Calculus 1 - Homework 1.

1. (3 points) Decide whether the statement is true or false and write down the negation of the statement: $\forall r > 0$ ($\forall x \in \mathbb{R} (\exists q \in \mathbb{Q} (|x-q| < r)))$).

2. (4 points) Let $a_0 = 5$ and $a_{n+1} = 8 - \frac{12}{a_n}$. Prove that $\forall n \in \mathbb{N}$ $(2 \le a_n \le 6)$.

3. (4 points) What is the maximum value of xy if $x, y \ge 0$ and 2x + 3y = 10?

4. (4 points) Given a right angled triangle, its sides are *a*, *b* and *c* where *c* is the hypotenuse. Prove that $a + b \le \sqrt{2} \cdot c$. When does equality hold?

5. (4 points) Let $a_n = \frac{6n^4 - n^3 + 100}{2n^4 + n - 1000}$. Find the limit of a_n and provide a threshold index N for $\varepsilon = 0.01$.

6. (3 points) Prove that if $\lim_{n\to\infty} a_n = \infty$, then $\lim_{n\to\infty} \sqrt[k]{a_n} = \infty$ for all $k \in \mathbb{N}$.

7. (3 points) Find the limit of the sequence $a_n = \sqrt{n^2 + n - 2} - \sqrt{n^2 - 2n + 3}$.

Deadline: September 27th