Calculus 1 - Homework 4.

1. (5 points) Find the local extrema of the function $f(x)=\left(x^{3}+3 x^{2}+3 x-3\right) e^{x}$. Determine the intervals where the function increases or decreases.
2. (5 points) Find the inflection points of the function $f(x)=(x+1) \operatorname{arctg}(x-1)$. Determine the intervals where the function is convex or concave.
3.* (4 points) The widths of two perpendicular corridors are 2.4 m and 1.6 m , respectively. What is the longest ladder that can be moved (in a horizontal position) from one corridor to another?
3. (4 points) Estimate the value of $\sqrt[4]{82}$ by the Taylor polynomial of order 3 of the function $f(x)=\sqrt[4]{x}$ at center 81. Give an upper bound for the error of the approximation.
4. (4 points) Estimate the value of $\cos 0.5$ by an appropriate Taylor polynomial with an error less than 10^{-3}.
5. (4 points) Find the Taylor series of $f(x)=\frac{1}{(x-2)^{2}}$ with center -1 and find the radius of convergence.
6. (4 points) Find the Taylor series of $f(x)=\frac{x^{2}}{\sqrt[5]{32-x^{3}}}$ with center 0 and find the radius of convergence.

Deadline: December 8th.

