Calculus 1 - Homework 3

1. (4 points) Let $A=\left\{-\frac{1}{n}: n \in \mathbb{N}\right\} \cup(\mathbb{Q} \cap[1,2]) \cup(3,4]$.

Find the set of interior points, boundary points, limit points and isolated points of A.

Solution.

Set of interior points: $\operatorname{int} A=(3,4)$
Set of boundary points: $\partial A=\left\{-\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\} \cup[1,2] \cup\{3,4\}$
Set of limit points: $\quad A^{\prime}=\{0\} \cup[1,2] \cup[3,4]$
Set of isolated points: $\left\{-\frac{1}{n}: n \in \mathbb{N}\right\}$
2. (3+3 points) Calculate the following limits:
a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{\sqrt{x}-\sqrt{2-x}}$
b) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(a x)}{\cos (b x)-1}$, where $a, b \in \mathbb{R} \backslash\{0\}$.

Solutions.

$$
\text { a) } \begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{2}-1}{\sqrt{x}-\sqrt{2-x}}=\lim _{x \rightarrow 1} \frac{x^{2}-1}{\sqrt{x}-\sqrt{2-x}} \cdot \frac{\sqrt{x}+\sqrt{2-x}}{\sqrt{x}+\sqrt{2-x}}= \\
&=\lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right)(\sqrt{x}+\sqrt{2-x})}{x-(2-x)}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)(\sqrt{x}+\sqrt{2-x})}{2(x-1)}= \\
&=\lim _{x \rightarrow 1} \frac{(x+1)(\sqrt{x}+\sqrt{2-x})}{2}=\frac{(1+1)(1+1)}{2}=2
\end{aligned}
$$

b) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(a x)}{\cos (b x)-1}=\lim _{x \rightarrow 0} \frac{\sin ^{2}(a x)}{\cos (b x)-1} \cdot \frac{\cos (b x)+1}{\cos (b x)+1}=\lim _{x \rightarrow 0} \frac{\sin ^{2}(a x)}{\cos ^{2}(b x)-1} \cdot(\cos (b x)+1)=$ $=\lim _{x \rightarrow 0} \frac{\sin ^{2}(a x)}{-\sin ^{2}(b x)} \cdot(\cos (b x)+1)=\lim _{x \rightarrow 0}\left(\frac{\sin (a x)}{a x}\right)^{2} \cdot\left(\frac{b x}{\sin (b x)}\right)^{2} \cdot \frac{-a^{2}}{b^{2}}(\cos (b x)+1)=$ $=1^{2} \cdot 1^{2} \cdot \frac{-a^{2}}{b^{2}} \cdot(1+1)=-\frac{2 a^{2}}{b^{2}}$
3. (4 points) Choose the values of the parameters $a, b \in \mathbb{R}$ so that the following function be continuous on \mathbb{R} :

$$
f(x)= \begin{cases}\frac{\cos ^{2} x-a}{x} & \text { if } x<0 \\ \sin ^{2} \frac{\pi(x+b)}{2} & \text { if } x \geq 0\end{cases}
$$

Solution. f is continuous if $x \neq 0$ for all $a, b \in \mathbb{R}$.
At $x=0$ the function f will be continuous if and only if $\lim _{x \rightarrow 0-0} f(x)=\lim _{x \rightarrow 0+0} f(x)=f(0)$
(1) $\frac{\cos ^{2} x-a}{x}=\frac{\left(\cos ^{2} x-1\right)+(1-a)}{x}=\frac{\left(\cos ^{2} x-1\right)}{x}+\frac{1-a}{x}=\frac{-\sin ^{2} x}{x}+\frac{1-a}{x}$

- $\lim _{x \rightarrow 0} \frac{-\sin ^{2} x}{x}=\lim _{x \rightarrow 0} \frac{\sin x}{x}(-\sin x)=1 \cdot 0=0$
- $\frac{1-a}{x}=0$, if $a=1$ and $\lim _{x \rightarrow 0 \pm 0} \frac{1-a}{x}= \pm \infty$, if $a \neq 1$
$\Longrightarrow f$ has a finite limit at 0 from the left if and only if $a=1$ and then $\lim _{x \rightarrow 0-0} f(x)=0$
(2) $\lim _{x \rightarrow 0+0} f(x)=\lim _{x \rightarrow 0+0} \sin ^{2} \frac{\pi(x+b)}{2}=\sin ^{2} \frac{\pi b}{2}$
f is continuous at $x=0 \Longleftrightarrow \sin ^{2} \frac{\pi b}{2}=0 \Longleftrightarrow \frac{\pi b}{2}=k \pi(k \in \mathbb{Z}) \Longleftrightarrow b=2 k$, where $k \in \mathbb{Z}$.
Therefore f is continuous on \mathbb{R} if and only if $a=1$ and $b=2 k$, where $k \in \mathbb{Z}$.

4. (3 points) Are the following statements true or false? Give a reason for your answer.
a) There exists a continuous function $f:(-1,1) \longrightarrow \mathbb{R}$ whose range is $[0,1]$.
b) There exists a continuous function $f:[-1,1] \longrightarrow \mathbb{R}$ whose range is $(0,1)$.
c) There exists a continuous function $f:[-1,1] \longrightarrow \mathbb{R}$ whose range is $[1,2] \cup[4,5]$.

Solution.

a) True. For example: $f(x)= \begin{cases}0, & \text { if }-1<x \leq 0 \\ 2 x, & \text { if } 0<x \leq \frac{1}{2} \\ 1, & \text { if } \frac{1}{2}<x<1\end{cases}$
b) False. It follows from the intermediate value theorem and the extreme value theorem that if f is continuous on $[-1,1]$, then the range of f is a closed and bounded interval.
c) False. By the previous two theorems, the range of f must be a closed and bounded interval.
5. (5 points) Determine the points of discontinuities of the following functions.

What type of discontinuities are these?
a) $f(x)=e^{-\frac{1}{x^{2}}}$
b) $g(x)=\frac{1}{1-e^{x}}$
c) $h(x)=\frac{1}{1-e^{\frac{1}{x}}}$

Solution.

a) $\lim _{x \rightarrow 0+0} e^{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0-0} e^{-\frac{1}{x^{2}}}=e^{-\infty}=0$
$\Longrightarrow f$ has a removable discontinuity at $x=0$.
b) $\lim _{x \rightarrow 0+0} \frac{1}{1-e^{x}}=\frac{1}{0-}=-\infty, \lim _{x \rightarrow 0-0} \frac{1}{1-e^{x}}=\frac{1}{0+}=+\infty$
$\Longrightarrow f$ has an essential discontinuity at $x=0$
c) $\lim _{x \rightarrow 0+0} \frac{1}{1-e^{\frac{1}{x}}}=\frac{1}{1-e^{\infty}}=\frac{1}{-\infty}=0, \lim _{x \rightarrow 0-0} \frac{1}{1-e^{\frac{1}{x}}}=\frac{1}{1-e^{-\infty}}=\frac{1}{1-0}=1$
$\Rightarrow f$ has a jump continuity at $x=0$

6. (3 points) Let $f(x)=e^{-x} \cos (\pi x)+x^{3}-4$. Prove that f has a zero in the open interval $(0,2)$.

Solution.

$f(0)=1+0-4=-3<0$ and $f(2)=e^{-2}+8-4>0$, so by the intermediate value theorem (or Bolzano's theorem) there exists $c \in(0,2)$ such that $f(c)=0$.
7.* (4 points) Prove that if f is continuous on $[a, \infty)$ and $\exists \lim _{x \rightarrow \infty} f(x)=A \in \mathbb{R}$ then f is uniformly continuous on $[a, \infty)$.

Solution. Let $\varepsilon>0$ be fixed. Since $\exists \lim _{x \rightarrow \infty} f(x)=A \in \mathbb{R}$ then there exists $P>0$ such that if $x>P$ then $|f(x)-A|<\frac{\varepsilon}{2}$.
f is continuous, so it is uniformly continuous on the compact interval $[a, P+1]$.
Let $0<\delta<1$ such that if $x, y \in[a, P+1]$ and $|x-y|<\delta$ then $|f(x)-f(y)|<\varepsilon$.

Now let $x, y \in[a, \infty)$ such that $|x-y|<\delta$. Then either $x, y \in[a, P+1]$ or $x, y>P$.
($x \leq P, y>P+1$ is not possible since their distance is less than 1.)
If $x, y \in[a, P+1]$ then $|f(x)-f(y)|<\varepsilon$.
If $x, y>P$ then $|f(x)-f(y)| \leq|f(x)-A|+|A-f(y)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.

