Calculus 1 - Homework 1.

1. (3 points) Decide whether the statement is true or false and write down the negation of the statement: $\forall r>0(\forall x \in \mathbb{R}(\exists q \in \mathbb{Q}(|x-q|<r)))$.
2. (4 points) Let $a_{0}=5$ and $a_{n+1}=8-\frac{12}{a_{n}}$. Prove that $\forall n \in \mathbb{N}\left(2 \leq a_{n} \leq 6\right)$.
3. (4 points) What is the maximum value of $x y$ if $x, y \geq 0$ and $2 x+3 y=10$?
4. (4 points) Given a right angled triangle, its sides are a, b and c where c is the hypotenuse. Prove that $a+b \leq \sqrt{2} \cdot c$. When does equality hold?
5. (4 points) Let $a_{n}=\frac{6 n^{4}-n^{3}+100}{2 n^{4}+n-1000}$. Find the limit of a_{n} and provide a threshold index N for $\varepsilon=0.01$.
6. (3 points) Prove that if $\lim _{n \rightarrow \infty} a_{n}=\infty$, then $\lim _{n \rightarrow \infty} \sqrt[k]{a_{n}}=\infty$ for all $k \in \mathbb{N}$.
7. (3 points) Find the limit of the sequence $a_{n}=\sqrt{n^{2}+n-2}-\sqrt{n^{2}-2 n+3}$.

Deadline: September 27th

