Calculus 1 - Homework 2.

- 1. (3+3 points) Calculate the limit of the following sequences:
- **a)** $a_n = \left(\frac{3n+4}{3n+7}\right)^{2n}$ **b)** $a_n = \left(\frac{n^2+2n}{n^2+2}\right)^{n^2}$
- 2. (3+3 points) Calculate the limit of the following sequences it if exists:

a)
$$a_n = \sqrt[n]{\frac{n^3 - 4n^2 + 8}{n^4 + 3n^3 - 7n}}$$
 b) $a_n = \sqrt[n]{3^n + 5^{(-1)^n \cdot n}}$

3. (5 points) Let $a_1 = 3$ and $a_{n+1} = \sqrt[3]{5 a_n^2 - 4 a_n}$ for all $n \in \mathbb{N}$. Investigate the convergence of (a_n) .

4. (3 points) Evaluate the sum of the following series: $\sum_{n=1}^{\infty} \frac{2^{3n+1} + (-5)^{n-1}}{3^{2n+1}}$

- 5. (3+3 points) Decide whether the following series are convergent or divergent:
- **a)** $\sum_{n=1}^{\infty} \frac{3n^2 + \sqrt{n} + 2}{2n^6 n^4 + 3n}$ **b)** $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n^{10} + 6n + 1}}$
- 6.* (4 points) Calculate the limit of the following sequence if it exists:

$$x_n = \sqrt[n^2]{(2n+1)! - (2n)!}$$

Deadline: October 18th

Solutions

1. (3+3 points) Calculate the limit of the following sequences: **a)** $a_n = \left(\frac{3n+4}{3n+7}\right)^{2n}$ **b)** $a_n = \left(\frac{n^2+2n}{n^2+2}\right)^{n^2}$

Solution.

a)
$$a_n = \left(\frac{1+\frac{4}{3n}}{1+\frac{7}{3n}}\right)^{2n} = \frac{\left(\left(1+\frac{4}{3n}\right)^n\right)^2}{\left(\left(1+\frac{7}{3n}\right)^n\right)^2} \longrightarrow \frac{\left(e^{\frac{4}{3}}\right)^2}{\left(e^{\frac{7}{3}}\right)^2} = e^{\frac{8}{3}-\frac{14}{3}} = e^{-2}$$

b)
$$a_n = \frac{\left(1 + \frac{2}{n}\right)^{n^2}}{\left(1 + \frac{2}{n^2}\right)^{n^2}} \ge \frac{\left(\left(1 + \frac{2}{n}\right)^n\right)^n}{e^2} \ge \frac{3^n}{e^2} \longrightarrow \infty$$
, therefore $a_n \longrightarrow \infty$.

We use that since $\left(1 + \frac{2}{n}\right)^n \rightarrow e^2$, then the terms are greater then 3, if *n* is large enough.

2. (3+3 points) Calculate the limit of the following sequences it if exists:

a)
$$a_n = \sqrt[n]{\frac{n^3 - 4n^2 + 8}{n^4 + 3n^3 - 7n}}$$
 b) $a_n = \sqrt[n]{3^n + 5^{(-1)^n \cdot n}}$

Solution. a) An upper estimation:

$$a_n = \sqrt[n]{\frac{n^3 - 4n^2 + 8}{n^4 + 3n^3 - 7n}} \le \sqrt[n]{\frac{n^3 + 0 + 8n^3}{n^4 + 0 - \frac{1}{2}n^4}} = \sqrt[n]{\frac{9n^3}{\frac{1}{2}n^4}} = \sqrt[n]{\frac{18}{n}} = \frac{\sqrt[n]{18}}{\sqrt[n]{n}} \longrightarrow \frac{1}{1} = 1$$

The first estimation is true if $\frac{1}{2}n^4 \ge 7n$, that is, $n \ge 3$. A lower estimation:

$$a_n = \sqrt[n]{\frac{n^3 - 4n^2 + 8}{n^4 + 3n^3 - 7n}} \ge \sqrt[n]{\frac{n^3 - \frac{1}{2}n^3 + 0}{n^4 + 3n^4 + 0}} \ge \sqrt[n]{\frac{\frac{1}{2}n^3}{4n^4}} = \sqrt[n]{\frac{1}{8n}} = \frac{1}{\sqrt[n]{8} \cdot \sqrt[n]{n}} \longrightarrow \frac{1}{1 \cdot 1} = 1$$

The first estimation is true if $\frac{1}{2}n^3 \ge 4n^2$, that is, $n \ge 8$. So by the sandwich theorem $a_n \longrightarrow 1$.

b) If *n* is even, then
$$a_n = \sqrt[n]{3^n + 5^n}$$
, so
 $5 = \sqrt[n]{0 + 5^n} \le a_n \le \sqrt[n]{5^n + 5^n} = \sqrt[n]{2 \cdot 5^n} = \sqrt[n]{2} \cdot 5 \longrightarrow 1 \cdot 5 = 5$
If *n* is odd, then $a_n = \sqrt[n]{3^n + (\frac{1}{5})^n}$, so
 $3 = \sqrt[n]{3^n + 0} \le a_n \le \sqrt[n]{3^n + 3^n} = \sqrt[n]{2 \cdot 3^n} = \sqrt[n]{2} \cdot 3 \longrightarrow 1 \cdot 3 = 3$

Therefore, $\liminf a_n = 3$ and $\limsup a_n = 5$ so the $\liminf of a_n$ doesn't exist.

3. (5 points) Let $a_1 = 3$ and $a_{n+1} = \sqrt[3]{5 a_n^2 - 4 a_n}$ for all $n \in \mathbb{N}$. Investigate the convergence of (a_n) .

Solution. Let $A = \lim_{n \to \infty} a_n$, then the solutions of the equation $A = \sqrt[3]{5A^2 - 4A}$ are $A_1 = 0$, $A_2 = 1$, $A_3 = 4$. (1) By induction we show that $1 \le a_n \le 4$ for all $n \in \mathbb{N}$. If n = 1 then $1 \le a_1 = 3 \le 4$ holds. Assume that $1 \le a_n \le 4$. Then $1 \le a_n \le 4 \implies 1 \le 5a_n - 4 \le 16$ $\implies 1 \le a_n \cdot (5a_n - 4) = 5a_n^2 - 4a_n \le 64$ $\implies 1 \le \sqrt[3]{5a_n^2 - 4a_n} = a_{n+1} \le 4$. (2) We show that $a_n \le a_{n+1}$ for all $n \in \mathbb{N}$. $a_n \le a_{n+1} \iff a_n^3 \le 5a_n^2 - 4a_n \iff$ $a_n^3 - 5a_n^2 + 4a_n = a_n(a_n^2 - 5a_n + 4) = a_n(a_n - 1)(a_n - 4) \le 0$. This holds for all $n \in \mathbb{N}$, since $a_n > 0$ and $1 \le a_n \le 4$. We showed that (a_n) is monotonically increasing and bounded, so it is convergent.

Since (a_n) is monotonically increasing, then $A \ge a_1 = 3$, so $A_1 = 0$, and $A_2 = 1$ cannot be the limit, and thus $\lim_{n \to \infty} a_n = 4$.

4. (3 points) Evaluate the sum of the following series: $\sum_{n=1}^{\infty} \frac{2^{3n+1} + (-5)^{n-1}}{3^{2n+1}}$

Solution. $\sum_{n=1}^{\infty} \frac{2^{3n+1} + (-5)^{n-1}}{3^{2n+1}} = \sum_{n=1}^{\infty} \left(\frac{2}{3} \cdot \left(\frac{8}{9}\right)^n - \frac{1}{15} \cdot \left(-\frac{5}{9}\right)^n\right) = \frac{2}{3} \cdot \frac{\frac{8}{9}}{1 - \frac{8}{9}} - \frac{1}{15} \cdot \frac{-\frac{5}{9}}{1 + \frac{5}{9}} = \frac{75}{14}$

5. (3+3 points) Decide whether the following series are convergent or divergent:

a)
$$\sum_{n=1}^{\infty} \frac{3n^2 + \sqrt{n} + 2}{2n^6 - n^4 + 3n}$$
 b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n^{10} + 6n + 1}}$

Solution.

a) $0 < a_n = \frac{3n^2 + \sqrt{n} + 2}{2n^6 - n^4 + 3n} \le \frac{3n^2 + n^2 + 2n^2}{2n^6 - n^6 + 0} = \frac{6}{n^4}$ and $\sum_{n=1}^{\infty} \frac{6}{n^4}$ is convergent, so by the comparison test the series $\sum_{n=1}^{\infty} a_n$ is also convergent.

b)
$$1 \le b_n = \sqrt[n]{n^{10} + 6n + 1} \le \sqrt[n]{n^{10} + 6n^{10} + n^{10}} = \sqrt[n]{8n^{10}} = \sqrt[n]{8} \cdot \left(\sqrt[n]{n}\right)^{10} \longrightarrow 1,$$

so by the sandwich theorem $b_n \longrightarrow 1$. Then $a_n = \frac{1}{b_n} = \frac{1}{\sqrt[n]{n^{10} + 6n + 1}} \longrightarrow 1.$
Since $\lim_{n \to \infty} a_n \ne 0$ then by the *n*th term test the series $\sum_{n=1}^{\infty} a_n$ is divergent.

6.* (4 points) Calculate the limit of the following sequence if it exists:

$$x_n = \sqrt[n^2]{(2n+1)! - (2n)!}$$

Solution. We use the following:

- (a) $(2n+1)! (2n)! = (2n)! \cdot (2n+1-1) = (2n)! \cdot 2n$
- (b) $(2n)! = 1 \cdot 2 \cdot 3 \cdot ... \cdot (2n) \le (2n) \cdot (2n) \cdot (2n) \cdot ... \cdot (2n) = (2n)^{2n}$ $\implies (2n)! \le (2n)^{2n}$
- (c) Since $\sqrt[n]{2} \rightarrow 1$ and $\sqrt[n]{n} \rightarrow 1$ then $\sqrt[n]{2} \leq 2$ and $\sqrt[n]{n} \leq 2$, if *n* is large enough.

$$1 \le x_n = \sqrt[n^2]{(2n+1)! - (2n)!} = \sqrt[n^2]{2n \cdot (2n)!} \le \sqrt[n^2]{2n \cdot (2n)^{2n}} = \sqrt[n^2]{\sqrt[n^2]{2n}} \cdot \sqrt[n^2]{\sqrt[n^2]{2n}} \le \sqrt[n^2]{2\cdot 2} \cdot \sqrt[n^2]{4n^2} = \sqrt[n^2]{4} \cdot \sqrt[n^2]{4} \cdot (\sqrt[n^2]{n})^2 \longrightarrow 1 \cdot 1 \cdot 1^2 = 1$$

Therefore, because of the sandwich theorem, $x_n \rightarrow 1$.