Calculus 1 - Homework 3

1. (4 points) Let
$$A = \left\{ -\frac{1}{n} : n \in \mathbb{N} \right\} \cup (\mathbb{Q} \cap [1, 2]) \cup (3, 4].$$

Find the set of interior points, boundary points, limit points and isolated points of A.

Solution.

Set of interior points: int A = (3, 4)Set of boundary points: $\partial A = \left\{ -\frac{1}{n} : n \in \mathbb{N} \right\} \cup \{0\} \cup [1, 2] \cup \{3, 4\}$ Set of limit points: $A' = \{0\} \cup [1, 2] \cup [3, 4]$ Set of isolated points: $\left\{ -\frac{1}{n} : n \in \mathbb{N} \right\}$

2. (3+3 points) Calculate the following limits:
a)
$$\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x} - \sqrt{2 - x}}$$
b)
$$\lim_{x \to 0} \frac{\sin^2(ax)}{\cos(bx) - 1}$$
, where $a, b \in \mathbb{R} \setminus \{0\}$

Solutions.

a)
$$\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x} - \sqrt{2 - x}} = \lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x} - \sqrt{2 - x}} \cdot \frac{\sqrt{x} + \sqrt{2 - x}}{\sqrt{x} + \sqrt{2 - x}} =$$
$$= \lim_{x \to 1} \frac{(x^2 - 1)(\sqrt{x} + \sqrt{2 - x})}{x - (2 - x)} = \lim_{x \to 1} \frac{(x - 1)(x + 1)(\sqrt{x} + \sqrt{2 - x})}{2(x - 1)} =$$
$$= \lim_{x \to 1} \frac{(x + 1)(\sqrt{x} + \sqrt{2 - x})}{2} = \frac{(1 + 1)(1 + 1)}{2} = 2$$

b)
$$\lim_{x \to 0} \frac{\sin^2(ax)}{\cos(bx) - 1} = \lim_{x \to 0} \frac{\sin^2(ax)}{\cos(bx) - 1} \cdot \frac{\cos(bx) + 1}{\cos(bx) + 1} = \lim_{x \to 0} \frac{\sin^2(ax)}{\cos^2(bx) - 1} \cdot (\cos(bx) + 1) = \lim_{x \to 0} \frac{\sin^2(ax)}{\cos^2(bx) - 1} \cdot (\cos(bx) + 1) = \lim_{x \to 0} \left(\frac{\sin(ax)}{ax}\right)^2 \cdot \left(\frac{bx}{\sin(bx)}\right)^2 \cdot \frac{-a^2}{b^2} \left(\cos(bx) + 1\right) = 1 = 1^2 \cdot 1^2 \cdot \frac{-a^2}{b^2} \cdot (1 + 1) = -\frac{2a^2}{b^2}$$

3. (4 points) Choose the values of the parameters $a, b \in \mathbb{R}$ so that the following function be continuous on \mathbb{R} :

$$f(x) = \begin{cases} \frac{\cos^2 x - a}{x} & \text{if } x < 0\\ \sin^2 \frac{\pi(x+b)}{2} & \text{if } x \ge 0 \end{cases}$$

Solution. f is continuous if $x \neq 0$ for all $a, b \in \mathbb{R}$.

At x = 0 the function f will be continuous if and only if $\lim_{x\to 0-0} f(x) = \lim_{x\to 0+0} f(x) = f(0)$

(1)
$$\frac{\cos^2 x - a}{x} = \frac{(\cos^2 x - 1) + (1 - a)}{x} = \frac{(\cos^2 x - 1)}{x} + \frac{1 - a}{x} = \frac{-\sin^2 x}{x} + \frac{1 - a}{x}$$

•
$$\lim_{x \to 0} \frac{-\sin^2 x}{x} = \lim_{x \to 0} \frac{\sin x}{x} (-\sin x) = 1 \cdot 0 = 0$$

•
$$\frac{1-a}{x} = 0$$
, if $a = 1$ and $\lim_{x \to 0 \pm 0} \frac{1-a}{x} = \pm \infty$, if $a \neq 1$

 \implies f has a finite limit at 0 from the left if and only if a = 1 and then $\lim_{x \to a} f(x) = 0$

(2)
$$\lim_{x \to 0+0} f(x) = \lim_{x \to 0+0} \sin^2 \frac{\pi(x+b)}{2} = \sin^2 \frac{\pi b}{2}$$

f is continuous at $x = 0 \iff \sin^2 \frac{\pi b}{2} = 0 \iff \frac{\pi b}{2} = k \pi$ ($k \in \mathbb{Z}$) $\iff b = 2k$, where $k \in \mathbb{Z}$. Therefore *f* is continuous on \mathbb{R} if and only if a = 1 and b = 2k, where $k \in \mathbb{Z}$.

4. (3 points) Are the following statements true or false? Give a reason for your answer.

- **a)** There exists a continuous function $f: (-1, 1) \rightarrow \mathbb{R}$ whose range is [0, 1].
- **b)** There exists a continuous function $f : [-1, 1] \rightarrow \mathbb{R}$ whose range is (0, 1).
- c) There exists a continuous function $f : [-1, 1] \rightarrow \mathbb{R}$ whose range is $[1, 2] \cup [4, 5]$.

Solution.

a) True. For example:
$$f(x) = \begin{cases} 0, & \text{if } -1 < x \le 0\\ 2x, & \text{if } 0 < x \le \frac{1}{2}\\ 1, & \text{if } \frac{1}{2} < x < 1 \end{cases}$$

b) False. It follows from the intermediate value theorem and the extreme value theorem that if *f* is continuous on [-1, 1], then the range of *f* is a closed and bounded interval.

c) False. By the previous two theorems, the range of f must be a closed and bounded interval.

5. (5 points) Determine the points of discontinuities of the following functions. What type of discontinuities are these?

a)
$$f(x) = e^{-\frac{1}{x^2}}$$
 b) $g(x) = \frac{1}{1 - e^x}$ c) $h(x) = \frac{1}{1 - e^x}$

Solution.

a)
$$\lim_{x \to 0+0} e^{-\frac{1}{x^2}} = \lim_{x \to 0-0} e^{-\frac{1}{x^2}} = e^{-\infty} = 0$$

 $\implies f$ has a removable discontinuity at $x = 0$.
b) $\lim_{x \to 0+0} \frac{1}{1 - e^x} = \frac{1}{0 - } = -\infty$, $\lim_{x \to 0-0} \frac{1}{1 - e^x} = \frac{1}{0 + } = +\infty$
 $\implies f$ has an essential discontinuity at $x = 0$
c) $\lim_{x \to 0+0} \frac{1}{1 - e^{\frac{1}{x}}} = \frac{1}{1 - e^{\infty}} = \frac{1}{-\infty} = 0$, $\lim_{x \to 0-0} \frac{1}{1 - e^{\frac{1}{x}}} = \frac{1}{1 - e^{-\infty}} = \frac{1}{1 - 0} = 1$
 $\implies f$ has a jump continuity at $x = 0$

6. (3 points) Let $f(x) = e^{-x} \cos(\pi x) + x^3 - 4$. Prove that f has a zero in the open interval (0, 2).

Solution.

f(0) = 1 + 0 - 4 = -3 < 0 and $f(2) = e^{-2} + 8 - 4 > 0$, so by the intermediate value theorem (or Bolzano's theorem) there exists $c \in (0, 2)$ such that f(c) = 0.

7.* (4 points) Prove that if *f* is continuous on $[a, \infty)$ and $\exists \lim_{x \to \infty} f(x) = A \in \mathbb{R}$ then *f* is uniformly continuous on $[a, \infty)$.

Solution. Let $\varepsilon > 0$ be fixed. Since $\exists \lim f(x) = A \in \mathbb{R}$ then there exists P > 0 such that

 $\text{if } x > P \text{ then } \left| f(x) - A \right| < \frac{\varepsilon}{2}.$

f is continuous, so it is uniformly continuous on the compact interval [*a*, *P* + 1]. Let $0 < \delta < 1$ such that if $x, y \in [a, P + 1]$ and $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$.

Now let $x, y \in [a, \infty)$ such that $|x - y| < \delta$. Then either $x, y \in [a, P + 1]$ or x, y > P. $(x \le P, y > P + 1 \text{ is not possible since their distance is less than 1.)$ If $x, y \in [a, P + 1]$ then $|f(x) - f(y)| < \varepsilon$. If x, y > P then $|f(x) - f(y)| \le |f(x) - A| + |A - f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.