Calculus 1-02

Proofs. Inequalities.

Proofs

https://www.whitman.edu/mathematics/higher_math_online/chapter02.html

Direct proof

Since $((P \Rightarrow R) \wedge(R \Rightarrow Q)) \Longrightarrow(P \Rightarrow Q)$ is always true (it is a tautology), we can prove $P \Rightarrow Q$ by proving $P \Rightarrow R$ and $R \Longrightarrow Q$ where R is any other proposition.

Example

Inequality of arithmetic and geometric means:

If $a, b \geq 0$ then $\sqrt{a b} \leq \frac{a+b}{2}$ and equality holds if and only if $a=b$.
Proof: $\frac{a+b}{2} \geq \sqrt{a b} \Longleftrightarrow(a+b)^{2} \geq 4 a b \Longleftrightarrow a^{2}-2 a b+b^{2} \geq 0 \Longleftrightarrow(a-b)^{2} \geq 0$, which always holds.

Indirect proof

There are two methods of indirect proof: proof of the contrapositive and proof by contradiction. They both start by assuming the denial of the conclusion.

Proof of the contrapositive

We can prove $P \Rightarrow Q$ by proving its contrapositive, $\neg Q \Rightarrow \neg P$. We have seen that these are logically equivalent. In the proof we assume that Q is false and try to prove that P is false.

Example. If $a b$ is even then either a or b is even.
Proof. Assume both a and b are odd. Since the product of odd numbers is odd, then $a b$ is odd.

Proof by contradiction

To prove a statement P by contradiction we assume $\neg P$ and derive a statement that is known to be false. This means P must be true.

If we want to prove a statement of the form $P \Longrightarrow Q$ then we assume that P is true and Q is false $($ since $\neg(P \Longrightarrow Q) \equiv \neg(\neg P \vee Q) \equiv P \wedge \neg Q)$ and try to derive a statement known to be false.
This statement need not be $\neg P$, this is the difference between proof by contradiction and proof of the contrapositive.

Examples

In the following two examples we will use the fundamental theorem of arithmetic also known as unique factorization theorem which states that every integer greater than 1 can be factored uniquely as a product of primes, up to the order of factors.

1) Theorem: There are infinitely many primes.

Proof.

1) Assume there are only finitely many primes $p_{1}, p_{2}, \ldots, p_{k}$ and let $n=p_{1} p_{2} \ldots p_{k}+1$.
2) Then n is not divisible by any of the primes $p_{1}, p_{2}, \ldots, p_{k}$ since the remainder is always 1 .

It means that

- n is either another prime or
- it has a prime factor different from $p_{1}, p_{2}, \ldots, p_{k}$.

3) This is a contradiction since we started from the fact that there are exactly k primes and then came to the conclusion that there must be at least one more prime.
It means that there are infinitely many primes.
4) $\sqrt{3}$ is irrational.

Proof.

1) Assume indirectly that $\sqrt{3}$ is rational. Then is can be written in the form $\sqrt{3}=\frac{a}{b}$ where a, b are integers and $b \neq 0$. From this we get that $3 b^{2}=a^{2}$.
2) Consider the exponent of 3 in the prime factorization of both sides.

Since in the prime factorization of a square number all exponents are even, it means that

- the exponent of 3 is odd on the left-hand side and
- even on the right-hand side.

3) However, this contradicts the unique factorization theorem, so $\sqrt{3}$ is irrational.

Induction

Let $P(n)$ denote a statement that depends on the natural number n.
A proof by induction consists of two cases.

1) The base case (or basis) proves that $P\left(n_{0}\right)$ is true without assuming any knowledge of other cases.
2) The induction step proves that if $P(k)$ is true for any natural number k, then $P(k+1)$ must also be true.
From these two steps it follows that $P(n)$ holds for all natural numbers $n \geq n_{0}$.

Examples

1. Prove by induction that for every positive integer n the following statement holds:
$\sum_{k=1}^{n} k=1+2+\ldots+n=\frac{n(n+1)}{2}$.

Solution:

1. Base case: the statement is true for $n=1$ since $1=\frac{1 \cdot 2}{2}$.
2. Induction step:
a) Assume that the statement holds for $n=k$, that is,

$$
1+2+\ldots+k=\frac{k(k+1)}{2} \text { (this is the induction hypothesis). }
$$

b) Using this, we prove that the statement holds for $n=k+1$, that is,

$$
1+2+\ldots+k+(k+1)=\frac{(k+1)(k+2)}{2}
$$

Using the induction hypothesis 2 . a) we get:

$$
1+2+\ldots+k+(k+1)=\frac{\boldsymbol{k}(\boldsymbol{k}+1)}{2}+(k+1)=\frac{k(k+1)+2(k+1)}{2}=\frac{(k+1)(k+2)}{2}
$$

So the statement is also true for $n=k+1$. Thus, by the principle of induction, the statement holds for all positive integers n (that is, $n_{0}=1$)
2. Prove by induction that $3^{n}>2^{n}+7 n$ for all positive integers $n \geq n_{0}$.

Find the smallest such positive integer n_{0}.
Solution: Let $P(n)$ denote the above statement. Then

$P(1)$ is false, since	$3^{1}<2^{1}+7 \cdot 1$	$P(4)$ is true:	$3^{4}>2^{4}+7 \cdot 4$
$P(2)$ is false, since	$3^{2}<2^{2}+7 \cdot 2$	$P(5)$ is true:	$3^{5}>2^{5}+7 \cdot 5$
$P(3)$ is false, since	$3^{3}<2^{3}+7 \cdot 3$	$P(6)$ is true:	$3^{6}>2^{6}+7 \cdot 6$ etc.

We prove by induction that the statement holds for all integers $n \geq 4=n_{0}$.

1. Base case: The statement holds for $n=4$ since $3^{4}>2^{4}+7 \cdot 4$.
2. Induction step:
a) Assume that the statement holds for $n=k$, that is, $3^{k}>2^{k}+\mathbf{7 k}$.
b) Using this, we prove that the statement holds for $n=k+1$, that is, $3^{k+1}>2^{k+1}+7(k+1)$.

Using the induction hypothesis 2 . a) we get:

$$
\begin{aligned}
3^{k+1} & =3 \cdot 3^{k}>3 \cdot\left(2^{k}+7 k\right)= \\
& =3 \cdot 2^{k}+3 \cdot 7 k= \\
& =(2+1) \cdot 2^{k}+(2+1) \cdot 7 k= \\
& =2 \cdot 2^{k}+2^{k}+2 \cdot 7 k+7 k= \\
& =2^{k+1}+7 k+2^{k}+2 \cdot 7 k>2^{k+1}+7 k+0+7= \\
& =2^{k+1}+7(k+1)
\end{aligned}
$$

So the statement is also true for $n=k+1$. Thus, by the principle of induction, the statement holds for all integers $n \geq 4$.

Inequalities

Triangle inequality

$$
|a+b| \leq|a|+|b|
$$

Proof. Since both sides are nonnegative, then taking the squares of both sides is an equivalent transformation:

$$
|a+b| \leq|a|+|b| \Longleftrightarrow a^{2}+2 a b+b^{2} \leq a^{2}+2|a b|+b^{2} \Longleftrightarrow 2 a b \leq 2|a b|
$$

This is always true since $x \leq|x|$ for all $x \in \mathbb{R}$.

Inequality of the arithmetic and geometric means

If $a_{1}, a_{2}, \ldots a_{n} \geq 0$ then $\sqrt[n]{a_{1} a_{2} \ldots a_{n}} \leq \frac{a_{1}+a_{2}+\ldots+a_{n}}{n}$ and equality holds if and only if $a_{1}=a_{2}=\ldots=a_{n}$

Proof: by induction.

a) The statement holds for $n=2$ (see direct proof above): $\frac{a_{1}+a_{2}}{2} \geq \sqrt{a_{1} a_{2}}$.
b) We prove that if the statement is true for n then it is also true for $2 n$.

For this, divide the arbitrarily fixed $2 n$ numbers into two groups of n.
Apply the induction hypothesis for these two groups and then apply part a) for case $n=2$.

$$
\frac{a_{1}+\ldots+a_{2 n}}{2 n}=\frac{1}{2}\left(\frac{a_{1}+\ldots+a_{n}}{n}+\frac{a_{n+1}+\ldots+a_{2 n}}{n}\right) \geq \frac{1}{2}\left(\sqrt[n]{a_{1} \ldots a_{n}}+\sqrt[n]{a_{n+1} \ldots a_{2 n}}\right) \geq \sqrt[2 n]{a_{1} \ldots a_{2 n}} .
$$

Thus, the statement holds for $n=2^{k}$.
c) Using a kind of reverse induction, we prove that if the statement holds for $(n+1)$ then it is also true for n and thus it holds for all positive integers.
Let $a_{n+1}=\frac{a_{1}+\ldots+a_{n}}{n}=A_{n}$ and apply the statement for the $(n+1)$ numbers $a_{1}, \ldots, a_{n}, a_{n+1}$.
With equivalent steps, we get

$$
A_{n}=\frac{a_{1}+\ldots+a_{n}+A_{n}}{n+1} \geq \sqrt[n+1]{a_{1} \ldots a_{n} A_{n}} \Longleftrightarrow A_{n}^{n+1} \geq a_{1} \ldots a_{n} A_{n} \Longleftrightarrow A_{n}^{n} \geq a_{1} \ldots a_{n} \Longleftrightarrow A_{n} \geq \sqrt[n]{a_{1} \ldots a_{n}} .
$$

d) Finally, we prove the equality part of the theorem.

If $a_{1}=\ldots a_{n}=a$ then the equality obviously holds since $\frac{a_{1}+\ldots+a_{n}}{n}=a=\sqrt[n]{a_{1} \ldots a_{n}}$.
Now suppose that for example $a_{1} \neq a_{2}$. Using that in this case $\frac{a_{1}+a_{2}}{2}>\sqrt{a_{1} a_{2}}$, we get $\frac{a_{1}+a_{2}+a_{3}+\ldots+a_{n}}{n}=\frac{\frac{a_{1}+a_{2}}{2}+\frac{a_{1}+a_{2}}{2}+a_{3}+\ldots+a_{n}}{n} \geq$

$$
\geq \sqrt[n]{\left(\frac{a_{1}+a_{2}}{2}\right)^{2} a_{3} \ldots a_{n}}>\sqrt[n]{\left(\sqrt{a_{1} a_{2}}\right)^{2} a_{3} \ldots a_{n}}=\sqrt[n]{a_{1} \ldots a_{n}}
$$

HM-GM-AM-QM inequalities

The inequalities between the harmonic mean, geometric mean, arithmetic mean and quadratic mean of the positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$:

$$
0<\frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}} \leq \sqrt[n]{a_{1} a_{2} \ldots a_{n}} \leq \frac{a_{1}+a_{2}+\ldots+a_{n}}{n} \leq \sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}}{n}}
$$

Equality holds if and only if $a_{1}=a_{2}=\ldots=a_{n}$.

Bernoulli's inequality

$(1+x)^{n} \geq 1+n x$ where $x \geq-1$ and n is a positive integer.
Proof: By induction.

1) For $n=1: 1+x \leq 1+x$.
2) Assume that $(1+x)^{n} \geq 1+n x$ and multiply both sides by $1+x \geq 0$:
$(1+x)^{n+1} \geq(1+n x) \cdot(1+x)=1+(n+1) x+n x^{2} \geq 1+(n+1) x$.

Exercises

Induction

Prove by induction that the following statements hold for $n \geq n_{0}$. Find the smallest such positive integer n_{0}.

1) $1+3+5+\ldots+(2 n-1)=n^{2}$
2) $\sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
3) $\sum_{k=1}^{n} k^{3}=1^{3}+2^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
4) $\sum_{k=1}^{n} k(k+1)=1 \cdot 2+2 \cdot 3+3 \cdot 4+\ldots+n \cdot(n+1)=\frac{n(n+1)(n+2)}{3}$
5) $\sum_{k=1}^{n} k \cdot k!=(n+1)!-1$
6) $\frac{(2 n)!}{(n!)^{2}}<4^{n-1}$

Inequalities

1. Prove that
a) $x^{2}+\frac{1}{x^{2}} \geq 2$ if $x \neq 0$
b) $\frac{x^{2}}{1+x^{4}} \leq \frac{1}{2}$
2. Prove that if $a, b, c>0$ then
a) $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq 3$
b) $\frac{a^{2}}{b c}+\frac{b^{2}}{a c}+\frac{c^{2}}{a b} \geq 3$
3. Prove that $n!<\left(\frac{n+1}{2}\right)^{n}$ if $n \geq 2$.
4. What is the maximum of $x y$ if $x, y \geq 0$ and
a) $x+y=10$;
b) $2 x+3 y=10 ?$
5. Calculate the maximum value of the function $x^{2} \cdot(1-x)$ for $x \in[0,1]$.
6. Which rectangular box has the greatest volume among the ones with given surface area?
7. What is the maximum value of $a^{3} b^{2} c$, if a, b, c are non-negative and $a+2 b+3 c=5$?
8. Using Bernoulli's inequality, prove that there exists a positive integer n such that
a) $0.9^{n}<\frac{1}{100}$
b) $\sqrt[n]{2}<1.01$
c) $\sqrt[n]{0.1}>0.9$

Solutions

$\begin{array}{lll}\text { 1. a) Apply the AM-GM inequality for } a_{1}=x^{2} \text { and } a_{2}=\frac{1}{x^{2}} & \text { b) It follows from case a). }\end{array}$
2. a) Apply the AM-GM inequality for $x_{1}=\frac{a}{b}, x_{2}=\frac{b}{c}, x_{3}=\frac{c}{a}$.
b) Apply the AM-GM inequality for $x_{1}=\frac{a^{2}}{b c}, x_{2}=\frac{b^{2}}{a c}, x_{3}=\frac{c^{2}}{a b}$.
3. Apply the AM-GM inequality for $a_{1}=1, a_{2}=2, \ldots, a_{n}=n$.
4. a) Apply the AM-GM inequality for $x \geq 0$ and $y \geq 0$:

$$
\sqrt{x y} \leq \frac{x+y}{2}=\frac{10}{2}=5 \Longrightarrow x y \leq 25
$$

and equality holds if and only if $x=y$. Since $x+y=10$ then $2 x=10 \Longrightarrow x=5$,
so the maximum of $x y$ is 25 if $x=y=5$.
b) Apply the AM-GM inequality for $2 x \geq 0$ and $3 y \geq 0$: $\sqrt{2 x \cdot 3 y} \leq \frac{2 x+3 y}{2}=\frac{10}{2}=5 \Rightarrow x y \leq \frac{25}{6}$
and equality holds if and only if $2 x=3 y$. Since $2 x+3 y=10$ then $4 x=10 \Rightarrow x=\frac{5}{2}$,
so the maximum of $x y$ is $\frac{25}{6}$ if $x=\frac{5}{2}, y=\frac{5}{3}$.
5. Apply the AM-GM inequality for $a_{1}=a_{2}=x \geq 0, a_{3}=2-2 x \geq 0$:
$\sqrt[3]{x \cdot x \cdot(2-2 x)} \leq \frac{x+x+(2-2 x)}{3}=\frac{2}{3} \Longrightarrow x^{2}(1-x) \leq \frac{4}{27}$
and equality holds if and only if $x=2-2 x$, that is, $x=\frac{2}{3}$.
The maximum of the function $f(x)=x^{2}(1-x)$ on $[0,1]$ is $f\left(\frac{2}{3}\right)=\frac{4}{27}$.
6. The surface area and volume of a box with dimensions x, y, z are
$A=2(x y+x z+y z), V=x y z$. Let us apply the AM-GM inequality for $x y>0, x z>0, y z>0$:
$\frac{A}{6}=\frac{x y+x z+y z}{3} \geq \sqrt[3]{x y \cdot x z \cdot y z}=\sqrt[3]{(x y z)^{2}}=V^{\frac{2}{3}}$ and equality holds if and only if $x y=x z=y z$ from where $x=y=z$, that is, the box is a cube.
7. Apply the AM-GM inequality for the nonnegative numbers $\frac{a}{3}, \frac{a}{3}, \frac{a}{3}, b, b, 3 c$:

$$
\sqrt[6]{\frac{a}{3} \cdot \frac{a}{3} \cdot \frac{a}{3} \cdot b \cdot b \cdot 3 c} \leq \frac{\frac{a}{3}+\frac{a}{3}+\frac{a}{3}+b+b+3 c}{6}=\frac{a+2 b+3 c}{6}=\frac{5}{6} \Rightarrow a^{3} b^{2} c \leq 9 \cdot\left(\frac{5}{6}\right)^{6}
$$

and equality holds if and only if $\frac{a}{3}=b=3 c$. Then substituting $a=9 c, b=3 c$ into $a+2 b+3 c=5$ we get $a=\frac{5}{2}, b=\frac{5}{6}, c=\frac{5}{18}$, so for these values the maximum of $a^{3} b^{2} c$ is $9 \cdot\left(\frac{5}{6}\right)^{6}$.
8. a) $0.9^{n}<\frac{1}{100} \Longleftrightarrow 100<\left(\frac{10}{9}\right)^{n}=\left(1+\frac{1}{9}\right)^{n}$. Applying Bernoulli's inequality $(1+x)^{n} \geq 1+n x$ with $x=\frac{1}{9}$, we get $\left(1+\frac{1}{9}\right)^{n} \geq 1+\frac{n}{9}$. If $1+\frac{n}{9}>100$ then $n>891$, so in this case $\left(1+\frac{1}{9}\right)^{n}>100$ also holds. Remark: Solving the inequality for $n \in \mathbb{N}$, we get that $n \geq 44$.
b) $\sqrt[n]{2}<1.01 \Longleftrightarrow 1.01^{n}>2$. Applying Bernoulli's inequality $(1+x)^{n} \geq 1+n x$ with $x=0.01$, we get $(1+0.01)^{n} \geq 1+0.01 n$. If $1+0.01 n>2$ then $n>100$, so in this case $1.01^{n}>2$ also holds. Remark: Solving the inequality for $n \in \mathbb{N}$, we get that $n \geq 70$.
c) $\sqrt[n]{0.1}>0.9 \Longleftrightarrow \frac{1}{10}>\left(\frac{9}{10}\right)^{n} \Longleftrightarrow\left(\frac{10}{9}\right)^{n}=\left(1+\frac{1}{9}\right)^{n}>10$. Applying Bernoulli's inequality with $x=\frac{1}{9}$, we get $\left(1+\frac{1}{9}\right)^{n} \geq 1+\frac{n}{9}$. If $1+\frac{n}{9}>10$ then $n>81$, so in this case $\left(1+\frac{1}{9}\right)^{n}>10$ also holds.
Remark: Solving the inequality for $n \in \mathbb{N}$, we get that $n \geq 22$.

