Calculus 1 - Homework 2.

- 1. (3+3 points) Calculate the limit of the following sequences:
- **a)** $a_n = \left(\frac{3n+4}{3n+7}\right)^{2n}$ **b)** $a_n = \left(\frac{n^2+2n}{n^2+2}\right)^{n^2}$
- 2. (3+3 points) Calculate the limit of the following sequences it if exists:

a)
$$a_n = \sqrt[n]{\frac{n^3 - 4n^2 + 8}{n^4 + 3n^3 - 7n}}$$
 b) $a_n = \sqrt[n]{3^n + 5^{(-1)^n \cdot n}}$

3. (5 points) Let $a_1 = 3$ and $a_{n+1} = \sqrt[3]{5 a_n^2 - 4 a_n}$ for all $n \in \mathbb{N}$. Investigate the convergence of (a_n) .

4. (3 points) Evaluate the sum of the following series: $\sum_{n=1}^{\infty} \frac{2^{3n+1} + (-5)^{n-1}}{3^{2n+1}}$

- 5. (3+3 points) Decide whether the following series are convergent or divergent:
- **a)** $\sum_{n=1}^{\infty} \frac{3n^2 + \sqrt{n} + 2}{2n^6 n^4 + 3n}$ **b)** $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n^{10} + 6n + 1}}$
- 6.* (4 points) Calculate the limit of the following sequence if it exists:

$$x_n = \sqrt[n^2]{(2n+1)! - (2n)!}$$

Deadline: October 18th