Calculus 1-03

Axioms for the real numbers. Complex numbers.

Axioms for the real numbers

\mathbb{R} is a set whose elements are called real numbers. Two operations, called addition and multiplication are defined in \mathbb{R} such that \mathbb{R} is closed under these operations, that is, $\forall a, b \in \mathbb{R}(a+b \in \mathbb{R}$ and $a \cdot b \in \mathbb{R})$.

Addition:

1) $\forall a, b \in \mathbb{R}(a+b=b+a) \quad$ (commutativity),
2) $\forall a, b, c \in \mathbb{R}((a+b)+c)=a+(b+c))$ (associativity),
3) $\exists 0 \in \mathbb{R}(\forall a \in \mathbb{R}(a+0=0+a=0)) \quad$ (existence of a zero element),
4) $\forall a \in \mathbb{R}(\exists b \in \mathbb{R}(a+b=0)) \quad$ (existence of an additive inverse, notation: $b=-a)$.

Multiplication:

5) $\forall a, b \in \mathbb{R}(a \cdot b=b \cdot a) \quad$ (commutativity),
6) $\forall a, b, c \in \mathbb{R}((a \cdot b) \cdot c=a \cdot(b \cdot c)) \quad$ (associativity),
7) $\exists 1 \in \mathbb{R}(\forall a \in \mathbb{R}(a \cdot 1=1 \cdot a=a)) \quad$ (existence of a unit element),
8) $\forall a \in \mathbb{R} \backslash\{0\}(\exists b \in \mathbb{R}(a \cdot b=1)) \quad$ (existence of a multiplicative inverse, notation: $b=a^{-1}$).

For the two operations above:
9) $\forall a, b, c \in \mathbb{R}(a+b) \cdot c=a \cdot c+b \cdot c \quad$ (the multiplication is distributive with respect to the addition).

Axioms (1)-(9) are the axioms for a field.

Ordering: 10) Exactly one of the following is true: $a<b, b<a, a=b \quad$ (trichotomy),
11) $\forall a, b, c \in \mathbb{R}((a<b) \wedge(b<c)) \Longrightarrow(a<c) \quad$ (transitivity),
12) $\forall a, b, c \in \mathbb{R}((a<b) \wedge c>0) \Longrightarrow a \cdot c<b \cdot c$
13) $\forall a, b, c \in \mathbb{R}(a<b) \Longrightarrow a+c<b+c \quad$ (monotonicity)

Axioms (1)-(13) are the axioms for an ordered field.

Archimedian axiom:

14) $\forall a \in \mathbb{R}(\exists n \in \mathbb{N}(a<n))$.

Axioms 1) - 14) are true both for \mathbb{R} and \mathbb{Q}.

Cantor axiom:

15) Let $a_{1}, b_{1}, a_{2}, b_{2}, \ldots \in \mathbb{R}$.
$\left(\forall n \in \mathbb{N}\left(a_{n} \leq a_{n+1} \leq b_{n+1} \leq b_{n}\right)\right) \Rightarrow\left(\exists x \in \mathbb{R}\left(\forall n \in \mathbb{N}\left(x \in\left[a_{n}, b_{n}\right]\right)\right)\right)$
$\left(\right.$ so $\left.\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \neq \varnothing\right)$.
It states that any nested sequence of closed intervals has a non-empty intersection.

Example: Let $a_{1}=1.4$

$$
a_{2}=1.41
$$

$$
a_{3}=1.414
$$

$$
a_{4}=1.4142
$$

...

$$
a_{n}=\left[10^{n} \cdot \sqrt{2}\right] \cdot 10^{-n}
$$

and $\quad b_{1}=1.5$

$$
b_{2}=1.42
$$

$$
b_{3}=1.415
$$

$$
b_{4}=1.4143
$$

$$
b_{n}=\left(\left[10^{n} \cdot \sqrt{2}\right]+1\right) \cdot 10^{-n}
$$

where [.] denotes the floor function.
Then $a_{1}<a_{2}<a_{3}<a_{4}<\ldots<\sqrt{2}<\ldots<b_{4}<b_{3}<b_{2}<b_{1}$, so $\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]=\{\sqrt{2}\} \in \mathbb{R} \backslash \mathbb{Q}$.
Remark. Closeness is important, for example if $I_{n}=\left(0, \frac{1}{n}\right]$ then $\bigcap_{n=1}^{\infty} I_{n}=\varnothing$.

Consequences

Some elementary laws of algebra and inequalities follow from the axioms. For example:

1) For all $a \in \mathbb{R}$, exactly one of the following properties hold: $a>0, a=0, a<0$.

$$
(a>0 \Longleftrightarrow-a<0)
$$

2) $(a<b) \wedge(c<d) \Longrightarrow a+c<b+d$

Specifically: $(a>0) \wedge(b>0) \Longrightarrow a+b>0$
3) $(0 \leq a<b) \wedge(0 \leq c<d) \Longrightarrow a c<b d$

Specifically: $(a>0) \wedge(b>0) \Longrightarrow a b>0$
4) $(a<b) \wedge(c<0) \Longrightarrow a c>b c$

Specifically: $a<b \Longrightarrow-a>-b$
5) (i) $0<a<b \Longrightarrow \frac{1}{a}>\frac{1}{b}$
(ii) $a<b<0 \Longrightarrow \frac{1}{a}>\frac{1}{b}$
(iii) $a<0<b \Longrightarrow \frac{1}{a}<\frac{1}{b}$
6) For all $a, b \in \mathbb{R},|a+b| \leq|a|+|b|$ and $\| a|-|b|| \leq|a-b|$.
7) If n is a positive integer and $0<a<b$ then $a^{n}<b^{n}$.
8) $\forall x \in \mathbb{R} \quad(x \cdot 0=0)$
9) $\forall x \in \mathbb{R} \quad(x \cdot y=0 \Longrightarrow x=0$ or $y=0)$

Proof of 8):
$x \cdot 0=x \cdot 0+0=x \cdot 0+(x \cdot 0-x \cdot 0)=(x \cdot 0+x \cdot 0)-x \cdot 0=x \cdot(0+0)-x \cdot 0=x \cdot 0-x \cdot 0=0$.

Proof of 9):
$x \neq 0 \Longrightarrow y=1 \cdot y=((1 / x) \cdot x) \cdot y=(1 / x) \cdot(x \cdot y)=(1 / x) \cdot 0=0$.

Bounded subsets of real numbers

Definition. $A \subset \mathbb{R}$ is bounded above if there exists a $K \in \mathbb{R}$ such that $a \leq K$ for all $a \in A$. In this case K is an upper bound of A.

Definition. $A \subset \mathbb{R}$ is bounded below if there exists a $k \in \mathbb{R}$ such that $a \geq k$ for all $a \in A$. In this case k is a lower bound of A.

Definition. $A \subset \mathbb{R}$ is bounded if it is has an upper bound and a lower bound. It means that there exists a $K>0$ such that $|a|<K$ for all $a \in A$.

Remark: A bounded set has infinitely many lower and upper bounds.
Examples: 1) \mathbb{N} is bounded below
2) $(0,1]=\{x \in \mathbb{R}: 0<x \leq 1\}$ is bounded (for example, upper bounds are $1,2, \pi, \ldots$, lower bounds are $0,-3,-100, \ldots$)
3) \mathbb{Q} has no upper bound or lower bound

Definition. If a set A is bounded above, then the supremum of A is the least upper bound of A. Notation: $\sup A$. If A is not bounded above, then $\sup A=\infty$.

Definition. If a set A is bounded below then the infimum of A is the greatest lower bound of A. Notation: $\inf A$. If A is not bounded below, then $\inf A=-\infty$.

Examples: 1$) \inf \mathbb{N}=1, \sup \mathbb{N}=\infty ; \quad 2) \inf (0,1]=0, \sup (0,1]=1 ; \quad 3) \inf \mathbb{Q}=-\infty, \sup \mathbb{Q}=\infty$

Definition. The minimum of the set A is a if $a \in A$ and $a=\inf A$. The maximum of the set A is b if $b \in A$ and $b=\sup A$.

Examples: 1) The minimum of \mathbb{N} is 1 and it has no maximum.
2) The maximum of $(0,1]$ is 1 and it has no minimum.
3) \mathbb{Q} has no minimum and no maximum.

Least-upper-bound property

Theorem (Least-upper-bound property, Dedekind):
If a non-empty subset of \mathbb{R} is bounded above then it has a least upper bound in \mathbb{R}.
Consequence. If a non-empty subset of \mathbb{R} is bounded below then it has a greatest lower bound in \mathbb{R}.

Remarks. 1) In the above system of axioms, the axioms of Cantor and Archimedes can be replaced by this statement.
2) The set of rational numbers does not have the least-upper-bound property under the usual order. For example, $\left\{x \in \mathbb{Q}: x^{2} \leq 2\right\}=\mathbb{Q} \cap(-\sqrt{2}, \sqrt{2})$ has an upper bound in \mathbb{Q} but does not have a least upper bound in \mathbb{Q} since $\sqrt{2}$ is irrational.

