Calculus 1 - Homework 2.

1. $(3+3$ points) Calculate the limit of the following sequences:
a) $a_{n}=\left(\frac{3 n+4}{3 n+7}\right)^{2 n}$
b) $a_{n}=\left(\frac{n^{2}+2 n}{n^{2}+2}\right)^{n^{2}}$
2. (3+3 points) Calculate the limit of the following sequences it if exists:
a) $a_{n}=\sqrt[n]{\frac{n^{3}-4 n^{2}+8}{n^{4}+3 n^{3}-7 n}}$
b) $a_{n}=\sqrt[n]{3^{n}+5^{(-1)^{n} \cdot n}}$
3. (5 points) Let $a_{1}=3$ and $a_{n+1}=\sqrt[3]{5 a_{n}^{2}-4 a_{n}}$ for all $n \in \mathbb{N}$. Investigate the convergence of $\left(a_{n}\right)$.
4. (3 points) Evaluate the sum of the following series: $\sum_{n=1}^{\infty} \frac{2^{3 n+1}+(-5)^{n-1}}{3^{2 n+1}}$
5. (3+3 points) Decide whether the following series are convergent or divergent:
a) $\sum_{n=1}^{\infty} \frac{3 n^{2}+\sqrt{n}+2}{2 n^{6}-n^{4}+3 n}$
b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n^{10}+6 n+1}}$
6.* (4 points) Calculate the limit of the following sequence if it exists:
$x_{n}=\sqrt[n^{2}]{(2 n+1)!-(2 n)!}$

Deadline: October 18th

Solutions

1. $(3+3$ points) Calculate the limit of the following sequences:
a) $a_{n}=\left(\frac{3 n+4}{3 n+7}\right)^{2 n}$
b) $a_{n}=\left(\frac{n^{2}+2 n}{n^{2}+2}\right)^{n^{2}}$

Solution.

a) $a_{n}=\left(\frac{1+\frac{4}{3 n}}{1+\frac{7}{3 n}}\right)^{2 n}=\frac{\left(\left(1+\frac{4}{3 n}\right)^{n}\right)^{2}}{\left(\left(1+\frac{7}{3 n}\right)^{n}\right)^{2}} \rightarrow \frac{\left(e^{\frac{4}{3}}\right)^{2}}{\left(e^{\frac{7}{3}}\right)^{2}}=e^{\frac{8}{3}-\frac{14}{3}}=e^{-2}$
b) $a_{n}=\frac{\left(1+\frac{2}{n}\right)^{n^{2}}}{\left(1+\frac{2}{n^{2}}\right)^{n^{2}}} \geq \frac{\left(\left(1+\frac{2}{n}\right)^{n}\right)^{n}}{e^{2}} \geq \frac{3^{n}}{e^{2}} \rightarrow \infty$, therefore $a_{n} \rightarrow \infty$.

We use that since $\left(1+\frac{2}{n}\right)^{n} \rightarrow e^{2}$, then the terms are greater then 3, if n is large enough.
2. ($\mathbf{3 + 3}$ points) Calculate the limit of the following sequences it if exists:
a) $a_{n}=\sqrt[n]{\frac{n^{3}-4 n^{2}+8}{n^{4}+3 n^{3}-7 n}}$
b) $a_{n}=\sqrt[n]{3^{n}+5^{(-1)^{n} \cdot n}}$

Solution. a) An upper estimation:
$a_{n}=\sqrt[n]{\frac{n^{3}-4 n^{2}+8}{n^{4}+3 n^{3}-7 n}} \leq \sqrt[n]{\frac{n^{3}+0+8 n^{3}}{n^{4}+0-\frac{1}{2} n^{4}}}=\sqrt[n]{\frac{9 n^{3}}{\frac{1}{2} n^{4}}}=\sqrt[n]{\frac{18}{n}}=\frac{\sqrt[n]{18}}{\sqrt[n]{n}} \rightarrow \frac{1}{1}=1$
The first estimation is true if $\frac{1}{2} n^{4} \geq 7 n$, that is, $n \geq 3$.
A lower estimation:
$a_{n}=\sqrt[n]{\frac{n^{3}-4 n^{2}+8}{n^{4}+3 n^{3}-7 n}} \geq \sqrt[n]{\frac{n^{3}-\frac{1}{2} n^{3}+0}{n^{4}+3 n^{4}+0}} \geq \sqrt[n]{\frac{\frac{1}{2} n^{3}}{4 n^{4}}}=\sqrt[n]{\frac{1}{8 n}}=\frac{1}{\sqrt[n]{8} \cdot \sqrt[n]{n}} \rightarrow \frac{1}{1 \cdot 1}=1$
The first estimation is true if $\frac{1}{2} n^{3} \geq 4 n^{2}$, that is, $n \geq 8$.
So by the sandwich theorem $a_{n} \longrightarrow 1$.
b) If n is even, then $a_{n}=\sqrt[n]{3^{n}+5^{n}}$, so
$5=\sqrt[n]{0+5^{n}} \leq a_{n} \leq \sqrt[n]{5^{n}+5^{n}}=\sqrt[n]{2 \cdot 5^{n}}=\sqrt[n]{2} \cdot 5 \longrightarrow 1 \cdot 5=5$
If n is odd, then $a_{n}=\sqrt[n]{3^{n}+\left(\frac{1}{5}\right)^{n}}$, so
$3=\sqrt[n]{3^{n}+0} \leq a_{n} \leq \sqrt[n]{3^{n}+3^{n}}=\sqrt[n]{2 \cdot 3^{n}}=\sqrt[n]{2} \cdot 3 \longrightarrow 1 \cdot 3=3$

Therefore, $\liminf a_{n}=3$ and limsup $a_{n}=5$ so the limit of a_{n} doesn't exist.
3. (5 points) Let $a_{1}=3$ and $a_{n+1}=\sqrt[3]{5 a_{n}^{2}-4 a_{n}}$ for all $n \in \mathbb{N}$. Investigate the convergence of $\left(a_{n}\right)$.

Solution. Let $A=\lim _{n \rightarrow \infty} a_{n}$, then the solutions of the equation $A=\sqrt[3]{5 A^{2}-4 A}$ are $A_{1}=0, A_{2}=1, A_{3}=4$.
(1) By induction we show that $1 \leq a_{n} \leq 4$ for all $n \in \mathbb{N}$.

If $n=1$ then $1 \leq a_{1}=3 \leq 4$ holds.
Assume that $1 \leq a_{n} \leq 4$. Then
$1 \leq a_{n} \leq 4 \Longrightarrow 1 \leq 5 a_{n}-4 \leq 16$

$$
\Longrightarrow 1 \leq a_{n} \cdot\left(5 a_{n}-4\right)=5 a_{n}^{2}-4 a_{n} \leq 64
$$

$\Rightarrow 1 \leq \sqrt[3]{5 a_{n}^{2}-4 a_{n}}=a_{n+1} \leq 4$.
(2) We show that $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$.
$a_{n} \leq a_{n+1} \Longleftrightarrow a_{n}^{3} \leq 5 a_{n}^{2}-4 a_{n} \Longleftrightarrow$
$a_{n}^{3}-5 a_{n}^{2}+4 a_{n}=a_{n}\left(a_{n}^{2}-5 a_{n}+4\right)=a_{n}\left(a_{n}-1\right)\left(a_{n}-4\right) \leq 0$.
This holds for all $n \in \mathbb{N}$, since $a_{n}>0$ and $1 \leq a_{n} \leq 4$.

We showed that $\left(a_{n}\right)$ is monotonically increasing and bounded, so it is convergent.
Since $\left(a_{n}\right)$ is monotonically increasing, then $A \geq a_{1}=3$, so $A_{1}=0$, and $A_{2}=1$ cannot be the limit, and thus $\lim _{n \rightarrow \infty} a_{n}=4$.
4. (3 points) Evaluate the sum of the following series: $\sum_{n=1}^{\infty} \frac{2^{3 n+1}+(-5)^{n-1}}{3^{2 n+1}}$

Solution. $\sum_{n=1}^{\infty} \frac{2^{3 n+1}+(-5)^{n-1}}{3^{2 n+1}}=\sum_{n=1}^{\infty}\left(\frac{2}{3} \cdot\left(\frac{8}{9}\right)^{n}-\frac{1}{15} \cdot\left(-\frac{5}{9}\right)^{n}\right)=\frac{2}{3} \cdot \frac{\frac{8}{9}}{1-\frac{8}{9}}-\frac{1}{15} \cdot \frac{-\frac{5}{9}}{1+\frac{5}{9}}=\frac{75}{14}$
5. (3+3 points) Decide whether the following series are convergent or divergent:
a) $\sum_{n=1}^{\infty} \frac{3 n^{2}+\sqrt{n}+2}{2 n^{6}-n^{4}+3 n}$
b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n^{10}+6 n+1}}$

Solution.

a) $0<a_{n}=\frac{3 n^{2}+\sqrt{n}+2}{2 n^{6}-n^{4}+3 n} \leq \frac{3 n^{2}+n^{2}+2 n^{2}}{2 n^{6}-n^{6}+0}=\frac{6}{n^{4}}$ and $\sum_{n=1}^{\infty} \frac{6}{n^{4}}$ is convergent, so by the comparison test the series $\sum_{n=1}^{\infty} a_{n}$ is also convergent.
b) $1 \leq b_{n}=\sqrt[n]{n^{10}+6 n+1} \leq \sqrt[n]{n^{10}+6 n^{10}+n^{10}}=\sqrt[n]{8 n^{10}}=\sqrt[n]{8} \cdot(\sqrt[n]{n})^{10} \rightarrow 1$,
so by the sandwich theorem $b_{n} \rightarrow 1$. Then $a_{n}=\frac{1}{b_{n}}=\frac{1}{\sqrt[n]{n^{10}+6 n+1}} \rightarrow 1$.
Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then by the nth term test the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
6.* (4 points) Calculate the limit of the following sequence if it exists:

$$
x_{n}=\sqrt[n^{2}]{(2 n+1)!-(2 n)!}
$$

Solution. We use the following:
(a) $(2 n+1)!-(2 n)!=(2 n)!\cdot(2 n+1-1)=(2 n)!\cdot 2 n$
(b) $(2 n)!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot(2 n) \leq(2 n) \cdot(2 n) \cdot(2 n) \cdot \ldots \cdot(2 n)=(2 n)^{2 n}$

$$
\Longrightarrow(2 n)!\leq(2 n)^{2 n}
$$

(c) Since $\sqrt[n]{2} \rightarrow 1$ and $\sqrt[n]{n} \rightarrow 1$ then $\sqrt[n]{2} \leq 2$ and $\sqrt[n]{n} \leq 2$, if n is large enough.
$1 \leq x_{n}=\sqrt[n^{2}]{(2 n+1)!-(2 n)!}=\sqrt[n^{2}]{2 n \cdot(2 n)!} \leq \sqrt[n^{2}]{2 n \cdot(2 n)^{2 n}}=$
$=\sqrt[n]{\sqrt[n]{2} \cdot \sqrt[n]{n}} \cdot \sqrt[n]{\sqrt[n]{(2 n)^{2 n}}} \leq \sqrt[n]{2 \cdot 2} \cdot \sqrt[n]{4 n^{2}}=\sqrt[n]{4} \cdot \sqrt[n]{4} \cdot(\sqrt[n]{n})^{2} \rightarrow 1 \cdot 1 \cdot 1^{2}=1$
Therefore, because of the sandwich theorem, $x_{n} \rightarrow 1$.

