Calculus 1 - 03

Axioms for the real numbers. Complex numbers.

Axioms for the real numbers

Addition:

1) $\forall a, b \in \mathbb{R} (a + b = b + a)$	(commutativity),
2) $\forall a, b, c \in \mathbb{R} ((a+b)+c) = a + (b+c))$	(associativity),
3) $\exists 0 \in \mathbb{R} (\forall a \in \mathbb{R} (a + 0 = 0 + a = 0))$	(existence of a zero element),
4) $\forall a \in \mathbb{R} (\exists b \in \mathbb{R} (a + b = 0))$	(existence of an additive inverse, notation: $b = -a$).

Multiplication:

5) $\forall a, b \in \mathbb{R} \ (a \cdot b = b \cdot a)$	(commutativity),
6) $\forall a, b, c \in \mathbb{R} ((a \cdot b) \cdot c = a \cdot (b \cdot c))$	(associativity),
7) $\exists 1 \in \mathbb{R} \ (\forall a \in \mathbb{R} \ (a \cdot 1 = 1 \cdot a = a))$	(existence of a unit element),
8) $\forall a \in \mathbb{R} \setminus \{0\} (\exists b \in \mathbb{R} (a \cdot b = 1))$	(existence of a multiplicative inverse, notation: $b = a^{-1}$).

For the two operations above:

9) $\forall a, b, c \in \mathbb{R}$ $(a + b) \cdot c = a \cdot c + b \cdot c$ (the multiplication is distributive with respect to the addition).

Axioms (1)-(9) are the axioms for a **field**.

Ordering:	10) Exactly one of the following is true: $a < b$, $b < a$, $a = b$	(trichotomy),
	$11) \forall a, b, c \in \mathbb{R} \ ((a < b) \land (b < c)) \implies (a < c)$	(transitivity),
	12) $\forall a, b, c \in \mathbb{R} ((a < b) \land c > 0) \implies a \cdot c < b \cdot c$	
	13) $\forall a, b, c \in \mathbb{R} (a < b) \implies a + c < b + c$	(monotonicity)

Axioms (1)–(13) are the axioms for an **ordered field**.

Archimedian axiom:

14) $\forall a \in \mathbb{R} (\exists n \in \mathbb{N} (a < n)).$

Axioms 1) – 14) are true both for \mathbb{R} and \mathbb{Q} .

Cantor axiom:

15) Let
$$a_1, b_1, a_2, b_2, \dots \in \mathbb{R}$$
.
 $(\forall n \in \mathbb{N} \ (a_n \le a_{n+1} \le b_{n+1} \le b_n)) \implies (\exists x \in \mathbb{R} \ (\forall n \in \mathbb{N} \ (x \in [a_n, b_n])))$
 $\left(\text{so} \bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset \right).$

It states that any nested sequence of closed intervals has a non-empty intersection.

Example: Let
$$a_1 = 1.4$$
 and $b_1 = 1.5$
 $a_2 = 1.41$ $b_2 = 1.42$
 $a_3 = 1.414$ $b_3 = 1.415$
 $a_4 = 1.4142$ $b_4 = 1.4143$
... $a_n = \left[10^n \cdot \sqrt{2}\right] \cdot 10^{-n}$ $b_n = \left(\left[10^n \cdot \sqrt{2}\right] + 1\right) \cdot 10^{-n}$

where [.] denotes the floor function.

Then
$$a_1 < a_2 < a_3 < a_4 < \dots < \sqrt{2} < \dots < b_4 < b_3 < b_2 < b_1$$
, so $\bigcap_{n=1}^{\infty} [a_n, b_n] = \left\{\sqrt{2}\right\} \in \mathbb{R} \setminus \mathbb{Q}$.
Remark. Closeness is important, for example if $I_n = \left(0, \frac{1}{n}\right]$ then $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

Consequences

Some elementary laws of algebra and inequalities follow from the axioms. For example:

- 1) For all $a \in \mathbb{R}$, exactly one of the following properties hold: a > 0, a = 0, a < 0. $(a > 0 \iff -a < 0)$
- 2) $(a < b) \land (c < d) \implies a + c < b + d$ Specifically: $(a > 0) \land (b > 0) \implies a + b > 0$
- 3) $(0 \le a < b) \land (0 \le c < d) \implies ac < bd$ Specifically: $(a > 0) \land (b > 0) \implies ab > 0$
- 4) $(a < b) \land (c < 0) \implies ac > bc$ Specifically: $a < b \implies -a > -b$

5) (i)
$$0 < a < b \implies \frac{1}{a} > \frac{1}{b}$$
 (ii) $a < b < 0 \implies \frac{1}{a} > \frac{1}{b}$ (iii) $a < 0 < b \implies \frac{1}{a} < \frac{1}{b}$

6) For all $a, b \in \mathbb{R}$, $|a+b| \le |a|+|b|$ and $||a|-|b|| \le |a-b|$.

7) If *n* is a positive integer and 0 < a < b then $a^n < b^n$. 8) $\forall x \in \mathbb{R}$ ($x \cdot 0 = 0$) 9) $\forall x \in \mathbb{R}$ ($x \cdot y = 0 \implies x = 0$ or y = 0)

Proof of 8): $x \cdot 0 = x \cdot 0 + 0 = x \cdot 0 + (x \cdot 0 - x \cdot 0) = (x \cdot 0 + x \cdot 0) - x \cdot 0 = x \cdot (0 + 0) - x \cdot 0 = x \cdot 0 - x \cdot 0 = 0.$

Proof of 9): $x \neq 0 \implies y = 1 \cdot y = ((1/x) \cdot x) \cdot y = (1/x) \cdot (x \cdot y) = (1/x) \cdot 0 = 0.$

Bounded subsets of real numbers

Definition. $A \subset \mathbb{R}$ is bounded above if there exists a $K \in \mathbb{R}$ such that $a \leq K$ for all $a \in A$. In this case K is an upper bound of A .
Definition. $A \subset \mathbb{R}$ is bounded below if there exists a $k \in \mathbb{R}$ such that $a \ge k$ for all $a \in A$. In this case k is a lower bound of A.
Definition. $A \subset \mathbb{R}$ is bounded if it is has an upper bound and a lower bound. It means that there exists a $K > 0$ such that $ a < K$ for all $a \in A$.
 Remark: A bounded set has infinitely many lower and upper bounds. Examples: 1) N is bounded below 2) (0, 1] = {x ∈ R : 0 < x ≤ 1} is bounded (for example, upper bounds are 1, 2, π,, lower bounds are 0, -3, -100,) 3) Q has no upper bound or lower bound
Definition. If a set <i>A</i> is bounded above, then the supremum of <i>A</i> is the least upper bound of <i>A</i> . Notation: $\sup A$. If <i>A</i> is not bounded above, then $\sup A = \infty$.
Definition. If a set <i>A</i> is bounded below then the infimum of <i>A</i> is the greatest lower bound of <i>A</i> . Notation: inf <i>A</i> . If <i>A</i> is not bounded below, then $\inf A = -\infty$.
Examples: 1) inf $\mathbb{N} = 1$, sup $\mathbb{N} = \infty$; 2) inf(0, 1] = 0, sup(0, 1] = 1; 3) inf $\mathbb{Q} = -\infty$, sup $\mathbb{Q} = \infty$
Definition. The minimum of the set <i>A</i> is <i>a</i> if $a \in A$ and $a = \inf A$. The maximum of the set <i>A</i> is <i>b</i> if $b \in A$ and $b = \sup A$.
 Examples: 1) The minimum of N is 1 and it has no maximum. 2) The maximum of (0, 1] is 1 and it has no minimum. 3) Q has no minimum and no maximum.
Least-upper-bound property
Theorem (Least-upper-bound property, Dedekind): If a non-empty subset of R is bounded above then it has a least upper bound in R .
Consequence. If a non-empty subset of \mathbb{R} is bounded below then it has a greatest lower bound in \mathbb{R} .
Remarks. 1) In the above system of axioms, the axioms of Cantor and Archimedes can be replaced by this statement.

2) The set of rational numbers does not have the least-upper-bound property under the usual order. For example, $\{x \in \mathbb{Q} : x^2 \le 2\} = \mathbb{Q} \cap (-\sqrt{2}, \sqrt{2})$ has an upper bound in \mathbb{Q} but does not have a least upper bound in \mathbb{Q} since $\sqrt{2}$ is irrational.