Calculus 1 - Homework 1.

1. (3 points) Decide whether the statement is true or false and write down the negation of the statement: $\forall r > 0$ ($\forall x \in \mathbb{R} (\exists q \in \mathbb{Q} (|x-q| < r)))$).

2. (4 points) Let $a_0 = 5$ and $a_{n+1} = 8 - \frac{12}{a_n}$. Prove that $\forall n \in \mathbb{N}$ $(2 \le a_n \le 6)$.

3. (4 points) What is the maximum value of xy if $x, y \ge 0$ and 2x + 3y = 10?

4. (4 points) Given a right angled triangle, its sides are *a*, *b* and *c* where *c* is the hypotenuse. Prove that $a + b \le \sqrt{2} \cdot c$. When does equality hold?

5. (4 points) Let $a_n = \frac{6n^4 - n^3 + 100}{2n^4 + n - 1000}$. Find the limit of a_n and provide a threshold index *N* for $\varepsilon = 0.01$.

6. (3 points) Prove that if $\lim_{n \to \infty} a_n = \infty$, then $\lim_{n \to \infty} \sqrt[k]{a_n} = \infty$ for all $k \in \mathbb{N}$.

7. (3 points) Find the limit of the sequence $a_n = \sqrt{n^2 + n - 2} - \sqrt{n^2 - 2n + 3}$.

Deadline: September 27th

Solutions

1. (3 points) Decide whether the statement is true or false and write down the negation of the statement: $\forall r > 0$ ($\forall x \in \mathbb{R} (\exists q \in \mathbb{Q} (|x-q| < r)))$).

Solution. True. Negation: $\exists r > 0 (\exists x \in \mathbb{R} (\forall q \in \mathbb{Q} (|x-q| \ge r)))$

2. (4 points) Let $a_0 = 5$ and $a_{n+1} = 8 - \frac{12}{a_n}$. Prove that $\forall n \in \mathbb{N}$ $(2 \le a_n \le 6)$.

Solution: By the method of induction:

I. The statement is true for n = 0: $2 \le a_0 = 3 \le 6$ II. Assume that $2 < a_n < 6$. Then $2 \le a_n \le 6 \Longrightarrow \frac{1}{6} \le \frac{1}{a_n} \le \frac{1}{2} \Longrightarrow 2 \le \frac{12}{a_n} \le 6 \Longrightarrow -2 \ge -\frac{12}{a_n} \ge -6$ $\Longrightarrow 2 \le 8 - \frac{12}{a_n} = a_{n+1} \le 6.$

3. (4 points) What is the maximum value of xy if $x, y \ge 0$ and 2x + 3y = 10?

Solution: We apply the inequality of arithmetic and geometric means for a = 2x and b = 3y. Then $\sqrt{2x \cdot 3y} \le \frac{2x + 3y}{2} = \frac{10}{2} = 5 \implies 6xy \le 25 \implies xy \le \frac{25}{6}$. Thus the maximum of xy is $\frac{25}{6}$ and equality holds if and only if 2x = 3y and 2x + 3y = 10 from where $x = \frac{5}{2}$ and $y = \frac{5}{3}$.

4. (4 points) Given a right angled triangle, its sides are *a*, *b* and *c* where *c* is the hypotenuse. Prove that $a + b \le \sqrt{2} \cdot c$. When does equality hold?

Solution: By the Pythagorean theorem $c = a^2 + b^2$. Apply the inequality of arithmetic and quadratic means for *a* and *b*, then $\frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}} = \sqrt{\frac{c^2}{2}} \implies a+b \le \sqrt{2} \cdot c$.

Equality holds if and only if a = b, that is, for isosceles triangles.

5. (4 points) Let $a_n = \frac{6n^4 - n^3 + 100}{2n^4 + n - 1000}$. Find the limit of a_n and provide a threshold index *N* for $\varepsilon = 0.01$.

Solution. $a_n = \frac{6n^4 - n^3 + 100}{2n^4 + n - 1000} = \frac{n^4}{n^4} \frac{6 - \frac{1}{n} + \frac{100}{n^4}}{2 - \frac{1}{n^3} - \frac{1000}{n^4}} \longrightarrow \frac{6 - 0 + 0}{2 - 0 - 0} = 3.$

Let $\varepsilon > 0$ be fixed. By the definition we have to provide a threshold index $N(\varepsilon) \in \mathbb{N}$ such that if $n > N(\varepsilon)$ then $|a_n - A| < \varepsilon$.

$$\mid a_n - A \mid = \left| \frac{6n^4 - n^3 + 100}{2n^4 + n - 1000} - 3 \right| = \left| \frac{6n^4 - n^3 + 100 - 3(2n^4 + n - 1000)}{2n^4 + n - 1000} \right| =$$
$$= \left| \frac{-n^3 - 3n + 3100}{2n^4 + n - 1000} \right| = \left| \frac{n^3 + 3n - 3100}{2n^4 + n - 1000} \right|$$

It can be seen that if *n* is large enough, then both the numerator and the denominator are positive, so we can leave out the absolute value.

If $n \ge N_1$, then $n^3 + 3n - 3100 > 0$ (for example, $N_1 = 20$ or $N_1 = 100$ etc.) If $n \ge N_2$, then $2n^4 + n - 1000 > 0$ (for example, $N_2 = 10$ or $N_2 = 100$ etc.) Therefore,

$$\left|\frac{n^3 + 3n - 3100}{2n^4 + n - 1000}\right| \stackrel{n > N_1, n > N_2}{=} \frac{n^3 + 3n - 3100}{2n^4 + n - 1000} < \frac{n^3 + 3n^3 + 0}{2n^4 + 0 - n^4} = \frac{4n^3}{n^4} = \frac{4}{n^3} < \varepsilon \iff n > \frac{4}{\varepsilon}.$$

In the estimation we increase the terms in the numerator and decrease the terms in the denominator.

We used that $n^4 > 1000$ if $n > \sqrt[4]{1000} \approx 5.62$

So with the choice $N(\varepsilon) \ge \max\left\{N_1, N_2, 6, \left[\frac{4}{\varepsilon}\right]\right\}$ the definition holds. If $\varepsilon = 0.01$ then $N(\varepsilon) \ge 400$.

6. (3 points) Prove that if $\lim_{n \to \infty} a_n = \infty$, then $\lim_{n \to \infty} \sqrt[k]{a_n} = \infty$ for all $k \in \mathbb{N}$.

Solution. Let P > 0 be arbitrary. Since $\lim_{n \to \infty} a_n = \infty$ then for P^k there exists $N \in \mathbb{N}$ such that $a_n > P^k$ if n > N. Then $\sqrt[k]{a_n} > P$ if n > N also holds, so by the definition $\lim_{n \to \infty} \sqrt[k]{a_n} = \infty$.

7. (3 points) Find the limit of the sequence $a_n = \sqrt{n^2 + n - 2} - \sqrt{n^2 - 2n + 3}$.

Solution.
$$a_n = (\alpha - \beta) \cdot \frac{\alpha + \beta}{\alpha + \beta} = \frac{\alpha^2 - \beta^2}{\alpha + \beta} = \frac{(n^2 + n - 2) - (n^2 - 2n + 3)}{\sqrt{n^2 + n - 2} + \sqrt{n^2 - 2n + 3}} =$$

$$= \frac{3n-5}{\sqrt{n^2\left(1+\frac{1}{n}-\frac{2}{n^2}\right)} + \sqrt{n^2\left(1-\frac{2}{n}+\frac{3}{n^2}\right)}} = \frac{n}{n} \cdot \frac{3-\frac{5}{n}}{\sqrt{1+\frac{1}{n}-\frac{2}{n^2}} + \sqrt{1-\frac{2}{n}+\frac{3}{n^2}}} \xrightarrow{n\to\infty}}$$

$$\xrightarrow{n\to\infty} \frac{3-0}{\sqrt{1+0-0} + \sqrt{1-0+0}} = \frac{3}{2}$$