Calculus 1 - Homework 3

1. (4 points) $\operatorname{Let} A=\left\{-\frac{1}{n}: n \in \mathbb{N}\right\} \cup(\mathbb{Q} \cap[1,2]) \cup(3,4]$.

Find the set of interior points, boundary points, limit points and isolated points of A.
2. (3+3 points) Calculate the following limits:
a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{\sqrt{x}-\sqrt{2-x}}$
b) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(a x)}{\cos (b x)-1}$, where $a, b \in \mathbb{R} \backslash\{0\}$.
3. (4 points) Choose the values of the parameters $a, b \in \mathbb{R}$ so that the following function be continuous on \mathbb{R} :
$f(x)= \begin{cases}\frac{\cos ^{2} x-a}{x} & \text { if } x<0 \\ \sin ^{2} \frac{\pi(x+b)}{2} & \text { if } x \geq 0\end{cases}$
4. (3 points) Are the following statements true or false? Give a reason for your answer.
a) There exists a continuous function $f:(-1,1) \longrightarrow \mathbb{R}$ whose range is $[0,1]$.
b) There exists a continuous function $f:[-1,1] \longrightarrow \mathbb{R}$ whose range is $(0,1)$.
c) There exists a continuous function $f:[-1,1] \longrightarrow \mathbb{R}$ whose range is $[1,2] \cup[4,5]$.
5. (5 points) Determine the points of discontinuities of the following functions. What type of discontinuities are these?
a) $f(x)=e^{-\frac{1}{x^{2}}}$
b) $g(x)=\frac{1}{1-e^{x}}$
c) $h(x)=\frac{1}{1-e^{\frac{1}{x}}}$
6. (3 points) Let $f(x)=e^{-x} \cos (\pi x)+x^{3}-4$. Prove that f has a zero in the open interval (0,2).
7.* (4 points) Prove that if f is continuous on $[a, \infty)$ and $\exists \lim _{x \rightarrow \infty} f(x)=A \in \mathbb{R}$ then f is uniformly continuous on $[a, \infty)$.

Deadline: November 17th

