Calculus 1 - Homework 1.

1. (3 points) Decide whether the statement is true or false and write down the negation of the statement: $\forall r>0(\forall x \in \mathbb{R}(\exists q \in \mathbb{Q}(|x-q|<r)))$.
2. (4 points) Let $a_{0}=5$ and $a_{n+1}=8-\frac{12}{a_{n}}$. Prove that $\forall n \in \mathbb{N}\left(2 \leq a_{n} \leq 6\right)$.
3. (4 points) What is the maximum value of $x y$ if $x, y \geq 0$ and $2 x+3 y=10$?
4. (4 points) Given a right angled triangle, its sides are a, b and c where c is the hypotenuse. Prove that $a+b \leq \sqrt{2} \cdot c$. When does equality hold?
5. (4 points) Let $a_{n}=\frac{6 n^{4}-n^{3}+100}{2 n^{4}+n-1000}$. Find the limit of a_{n} and provide a threshold index N for $\varepsilon=0.01$.
6. (3 points) Prove that if $\lim _{n \rightarrow \infty} a_{n}=\infty$, then $\lim _{n \rightarrow \infty} \sqrt[k]{a_{n}}=\infty$ for all $k \in \mathbb{N}$.
7. (3 points) Find the limit of the sequence $a_{n}=\sqrt{n^{2}+n-2}-\sqrt{n^{2}-2 n+3}$.

Deadline: September 27th

Solutions

1. (3 points) Decide whether the statement is true or false and write down the negation of the statement: $\forall r>0(\forall x \in \mathbb{R}(\exists q \in \mathbb{Q}(|x-q|<r)))$.

Solution. True. Negation: $\exists r>0(\exists x \in \mathbb{R}(\forall q \in \mathbb{Q}(|x-q| \geq r)))$
2. (4 points) Let $a_{0}=5$ and $a_{n+1}=8-\frac{12}{a_{n}}$. Prove that $\forall n \in \mathbb{N}\left(2 \leq a_{n} \leq 6\right)$.

Solution: By the method of induction:
I. The statement is true for $n=0: 2 \leq a_{0}=3 \leq 6$
II. Assume that $2<a_{n}<6$. Then
$2 \leq a_{n} \leq 6 \Longrightarrow \frac{1}{6} \leq \frac{1}{a_{n}} \leq \frac{1}{2} \Longrightarrow 2 \leq \frac{12}{a_{n}} \leq 6 \Longrightarrow-2 \geq-\frac{12}{a_{n}} \geq-6$
$\Rightarrow 2 \leq 8-\frac{12}{a_{n}}=a_{n+1} \leq 6$.
3. (4 points) What is the maximum value of $x y$ if $x, y \geq 0$ and $2 x+3 y=10$?

Solution: We apply the inequality of arithmetic and geometric means for $a=2 x$ and $b=3 y$. Then $\sqrt{2 x \cdot 3 y} \leq \frac{2 x+3 y}{2}=\frac{10}{2}=5 \Rightarrow 6 x y \leq 25 \Rightarrow x y \leq \frac{25}{6}$. Thus the maximum of $x y$ is $\frac{25}{6}$ and equality holds if and only if $2 x=3 y$ and $2 x+3 y=10$ from where $x=\frac{5}{2}$ and $y=\frac{5}{3}$.
4. (4 points) Given a right angled triangle, its sides are a, b and c where c is the hypotenuse.

Prove that $a+b \leq \sqrt{2} \cdot c$. When does equality hold?
Solution: By the Pythagorean theorem $c=a^{2}+b^{2}$. Apply the inequality of arithmetic and quadratic means for a and b, then $\frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}=\sqrt{\frac{c^{2}}{2}} \Rightarrow a+b \leq \sqrt{2} \cdot c$.
Equality holds if and only if $a=b$, that is, for isosceles triangles.
5. (4 points) Let $a_{n}=\frac{6 n^{4}-n^{3}+100}{2 n^{4}+n-1000}$. Find the limit of a_{n} and provide a threshold index N for $\varepsilon=0.01$.

Solution. $a_{n}=\frac{6 n^{4}-n^{3}+100}{2 n^{4}+n-1000}=\frac{n^{4}}{n^{4}} \frac{6-\frac{1}{n}+\frac{100}{n^{4}}}{2-\frac{1}{n^{3}}-\frac{1000}{n^{4}}} \rightarrow \frac{6-0+0}{2-0-0}=3$.

Let $\varepsilon>0$ be fixed. By the definition we have to provide a threshold index $N(\varepsilon) \in \mathbb{N}$ such that if $n>N(\varepsilon)$ then $\left|a_{n}-A\right|<\varepsilon$.
$\left|a_{n}-A\right|=\left|\frac{6 n^{4}-n^{3}+100}{2 n^{4}+n-1000}-3\right|=\left|\frac{6 n^{4}-n^{3}+100-3\left(2 n^{4}+n-1000\right)}{2 n^{4}+n-1000}\right|=$
$=\left|\frac{-n^{3}-3 n+3100}{2 n^{4}+n-1000}\right|=\left|\frac{n^{3}+3 n-3100}{2 n^{4}+n-1000}\right|$

It can be seen that if n is large enough, then both the numerator and the denominator are positive, so we can leave out the absolute value.

If $n \geq N_{1}$, then $n^{3}+3 n-3100>0$ (for example, $N_{1}=20$ or $N_{1}=100$ etc.)
If $n \geq N_{2}$, then $2 n^{4}+n-1000>0$ (for example, $N_{2}=10$ or $N_{2}=100$ etc.)
Therefore,

$$
\left|\frac{n^{3}+3 n-3100}{2 n^{4}+n-1000}\right| \stackrel{n>N_{1}, n>N_{2}}{=} \frac{n^{3}+3 n-3100}{2 n^{4}+n-1000}<\frac{n^{3}+3 n^{3}+0}{2 n^{4}+0-n^{4}}=\frac{4 n^{3}}{n^{4}}=\frac{4}{n}<\varepsilon \Longleftrightarrow n>\frac{4}{\varepsilon} .
$$

In the estimation we increase the terms in the numerator and decrease the terms in the denominator.
We used that $n^{4}>1000$ if $n>\sqrt[4]{1000} \approx 5.62$

So with the choice $N(\varepsilon) \geq \max \left\{N_{1}, N_{2}, 6,\left[\frac{4}{\varepsilon}\right]\right\}$ the definition holds.
If $\varepsilon=0.01$ then $N(\varepsilon) \geq 400$.
6. (3 points) Prove that if $\lim _{n \rightarrow \infty} a_{n}=\infty$, then $\lim _{n \rightarrow \infty} \sqrt[k]{a_{n}}=\infty$ for all $k \in \mathbb{N}$.

Solution. Let $P>0$ be arbitrary. Since $\lim _{n \rightarrow \infty} a_{n}=\infty$ then for P^{k} there exists $N \in \mathbb{N}$ such that $a_{n}>P^{k}$ if $n>N$. Then $\sqrt[k]{a_{n}}>P$ if $n>N$ also holds, so by the definition $\lim _{n \rightarrow \infty} \sqrt[k]{a_{n}}=\infty$.
7. (3 points) Find the limit of the sequence $a_{n}=\sqrt{n^{2}+n-2}-\sqrt{n^{2}-2 n+3}$.

Solution. $a_{n}=(\alpha-\beta) \cdot \frac{\alpha+\beta}{\alpha+\beta}=\frac{\alpha^{2}-\beta^{2}}{\alpha+\beta}=\frac{\left(n^{2}+n-2\right)-\left(n^{2}-2 n+3\right)}{\sqrt{n^{2}+n-2}+\sqrt{n^{2}-2 n+3}}=$

$$
=\frac{3 n-5}{\sqrt{n^{2}\left(1+\frac{1}{n}-\frac{2}{n^{2}}\right)}+\sqrt{n^{2}\left(1-\frac{2}{n}+\frac{3}{n^{2}}\right)}}=\frac{n}{n} \cdot \frac{3-\frac{5}{n}}{\sqrt{1+\frac{1}{n}-\frac{2}{n^{2}}}+\sqrt{1-\frac{2}{n}+\frac{3}{n^{2}}}} \xrightarrow{n \rightarrow \infty}
$$

$$
\xrightarrow[n \rightarrow \infty]{ } \frac{3-0}{\sqrt{1+0-0}+\sqrt{1-0+0}}=\frac{3}{2}
$$

