Calculus 1 - Homework 2.

1. (3+3 points) Calculate the limit of the following sequences:
a) $a_{n}=\left(\frac{3 n+4}{3 n+7}\right)^{2 n}$
b) $a_{n}=\left(\frac{n^{2}+2 n}{n^{2}+2}\right)^{n^{2}}$
2. ($\mathbf{3 + 3}$ points) Calculate the limit of the following sequences it if exists:
a) $a_{n}=\sqrt[n]{\frac{n^{3}-4 n^{2}+8}{n^{4}+3 n^{3}-7 n}}$
b) $a_{n}=\sqrt[n]{3^{n}+5^{(-1)^{n} \cdot n}}$
3. (5 points) Let $a_{1}=3$ and $a_{n+1}=\sqrt[3]{5 a_{n}^{2}-4 a_{n}}$ for all $n \in \mathbb{N}$. Investigate the convergence of $\left(a_{n}\right)$.
4. (3 points) Evaluate the sum of the following series: $\sum_{n=1}^{\infty} \frac{2^{3 n+1}+(-5)^{n-1}}{3^{2 n+1}}$
5. ($3+3$ points) Decide whether the following series are convergent or divergent:
a) $\sum_{n=1}^{\infty} \frac{3 n^{2}+\sqrt{n}+2}{2 n^{6}-n^{4}+3 n}$
b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n^{10}+6 n+1}}$
6. * (4 points) Calculate the limit of the following sequence if it exists:
$x_{n}=\sqrt[n^{2}]{(2 n+1)!-(2 n)!}$
