Calculus 1 - Homework 4.

1. (5 points) Find the local extrema of the function $f(x)=\left(x^{3}+3 x^{2}+3 x-3\right) e^{x}$. Determine the intervals where the function increases or decreases.

Solution. $f^{\prime}(x)=e^{x} x(x+3)^{2}=0 \Longleftrightarrow x_{1}=0$ and $x_{2}=-3$

x	$x<-3$	$x=-3$	$-3<x<0$	$x=0$	$x>0$
f^{\prime}	-	0	-	0	+
f	\searrow		\searrow	$\min : 0$	\nearrow

f is strictly monotonically decreasing on $(-\infty, 0]$ and strictly monotonically increasing on $[0, \infty)$.
2. (5 points) Find the inflection points of the function $f(x)=(x+1) \operatorname{arctg}(x-1)$.

Determine the intervals where the function is convex or concave.

Solution.

$f^{\prime}(x)=\operatorname{arctg}(x-1)+\frac{x+1}{1+(x-1)^{2}}$
$f^{\prime \prime}(x)=\frac{1}{1+(x-1)^{2}}+\frac{1+(x-1)^{2}-(x+1) \cdot 2(x-1)}{\left(1+(x-1)^{2}\right)^{2}}$
$=\frac{1+(x-1)^{2}+1+(x-1)^{2}-(x+1) \cdot 2(x-1)}{\left(1+(x-1)^{2}\right)^{2}}=\frac{2+2 x^{2}-4 x+2-2\left(x^{2}-1\right)}{\left(1+(x-1)^{2}\right)^{2}}=$
$=\frac{6-4 x}{\left(1+(x-1)^{2}\right)^{2}}=0 \Longleftrightarrow x=\frac{3}{2}$

x	$x<\frac{3}{2}$	$x=\frac{3}{2}$	$x>\frac{3}{2}$
f^{\prime}	+	0	-
f	U	infl.	\cap

f is convex on $\left(-\infty, \frac{3}{2}\right)$ and concave on $\left(\frac{3}{2}, \infty\right) \Longrightarrow f$ has an inflection point at $\frac{3}{2}$.
3.* (4 points) The widths of two perpendicular corridors are 2.4 m and 1.6 m , respectively. What is the longest ladder that can be moved (in a horizontal position) from one corridor to another?

1st solution.

The ladder is denoted by the line segment $A B$ in the figure. The lengths x and y can be expressed with α, so the length of the ladder is $A B=f(\alpha)=\frac{2.4}{\cos \alpha}+\frac{1.6}{\sin \alpha} \Longrightarrow$ $f^{\prime}(\alpha)=\frac{2.4 \sin \alpha}{\cos ^{2} \alpha}-\frac{1.6 \cos \alpha}{\sin ^{2} \alpha}=\frac{0.8}{\sin ^{2} \alpha \cos ^{2} \alpha}\left(3 \sin ^{3} \alpha-2 \cos ^{3} \alpha\right)$ $f^{\prime}(\alpha)=0$ if $3 \sin ^{3} \alpha=2 \cos ^{3} \alpha \Longrightarrow \tan \alpha=\sqrt[3]{\frac{2}{3}} \Longrightarrow \alpha=\arctan \left(\sqrt[3]{\frac{2}{3}}\right) \approx 0.718025$
$\Longrightarrow \alpha \approx 41^{\circ}$. The length of the ladder is $\mathrm{AB} \approx 3.2+2.4=5.6 \mathrm{~m}$

Remark. f has a local minimum at $\alpha \approx 0.718$. f ' changes sign from negative to positive.

The graph of f : The graph of f^{\prime} :

2nd solution.

According to the figure, $\frac{a}{2.4}=\frac{1.6}{b}$, so $a=\frac{1.6 \cdot 2.4}{b}$. The length of the ladder is
$f(b)=\sqrt{2.4^{2}+a^{2}}+\sqrt{1.6^{2}+b^{2}}=\sqrt{2.4^{2}+\frac{1.6^{2} \times 2.4^{2}}{b^{2}}}+\sqrt{1.6^{2}+b^{2}}=$
$=2.4 \sqrt{1+\frac{1.6^{2}}{b^{2}}}+\sqrt{1.6^{2}+b^{2}}=\frac{2.4}{b} \sqrt{1.6^{2}+b^{2}}+\sqrt{1.6^{2}+b^{2}}=\left(\frac{2.4}{b}+1\right) \sqrt{1.6^{2}+b^{2}}$
$f^{\prime}(b)=-\frac{2.4}{b^{2}} \sqrt{1.6^{2}+b^{2}}+\left(\frac{2.4}{b}+1\right) \frac{b}{\sqrt{1.6^{2}+b^{2}}}=0$
$\Longleftrightarrow 1.6^{2}+b^{2}=\left(\frac{2.4}{b}+1\right) \frac{b^{3}}{2.4} \Longleftrightarrow 1.6^{2}+b^{2}=b^{2}+\frac{b^{3}}{2.4} \Longleftrightarrow b=\sqrt[3]{1.6^{2} \cdot 2.4} \approx 1.83154$

Substituting this value into $f(b)=\left(\frac{2.4}{b}+1\right) \sqrt{1.6^{2}+b^{2}}$, the length of the ladder is approximately 5.61879 m .

Remark. f has a local minimum at $b=\sqrt[3]{1.6^{2} \cdot 2.4}$, since $f^{\prime}(b)=\frac{-6.144+b^{3}}{b^{2} \sqrt{2.56+b^{2}}}$ changes sign from negative to positive at this point.
4. (4 points) Estimate the value of $\sqrt[4]{82}$ by the Taylor polynomial of order 3 of the function $f(x)=\sqrt[4]{x}$ at center 81 . Give an upper bound for the error of the approximation.

Solution. The derivatives and substitution values are
$f(x)=\sqrt[4]{x}$

$$
f(81)=3
$$

$f^{\prime}(x)=\frac{1}{4} x^{-\frac{3}{4}}=\frac{1}{4} \cdot \frac{1}{(\sqrt[4]{x})^{3}}$
$f^{\prime}(81)=\frac{1}{4} \cdot \frac{1}{3^{3}}$
$f^{\prime \prime}(x)=-\frac{3}{4^{2}} x^{-\frac{7}{4}}=-\frac{3}{4^{2}} \cdot \frac{1}{(\sqrt[4]{x})^{7}} \quad f^{\prime \prime}(81)=-\frac{3}{4^{2}} \cdot \frac{1}{3^{7}}$
$f^{\prime \prime \prime}(x)=\frac{21}{4^{3}} x^{-\frac{11}{4}}=\frac{21}{4^{3}} \cdot \frac{1}{(\sqrt[4]{x})^{11}} \quad f^{\prime \prime \prime}(81)=\frac{21}{4^{3}} \cdot \frac{1}{3^{11}}$
$f^{(4)}(x)=\frac{231}{4^{4}} x^{-\frac{15}{4}}=\frac{231}{4^{4}} \cdot \frac{1}{(\sqrt[4]{x})^{15}}$

The Taylor polynomial of order 3 with center $x_{0}=81$ is

$$
\begin{aligned}
& T_{3}(x)=f(81)+f^{\prime}(81)(x-81)+\frac{f^{\prime \prime}(81)}{2!}(x-81)^{2}+\frac{f^{\prime \prime \prime}(81)}{3!}(x-81)^{3}= \\
& =3+\frac{1}{4} \cdot \frac{1}{3^{3}}(x-81)-\frac{3}{4^{2}} \cdot \frac{1}{3^{7}} \cdot \frac{1}{2!}(x-81)^{2}+\frac{21}{4^{3}} \cdot \frac{1}{3^{11}} \cdot \frac{1}{3!}(x-81)^{3}
\end{aligned}
$$

If $x=82$ then $f(82) \approx T_{3}(82)$, that is,

$$
\sqrt[4]{82}=f(82) \approx T_{3}(82)=3+\frac{1}{4} \cdot \frac{1}{3^{3}}-\frac{3}{4^{2}} \cdot \frac{1}{3^{7}} \cdot \frac{1}{2!}+\frac{21}{4^{3}} \cdot \frac{1}{3^{11}} \cdot \frac{1}{3!}
$$

Lagrange remainder term: $R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$, where $n=3, x_{0}=81, x=82,81<\xi<82$
Taylor's theorem: $f(x)=T_{n}(x)+R_{n}(x)$

The error for the approximation $f(x) \approx T_{3}(x)$ can be estimate from above:

$$
\begin{aligned}
|E| & =\left|f(x)-T_{3}(x)\right|=\left|R_{3}(x)\right|=\left|\frac{f^{(4)}(\xi)}{4!}(82-81)^{4}\right|=\left|\frac{231}{4^{4}} \cdot \frac{1}{(\sqrt[4]{\xi})^{15}} \cdot \frac{1}{4!} \cdot 1^{4}\right| \\
& =\frac{231}{4^{4}} \cdot \frac{1}{(\sqrt[4]{\xi})^{15}} \cdot \frac{1}{4!}<\frac{231}{4^{4}} \cdot \frac{1}{3^{15}} \cdot \frac{1}{4!} \approx 2.62025 \times 10^{-9}
\end{aligned}
$$

For the upper estimation we use that $81<\xi<82$.

Comparison of the numerical values: $\quad \sqrt[4]{82} \approx 3.009216698$

$$
T_{3}(82) \approx 3.009216701
$$

Remark. $T(82)$ is a Leibniz series (starting from the second term), so
an upper bound for the error for the approximation is $\frac{231}{4^{4}} \cdot \frac{1}{3^{15}} \cdot \frac{1}{4!}$.
5. (4 points) Estimate the value of $\cos 0.5$ by an appropriate Taylor polynomial with an error less than 10^{-3}.

Solution. Let $f(x)=\cos x, x_{0}=0, x=0.5$. We need to determine n such that the error of the approximation $f(x) \approx T_{n}(x)$ is less than 10^{-3}.

Since $\left|f^{(n)}(x)\right| \leq 1$, then for the error we have

$$
|E|=\left|\cos 0.5-T_{n}(0.5)\right|=\left|R_{n}(0.5)\right|=\left|\frac{f^{(n+1)}(\xi)}{(n+1)!}(0.5-0)^{n+1}\right| \leq \frac{0.5^{n+1}}{(n+1)!}<10^{-3}, \text { if } n \geq 4
$$

(Here n can be determined by substituting a few values.)

It means that $\cos 0.5 \approx T_{4}(0.5)=1-\frac{0.5^{2}}{2!}+\frac{0.5^{4}}{4!}=1-\frac{1}{8}+\frac{1}{384}=0.877604$ is a good approximation.
As a comparison, $\cos (0.5) \approx 0.877583$.
6. (4 points) Find the Taylor series of $f(x)=\frac{1}{(x-2)^{2}}$ with center -1 and find the radius of convergence.

Solution. If $|x+1|<3$, then

$$
\begin{aligned}
& f(x)=\frac{1}{(x-2)^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{2-x}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{3-(x+1)}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{1}{3} \frac{1}{1-\frac{x+1}{3}}\right)=\frac{\mathrm{d}}{\mathrm{dx}}\left(\sum_{n=0}^{\infty} \frac{(x+1)^{n}}{3^{n+1}}\right)= \\
& =\sum_{n=0}^{\infty}\left(\frac{\mathrm{d}}{\mathrm{dx}} \frac{(x+1)^{n}}{3^{n+1}}\right)=\sum_{n=0}^{\infty} \frac{n(x+1)^{n-1}}{3^{n}}=\sum_{n=0}^{\infty} \frac{(n+1)(x+1)^{n}}{3^{n+1}}
\end{aligned}
$$

Remark. The Taylor series can also be determined by calculating the derivatives and substituting into the formula $\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$.
7. (4 points) Find the Taylor series of $f(x)=\frac{x^{2}}{\sqrt[5]{32-x^{3}}}$ with center 0 and find the radius of convergence.

Solution. If $|x|<\sqrt[3]{32}$, then
$f(x)=\frac{x^{2}}{2}\left(1+\left(-\frac{x}{\sqrt[3]{32}}\right)^{3}\right)^{-\frac{1}{5}}=\frac{x^{2}}{2} \sum_{n=0}^{\infty}\binom{-\frac{1}{5}}{n}\left(-\frac{x}{\sqrt[3]{32}}\right)^{3 n}=\sum_{n=0}^{\infty} \frac{1}{2}\binom{-\frac{1}{5}}{n} \cdot \frac{(-1)^{n} x^{3 n+2}}{32^{n}}$

