarrow \infty}-A$. (Here $c=-1$.)
(ii) If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $b_{n} \xrightarrow{n \rightarrow \infty} B \in \mathbb{R}$ then

$$
a_{n}-b_{n}=a_{n}+\left(-b_{n}\right) \xrightarrow{n \rightarrow \infty} A+(-B)=A-B . \text { (Difference Rule) }
$$

Theorem 3. (i) If $a_{n} \xrightarrow{n \rightarrow \infty} 0$ and $b_{n} \xrightarrow{n \rightarrow \infty} 0$ then $a_{n} b_{n} \xrightarrow{n \rightarrow \infty} 0$.
(ii) If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $b_{n} \xrightarrow{n \rightarrow \infty} B \in \mathbb{R}$ then $a_{n} b_{n} \xrightarrow{n \rightarrow \infty} A B$. (Product Rule)

Proof. Let $\varepsilon>0$ be fixed.
(i) Since $a_{n} \xrightarrow{n \rightarrow \infty} 0$ and $b_{n} \xrightarrow{n \rightarrow \infty} 0$, then

- for $\frac{\varepsilon}{2}$ there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|a_{n}-0\right|<\frac{\varepsilon}{2}$ and
- for 2 there exists $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|b_{n}-0\right|<2$.

Thus, if $n>N=\max \left\{N_{1}, N_{2}\right\}$ then $\left|a_{n} b_{n}-0\right|=\left|a_{n}\right| \cdot\left|b_{n}\right|<\frac{\varepsilon}{2} \cdot 2=\varepsilon$.
(ii) It is obvious that if $c_{n} \equiv A$ for all $n \in \mathbb{N}$ (constant sequence) then $c_{n} \xrightarrow{n \rightarrow \infty} A$.

Thus $a_{n}-A \xrightarrow{n \rightarrow \infty} A-A=0$ and $b_{n}-B \xrightarrow{n \rightarrow \infty} B-B=0$.
Applying part (i) we get that $\left(a_{n}-A\right)\left(b_{n}-B\right) \xrightarrow{n \rightarrow \infty} 0$, that is,

$$
a_{n} b_{n}-A b_{n}-B a_{n}+A B \xrightarrow{n \rightarrow \infty} 0
$$

Then

$$
a_{n} b_{n}=\left(a_{n} b_{n}-A b_{n}-B a_{n}+A B\right)+\left(A b_{n}+B a_{n}-A B\right) \xrightarrow{n \rightarrow \infty} 0+(A B+A B-A B)=A B .
$$

Theorem 4. If $a_{n} \xrightarrow{n \rightarrow \infty} 0$ and $\left(b_{n}\right)$ is bounded then $a_{n} b_{n} \xrightarrow{n \rightarrow \infty} 0$.
Proof. Let $\varepsilon>0$ be fixed.
Since $\left(b_{n}\right)$ is bounded then there exists $K>0$ such that $\left|b_{n}\right|<K$ for all $n \in \mathbb{N}$.
Since $a_{n} \xrightarrow{n \rightarrow \infty} 0$ then for $\frac{\varepsilon}{K}$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $\left|a_{n}-0\right|=\left|a_{n}\right|<\frac{\varepsilon}{K}$.
Thus, if $n>N$ then $\left|a_{n} b_{n}-0\right|=\left|a_{n}\right| \cdot\left|b_{n}\right|<\frac{\varepsilon}{K} \cdot K=\varepsilon$.

Theorem 5. If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ then $\left|a_{n}\right| \xrightarrow{n \rightarrow \infty}|A|$.
Proof. $\left|\left|a_{n}\right|-|A|\right| \leq\left|a_{n}-A\right|<\varepsilon$ if $n>N(\varepsilon)$.

Remark. The converse of the statement is not true.
For example, $a_{n}=(-1)^{n}$ is divergent but $\left|a_{n}\right|=1^{n}=1 \xrightarrow{n \rightarrow \infty} 1$.
However, the following statement is true: $\left|a_{n}\right| \xrightarrow{n \rightarrow \infty} 0 \Rightarrow a_{n} \xrightarrow{n \rightarrow \infty} 0$.
Since $\left|\left|a_{n}\right|-0\right|=\left|a_{n}\right|=\left|a_{n}-0\right|<\varepsilon$ if $n>N(\varepsilon)$.

Theorem 6. (i) If $b_{n} \xrightarrow{n \rightarrow \infty} B \neq 0$ then $\frac{1}{b_{n}} \xrightarrow[B]{n \rightarrow \infty} \frac{1}{B}$.
(ii) If $a_{n} \xrightarrow{n \rightarrow \infty} A \in \mathbb{R}$ and $b_{n} \xrightarrow{n \rightarrow \infty} B \neq 0$ then $\frac{a_{n}}{b_{n}} \xrightarrow{n \rightarrow \infty} \frac{A}{B}$. (Quotient Rule)

Proof. (i) First, by the convergence of $\left(b_{n}\right)$ and by Theorem 5, $\left|b_{n}\right| \xrightarrow{n \rightarrow \infty}|B| \neq 0$ and thus there exists $N_{1}=N_{1}\left(\frac{|B|}{2}\right) \in \mathbb{N}$ such that if $n>N_{1}$ then
$\left|\left|b_{n}\right|-|B|\right|<\frac{|B|}{2} \Longleftrightarrow|B|-\frac{|B|}{2}<\left|b_{n}\right|<|B|+\frac{|B|}{2}$.
Then $\left|b_{n}\right|>\frac{|B|}{2}$ for all $n>N_{1}$.
Second, for a fixed $\varepsilon>0$ there exists $N_{2}=N_{2}\left(\frac{|B|^{2} \varepsilon}{2}\right) \in \mathbb{N}$ such that
if $n>N_{2}$ then $\left|b_{n}-B\right|<\frac{|B|^{2} \varepsilon}{2}$. Therefore, if $n>N=\max \left\{N_{1}, N_{2}\right\}$ then
$\left|\frac{1}{b_{n}}-\frac{1}{B}\right|=\left|\frac{B-b_{n}}{B \cdot b_{n}}\right|=\frac{\left|B-b_{n}\right|}{|B| \cdot\left|b_{n}\right|}<\frac{1}{|B| \cdot \frac{|B|}{2}} \cdot \frac{|B|^{2} \varepsilon}{2}=\varepsilon$.
(ii) By Theorem 3 and Theorem 6, part (i): $\frac{a_{n}}{b_{n}}=a_{n} \cdot \frac{1}{b_{n}} \xrightarrow{n \rightarrow \infty} A \cdot \frac{1}{B}=\frac{A}{B}$

Remark. By induction it can be proved that Theorem 1 and Theorem 3 can be generalized to the sum and product of finitely many convergent sequences. However, they are not true for infinitely many terms, as the following examples show.

Example. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{10}=1^{10}=1$ or $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{k}=1^{k}=1$, where $k \in \mathbb{N}^{+}$is a fixed constant, independent of n. However, $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \neq 1^{n}=1$. Later we will see that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.

Example. $a_{n}=\frac{1}{n^{2}}+\frac{2}{n^{2}}+\ldots+\frac{500}{n^{2}} \longrightarrow 0+0+\ldots+0=0$
The number of the terms is 500 which is independent of n and thus applying Theorem 1 finitely many times, the correct result is 0 .

Example. $b_{n}=\frac{1}{n^{2}}+\frac{2}{n^{2}}+\ldots+\frac{n}{n^{2}} \longrightarrow 0+0+\ldots+0=0$ is a WRONG SOLUTION!

Since $b_{1}=\frac{1}{1^{2}}, b_{2}=\frac{1}{2^{2}}+\frac{2}{2^{2}}, b_{3}=\frac{1}{3^{2}}+\frac{2}{3^{2}}+\frac{3}{3^{2}}, b_{4}=\frac{1}{4^{2}}+\frac{2}{4^{2}}+\frac{3}{4^{2}}+\frac{4}{4^{2}}, \ldots$,
then it can be seen that the number of the terms depends on n, so b_{n} is not the sum of finitely many sequences and thus Theorem 1 cannot be generalized to this case. The correct solution is:

$$
b_{n}=\frac{1+2+\ldots+n}{n^{2}}=\frac{(1+n) \cdot \frac{n}{2}}{n^{2}}=\frac{1+n}{2 n}=\frac{\frac{1}{n}+1}{2} \rightarrow \frac{0+1}{2}=\frac{1}{2}
$$

Example. $a_{n}=\frac{8 n^{2}-n+3}{n^{2}+9}=\frac{n^{2}}{n^{2}} \cdot \frac{8-\frac{1}{n}+\frac{3}{n^{2}}}{1+\frac{9}{n^{2}}} \rightarrow 1 \cdot \frac{8-0+0}{1+0}=8$

Example. Calculate the limit of $a_{n}=\left(\frac{2 n+1}{3-n}\right)^{3} \cdot \frac{3 n^{2}+2 n}{2+6 n^{2}}$.
Solution. $a_{n}=\left(\frac{2 n}{-n}\right)^{3} \cdot\left(\frac{1+\frac{1}{2 n}}{1-\frac{3}{n}}\right)^{3} \cdot \frac{3 n^{2}}{6 n^{2}} \cdot \frac{1+\frac{2}{3 n}}{1+\frac{1}{3 n^{2}}} \rightarrow-8 \cdot 1^{3} \cdot \frac{1}{2} \cdot 1=-4$
Here the product rule is used for the power.

Example. Calculate the limit of $a_{n}=\frac{n^{2}-5}{2 n^{3}+6 n} \cdot \sin \left(n^{4}+5 n+8\right)$.
Solution. $a_{n} \rightarrow 0$, since $b_{n}=\frac{n^{2}-5}{2 n^{3}+6 n}=\frac{n^{2}}{2 n^{3}} \cdot \frac{1-\frac{5}{n^{2}}}{1+\frac{3}{n^{2}}} \rightarrow 0 \cdot 1$ and $c_{n}=\sin \left(n^{4}+5 n+8\right)$ is bounded.

Example. $a_{n}=\frac{2^{2 n}+\cos \left(n^{2}\right)}{4^{n+1}-5}=\frac{4^{n}}{4^{n}} \cdot \frac{1+\left(\frac{1}{4}\right)^{n} \cdot \cos \left(n^{2}\right)}{4-5 \cdot\left(\frac{1}{4}\right)^{n}} \rightarrow \frac{1+0}{4-0}=\frac{1}{4}$

Theorem 7. If $a_{n} \geq 0$ and $a_{n} \xrightarrow{n \rightarrow \infty} A \geq 0$ then $\sqrt{a_{n}} \xrightarrow{n \rightarrow \infty} \sqrt{A}$.
Proof. Let $\varepsilon>0$ be fixed.
(i) If $a_{n} \xrightarrow{n \rightarrow \infty} A=0$ then there exists $N_{1}=N_{1}\left(\varepsilon^{2}\right) \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|a_{n}-0\right|=a_{n}<\varepsilon^{2}$. Therefore, if $n>N_{1}$ then $\left|\sqrt{a_{n}}-0\right|=\sqrt{a_{n}}<\varepsilon$.
(ii) If $a_{n} \xrightarrow{n \rightarrow \infty} A>0$ then there exists $N_{2}=N_{2}(\varepsilon \sqrt{A}) \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|a_{n}-A\right|<\varepsilon \sqrt{A}$. Therefore, if $n>N_{2}$ then

$$
\left|\sqrt{a_{n}}-\sqrt{A}\right|=\left|\frac{a_{n}-A}{\sqrt{a_{n}}+\sqrt{A}}\right|=\frac{\left|a_{n}-A\right|}{\sqrt{a_{n}}+\sqrt{A}} \leq \frac{\left|a_{n}-A\right|}{0+\sqrt{A}}<\frac{\varepsilon \sqrt{A}}{\sqrt{A}}=\varepsilon .
$$

Remark. If $a_{n} \xrightarrow{n \rightarrow \infty} A \geq 0$ then $\sqrt[k]{a_{n}} \xrightarrow{n \rightarrow \infty} \sqrt[k]{A}$ for all $k \in \mathbb{N}^{+}$.
It can be proved by using the following identity: $a^{k}-b^{k}=(a-b)\left(a^{k-1}+a^{k-2} b+\ldots+a b^{k-1}+b^{k-1}\right)$.

Example. Calculate the limit of $a_{n}=\sqrt{4 n^{2}+5 n-1}-\sqrt{4 n^{2}+n+3}$ (it has the form $\infty-\infty$)
Solution. $a_{n}=\alpha-\beta=\frac{(\alpha-\beta)(\alpha+\beta)}{\alpha+\beta}=\frac{\left(4 n^{2}+5 n-1\right)-\left(4 n^{2}+n+3\right)}{\sqrt{4 n^{2}+5 n-1}+\sqrt{4 n^{2}+n+3}}=$

$$
\begin{aligned}
& =\frac{4 n-4}{\sqrt{4 n^{2}+5 n-1}+\sqrt{4 n^{2}+n+3}}=\frac{4 n}{\sqrt{4 n^{2}}} \frac{1-\frac{1}{n}}{\sqrt{1+\frac{5}{4 n}-\frac{1}{4 n^{2}}}+\sqrt{1+\frac{1}{4 n}+\frac{3}{4 n^{2}}}} \rightarrow \\
& \rightarrow 2 \cdot \frac{1-0}{\sqrt{1+0-0}+\sqrt{1+0+0}}=1 .
\end{aligned}
$$

Additional theorems about the limit

Theorem. If $a_{n} \xrightarrow{n \rightarrow \infty} \infty$ then $\frac{1}{a_{n}} \xrightarrow{n \rightarrow \infty} 0$.
Proof. Let $\varepsilon>0$ be fixed. Since $a_{n} \xrightarrow{n \rightarrow \infty} \infty$, then for $P=\frac{1}{\varepsilon}$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $a_{n}>\frac{1}{\varepsilon}>0$, so $\left|\frac{1}{a_{n}}-0\right|=\frac{1}{a_{n}}<\varepsilon$.

Question: Is it true that if $a_{n} \xrightarrow{n \rightarrow \infty} 0$ then $\frac{1}{a_{n}} \xrightarrow{n \rightarrow \infty} \infty$?
Answer: No, for example, if $a_{n}=-\frac{2}{n} \rightarrow 0$ then $\frac{1}{a_{n}}=-\frac{n}{2} \rightarrow-\infty$.
Or, if $a_{n}=\left(-\frac{1}{2}\right)^{n} \rightarrow 0$ then for $b_{n}=\frac{1}{a_{n}}=(-2)^{n}, b_{2 k} \rightarrow \infty$ and $b_{2 k} \rightarrow-\infty$, so $\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \neq \infty$.
However, the following statements hold.

Theorem. a) If $a_{n}>0$ and $a_{n} \xrightarrow{n \rightarrow \infty} 0$ then $\frac{1}{a_{n}} \xrightarrow{n \rightarrow \infty} \infty$. Notation: $\frac{1}{0_{+}} \rightarrow+\infty$.
b) If $a_{n}<0$ and $a_{n} \xrightarrow{n \rightarrow \infty} 0$ then $\frac{1}{a_{n}} \xrightarrow{n \rightarrow \infty}-\infty$. Notation: $\frac{1}{0-} \longrightarrow-\infty$.
c) If $a_{n} \xrightarrow{n \rightarrow \infty} 0$ then $\frac{1}{\left|a_{n}\right|} \xrightarrow{n \rightarrow \infty} \infty$.

Proof. a) Let $P>0$ be fixed. Since $0<a_{n} \xrightarrow{n \rightarrow \infty} 0$, then for $\varepsilon=\frac{1}{P}$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $a_{n}=\left|a_{n}-0\right|<\frac{1}{P}$, so $\frac{1}{a_{n}}>P$.
b), c): homework.

Theorem. If $a_{n} \xrightarrow{n \rightarrow \infty} \infty$ and $b_{n} \geq a_{n}$ for $n>N$, then $b_{n} \longrightarrow \infty$.
Proof. Let $P>0$ be fixed. Since $a_{n} \xrightarrow{n \rightarrow \infty} \infty$, then there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $a_{n}>P$. So if $n>\max \left\{N, N_{1}\right\}$ then $b_{n}>P$.

Consequence. Suppose that $a_{n} \xrightarrow{n \rightarrow \infty} \infty, b_{n} \xrightarrow{n \rightarrow \infty} \infty, c_{n} \xrightarrow{n \rightarrow \infty} c>0$ and $\left|d_{n}\right| \leq K$ for all $n>\in \mathbb{N}$. Then
a) $a_{n}+b_{n} \xrightarrow{n \rightarrow \infty} \infty$
b) $a_{n} \cdot b_{n} \xrightarrow{n \rightarrow \infty} \infty$
c) $c_{n} \cdot a_{n} \xrightarrow{n \rightarrow \infty} \infty$
d) $a_{n}+d_{n} \xrightarrow{n \rightarrow \infty} \infty$

Proof. a) Since $a_{n} \xrightarrow{n \rightarrow \infty} \infty$, it may be assumed that there exists $N \in \mathbb{N}$ such that $a_{n} \geq 0$ for $n>N$.
Then $a_{n}+b_{n} \geq b_{n} \xrightarrow{n \rightarrow \infty} \infty$, so $a_{n}+b_{n} \xrightarrow{n \rightarrow \infty} \infty$.
b) Since $a_{n} \xrightarrow{n \rightarrow \infty} \infty$ and $b_{n} \xrightarrow{n \rightarrow \infty} \infty$, it may be assumed that there exists $N \in \mathbb{N}$ such that $a_{n} \geq 1$ and $b_{n} \geq 0$ for $n>N$. Then $a_{n} \cdot b_{n} \geq b_{n} \xrightarrow{n \rightarrow \infty} \infty$, so $a_{n} \cdot b_{n} \xrightarrow{n \rightarrow \infty} \infty$.
c) Let $P>0$ be fixed.

- Since $c_{n} \xrightarrow{n \rightarrow \infty} c>0$ then there exists $N_{1}=N_{1}\binom{c}{2} \in \mathbb{N}$ such that $c_{n}>\frac{c}{2}$ if $n>N_{1}$.
- Since $a_{n} \xrightarrow{n \rightarrow \infty} \infty$ then there exists $N_{2}=N_{2}\left(\frac{2 P}{c}\right) \in \mathbb{N}$ such that $a_{n}>\frac{2 P}{c}$ if $n>N_{2}$. So if $n>\max \left\{N_{1}, N_{2}\right\}$ then $c_{n} \cdot a_{n}>\frac{2 P}{c} \cdot \frac{c}{2}=P$.
d) Let $P>0$ be fixed. $a_{n}+d_{n} \geq a_{n}-K>P$ if and only if $a_{n}>K+P$.

Since $a_{n} \xrightarrow{n \rightarrow \infty} \infty$ then for $K+P$ there exists $N \in \mathbb{N}$ such that $a_{n}>K+P$ if $n>N$.
Then for $n>N, a_{n}+d_{n}>P$ also holds, so $a_{n}+d_{n} \xrightarrow{n \rightarrow \infty} \infty$.

Example. $a_{n}=5 n^{2}+2^{n} \cdot n-(-1)^{n} \xrightarrow{n \rightarrow \infty} \infty$.

Remark. The above statements can be denoted in the following way:
a) $\infty+\infty \longrightarrow \infty$
b) $\infty \cdot \infty \longrightarrow \infty$
c) $c \cdot \infty \longrightarrow \infty$ (where c >0)
d) $\infty+$ bounded $\longrightarrow \infty$.

Similar statements can be proved, for example,

$$
\frac{0}{\infty} \rightarrow 0, \frac{\text { bounded }}{\infty} \rightarrow 0, \frac{\infty}{+0} \rightarrow \infty, \frac{\infty}{-0} \rightarrow-\infty .
$$

The meaning of $\frac{0}{\infty} \longrightarrow 0$ is that if $a_{n} \xrightarrow{n \rightarrow \infty} 0$ and $b_{n} \xrightarrow{n \rightarrow \infty} \infty$ then $\frac{a_{n}}{b_{n}} \longrightarrow 0$.

Undefined forms: $\infty-\infty, 0 \cdot \infty, \frac{\infty}{\infty}, \frac{0}{0}, 1^{\infty}, \infty^{0}, 0^{0}$

Examples for undefined forms:

1) Limit of the form $\infty-\infty$:

$a_{n}=n^{2}, \quad b_{n}=n, \quad a_{n}-b_{n}=n^{2}-n \rightarrow \infty$
$a_{n}=n, \quad b_{n}=n, \quad a_{n}-b_{n}=n-n=0 \rightarrow 0$
$a_{n}=n, \quad b_{n}=n^{2}, \quad a_{n}-b_{n}=n-n^{2} \rightarrow-\infty$

2) Limit of the form $0 \cdot \infty$:

$\frac{1}{n} \cdot n^{2}=n \rightarrow \infty, \quad \frac{1}{n} \cdot n=1 \rightarrow 1, \quad \frac{1}{n^{2}} \cdot n=\frac{1}{n} \rightarrow 0, \quad \frac{(-1)^{n}}{n} \cdot n=(-1)^{n} \quad$ (it doesn't have a limit)
3) Limit of the form $\frac{\infty}{\infty}: \quad \frac{n}{n^{2}}=\frac{1}{n} \rightarrow 0, \quad \frac{n^{2}}{n}=n \rightarrow \infty, \quad \frac{n^{2}}{n^{2}}=1 \rightarrow 1$

4) Limit of the form $\frac{0}{0}$:

$\frac{\frac{1}{n}}{\frac{1}{1}}=n \rightarrow \infty, \quad \frac{\frac{1}{n^{2}}}{n^{2}}=\frac{1}{n} \rightarrow 0, \quad \frac{\frac{1}{n}}{\frac{1}{n}}=1 \rightarrow 1, \quad \frac{(-1)^{n} \frac{1}{n}}{\frac{1}{n}}=(-1)^{n} \cdot n \quad$ (it doesn't have a limit)

Such statements are summarized in the following tables where $\overline{\mathbb{R}}=\mathbb{R} \cup\{\infty,-\infty\}$ denotes the extended set of real numbers. The meaning of $|\cdot|$ is that $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|=\infty$.

Addition:

$\lim \left(a_{n}\right)$	$\lim \left(b_{n}\right)$	$\lim \left(a_{n}+b_{n}\right)$
$a \in \mathbb{R}$	$b \in \mathbb{R}$	$a+b$
∞	$b \in \mathbb{R}$	∞
$-\infty$	$b \in \mathbb{R}$	$-\infty$
∞	∞	∞
$-\infty$	$-\infty$	$-\infty$
∞	$-\infty$	$?$

Multiplication:

$\lim \left(a_{n}\right)$	$\lim \left(b_{n}\right)$	$\lim \left(a_{n} b_{n}\right)$
$a \in \mathbb{R}$	$b \in \mathbb{R}$	$a b$
∞	$b>0$	∞
∞	$b<0$	$-\infty$
$-\infty$	$b>0$	$-\infty$
$-\infty$	$b<0$	∞
∞	∞	∞
∞	$-\infty$	$-\infty$
$-\infty$	$-\infty$	∞
∞	0	$?$
$-\infty$	0	$?$

Subtraction:

$\lim \left(a_{n}\right)$	$\lim \left(b_{n}\right)$	$\lim \left(a_{n}-b_{n}\right)$
$a \in \mathbb{R}$	$b \in \mathbb{R}$	$a-b$
∞	$b \in \mathbb{R}$	∞
$-\infty$	$b \in \mathbb{R}$	$-\infty$
∞	$-\infty$	∞
∞	∞	$?$
$-\infty$	$-\infty$	$?$

Division:

$\lim \left(a_{n}\right)$	$\lim \left(b_{n}\right)$	$\lim \left(a_{n} / b_{n}\right)$
$a \in \mathbb{R}$	$b \in \mathbb{R} \backslash\{0\}$	a / b
∞	$b>0$	∞
∞	$b<0$	$-\infty$
$-\infty$	$b>0$	$-\infty$
$-\infty$	$b<0$	∞
$a \in \mathbb{R}$	$\pm \infty$	0
0	$b \in \overline{\mathbb{R}}, b \neq 0$	0
$a \in \overline{\mathbb{R}}, a \neq 0$	0	$\|\cdot\|=\infty$
0	0	$?$
$\pm \infty$	$\pm \infty$	$?$

Exercises

1) Calculate the limit of $a_{n}=\frac{3 n^{5}+n^{2}-n}{n^{3}+3}$.

Solution. $a_{n}=\frac{3 n^{5}+n^{2}-n}{n^{3}+3}>\frac{3 n^{5}+0-n^{5}}{n^{3}+3 n^{3}}=\frac{n^{2}}{2} \rightarrow \infty \Rightarrow a_{n} \rightarrow \infty$
or:
$a_{n}=\frac{3 n^{5}+n^{2}-n}{n^{3}+3} \geq \frac{n^{5}}{n^{3}} \cdot \frac{3+\frac{1}{n^{3}}-\frac{1}{n^{4}}}{1+\frac{3}{n^{3}}} \rightarrow \infty$,
since $b_{n}=\frac{n^{5}}{n^{3}}=n^{2} \rightarrow \infty$ and $c_{n}=\frac{3+\frac{1}{n^{3}}-\frac{1}{n^{4}}}{1+\frac{3}{n^{3}}} \rightarrow \frac{3+0-0}{1+0}=3>0$.
2) Calculate the limit of $a_{n}=\frac{3^{2 n}}{4^{n}+3^{n+1}}$.

Solution. $a_{n}=\frac{3^{2 n}}{4^{n}+3^{n+1}}=\left(\frac{9}{4}\right)^{n} \cdot \frac{1}{1+3 \cdot\left(\frac{3}{4}\right)^{n}}>\left(\frac{9}{4}\right)^{n} \cdot \frac{1}{1+3 \cdot 1} \rightarrow \infty \Longrightarrow a_{n} \rightarrow \infty$
or:

$$
a_{n}=a_{n}=\frac{3^{2 n}}{4^{n}+3^{n+1}}=\left(\frac{9}{4}\right)^{n} \cdot \frac{1}{1+3 \cdot\left(\frac{3}{4}\right)^{n}} \rightarrow \infty,
$$

$$
\text { since } b_{n}=\left(\frac{9}{4}\right)^{n} \rightarrow \infty \text { and } c_{n}=\frac{1}{1+3 \cdot\left(\frac{3}{4}\right)^{n}} \rightarrow \frac{1}{1+3 \cdot 0}=1>0
$$

3) Calculate the limit of $a_{n}=\frac{2^{2 n}+(-3)^{n-1}}{5^{n+2}+7^{n+1}}$.

Solution. $a_{n}=\frac{2^{2 n}+(-3)^{n-1}}{5^{n+2}+7^{n+1}}=\frac{4^{n}-\frac{1}{3} \cdot(-3)^{n}}{25 \cdot 5^{n}+7 \cdot 7^{n}}=\left(\frac{4}{7}\right)^{n} \cdot \frac{1-\frac{1}{3} \cdot\left(-\frac{3}{4}\right)^{n}}{25 \cdot\left(\frac{5}{7}\right)^{n}+7} \rightarrow 0 \cdot \frac{1-0}{0+7}=0$.
Here we used that $a^{n} \longrightarrow 0$ if $|a|<1$.

