Calculus 1, Final exam 3, Part 2

23rd January, 2023

Name:

\qquad Neptun code: \qquad
1.: \qquad 2.: \qquad 3.: \qquad 4.: \qquad 5.: \qquad 6.: \qquad 7.: \qquad 8.: \qquad Sum: \qquad

1. (10 points) Calculate the following limit: $\lim _{x \rightarrow 0} \frac{e^{3 x}-1-\sin (3 x)}{x \ln (2 x+1)}$
2. (5+5+5 points) Calculate the derivatives of the following functions:
a) $f:(0, \infty) \longrightarrow \mathbb{R}, f(x)=(\arctan (2 x))^{X}$
b) $f:(0, \infty) \longrightarrow \mathbb{R}, f(x)=e^{\sqrt{x}} \cdot \ln \left(\frac{x^{2}+1}{\cos x+3}\right)$
c) $f(x)= \begin{cases}x^{3} \cdot \cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

In case c), use the definition to calculate $f^{\prime}(0)$.
3. ($\mathbf{1 0}$ points) The sum of the lengths of the edges of a square prism is 1 m . What are the edge lengths of the prism with maximal volume? What is this maximal volume?
4. (15 points) Analyze the following function and sketch its graph: $f(x)=\frac{x}{x^{2}+3}$.
5. (10+10 points) Calculate the following integrals:
a) $I_{1}=\int x \arctan \left(x^{2}\right) d x$
b) $I_{2}=\int \sin (\sqrt{x}) \mathrm{dx} \quad$ (substitution: $t=\sqrt{x}$)
6. (10+10 points) Calculate the following integrals:
a) $I_{3}=\int \frac{4 x+1}{(x-4)\left(x^{2}+1\right)} d x$
b) $I_{4}=\int \frac{e^{x}}{e^{2 x}+4 e^{x}-5} \mathrm{dx}$ (substitution: $t=e^{x}$)
7. (10 points) Consider the function $f(x)=\frac{x}{\sqrt[4]{x^{3}+8}}$ on the interval $x \in[1,2]$. Rotate it around the x-axis and find the volume of the arising body.

8.* (10 points - BONUS)

The windows of a house are designed such that the bottom part is a rectangle and the upper part is a semicircle fitting the rectangle. The perimeter of a window is P. What should be the dimensions of the windows to let in as much light as possible?

Solutions

1. (10 points) Calculate the following limit: $\lim _{x \rightarrow 0} \frac{e^{3 x}-1-\sin (3 x)}{x \ln (2 x+1)}$

Solution. The limit has the form $\frac{0}{0}$, so the L'Hospital's rule can be applied:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{3 x}-1-\sin (3 x)}{x \ln (2 x+1)} \stackrel{0}{\circ}, L^{\prime} H \\
& =\frac{\lim _{x \rightarrow 0}}{} \frac{3 e^{3 x}-3 \cos (3 x)}{\ln (2 x+1)+\frac{2 x}{2 x+1}}(\mathbf{4 p}) \stackrel{0}{\stackrel{0}{0}} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow 0} \frac{9 e^{3 x}+9 \sin (3 x)}{\frac{2}{2 x+1}+\frac{2(2 x+1)-2 x \cdot 2}{(2 x+1)^{2}}} \\
& =\frac{9+0}{2+2}=\frac{9}{4} \text { (2p) }
\end{aligned}
$$

2. (5+5+5 points) Calculate the derivatives of the following functions:
a) $f:(0, \infty) \longrightarrow \mathbb{R}, f(x)=(\arctan (2 x))^{X}$
b) $f:(0, \infty) \longrightarrow \mathbb{R}, f(x)=e^{\sqrt{x}} \cdot \ln \left(\frac{x^{2}+1}{\cos x+3}\right)$
c) $f(x)= \begin{cases}x^{3} \cdot \cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

In case c), use the definition to calculate $f^{\prime}(0)$.
a) $f(x)=(\arctan (2 x))^{x}=e^{\ln \left(\left(\arctan (2 x)^{x}\right)\right.}=e^{x \ln (\arctan (2 x))}$
$\Longrightarrow f^{\prime}(x)=e^{x \ln (\arctan (2 x))} \cdot(x \ln (\arctan (2 x)))^{\prime}=$

$$
\begin{equation*}
=(\arctan (2 x))^{x} \cdot\left(\ln (\arctan (2 x))+x \cdot \frac{1}{\arctan (2 x)} \cdot \frac{1}{1+(2 x)^{2}} \cdot 2\right) \tag{5p}
\end{equation*}
$$

b) $f(x)=e^{\sqrt{x}} \cdot \ln \left(\frac{x^{2}+1}{\cos x+3}\right)$
$\Rightarrow f^{\prime}(x)=\frac{1}{2 \sqrt{x}} e^{\sqrt{x}} \cdot \ln \left(\frac{x^{2}+1}{\cos x+3}\right)+e^{\sqrt{x}} \cdot \frac{\cos x+3}{x^{2}+1} \cdot \frac{2 x(\cos x+3)-\left(x^{2}+1\right)(-\sin x)}{(\cos x+3)^{2}}$ (5p)
c) If $x \neq 0$ then $f^{\prime}(x)=3 x^{2} \cos \left(\frac{1}{x}\right)+x^{3} \cdot\left(-\sin \left(\frac{1}{x}\right)\right) \cdot \frac{-1}{x^{2}}$ (2p)

If $x=0$ then by the definition of the derivative
$f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{3} \cdot \cos \left(\frac{1}{x}\right)-0}{x-0}=\lim _{x \rightarrow 0} x^{2} \cdot \cos \left(\frac{1}{x}\right)=0$, since
the first term of the product tends to zero, and the second term is bounded. (3p)
3. ($\mathbf{1 0}$ points) The sum of the lengths of the edges of a square prism is 1 m . What are the edge lengths of the prism with maximal volume? What is this maximal volume?

Solution. Let x denote the side of the square base and let y denote the height of the prism.
Then the volume of the prism is $V=x^{2} y$ and the sum of the lengths of the edges is $8 x+4 y=1$.
From here $y=\frac{1-8 x}{4}$. Substituting this into the volume, we get that
$V(x)=x^{2} \cdot \frac{1-8 x}{4}=\frac{1}{4}\left(x^{2}-8 x^{3}\right)$.

We want to find the maximum of this function if $0<x<\frac{1}{8}$. (3p)
$V^{\prime}(x)=\frac{1}{4}\left(2 x-24 x^{2}\right)=\frac{1}{4} \cdot 2 x(1-12 x)=0 \Longleftrightarrow x_{1}=0, x_{2}=\frac{1}{12}$ (3p)
Because of the conditions, $x=0$ cannot be the case.
$V^{\prime \prime}(x)=\frac{1}{4}(2-48 x)$ and $V^{\prime \prime}\left(\frac{1}{12}\right)=\frac{1}{4}\left(2-48 \cdot \frac{1}{12}\right)=-\frac{1}{2}<0$, so V has a maximum at $x=\frac{1}{12}$. (2p)
The sides of the prism with maximal volume are $\frac{1}{12}, \frac{1}{12}$ and $\frac{1}{12} \mathrm{~m}$ (so it is a cube) and the maximum of the
volume is $\frac{1}{12^{3}} \mathrm{~m}^{3}$. (2p)
4. (15 points) Analyze the following function and sketch its graph: $f(x)=\frac{x}{x^{2}+3}$.

Solution.

1) The domain of f is $D_{f}=\mathbb{R}$.

The zeros of f are: $\frac{x}{x^{2}+3}=0 \Rightarrow x=0$
The limits of f at $\pm \infty$ are:
$\lim _{x \rightarrow \infty} f(x)=0, \lim _{x \rightarrow-\infty} f(x)=0$. (2p)
2) $f^{\prime}(x)=\frac{\left(x^{2}+3\right)-x \cdot 2 x}{\left(x^{2}+3\right)^{2}}=\frac{-x^{2}+3}{\left(x^{2}+3\right)^{2}}=0 \Rightarrow x_{1,2}= \pm \sqrt{3}$ (2p)

x	$x<-\sqrt{3}$	$x=-\sqrt{3}$	$-\sqrt{3}<x<\sqrt{3}$	$x=\sqrt{3}$	$x>\sqrt{3}$
f^{\prime}	-	0	+	0	-
f	\searrow	$\min :-\frac{1}{2 \sqrt{3}}$	\nearrow	$\max : \frac{1}{2 \sqrt{3}}$	\searrow

3) $f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}+3\right)^{2}-\left(-x^{2}+3\right) \cdot 2 \cdot\left(x^{2}+3\right) \cdot 2 x}{\left(x^{2}+3\right)^{4}}=\frac{-2 x\left(x^{2}+3\right)-\left(-x^{2}+3\right) \cdot 2 \cdot 2 x}{\left(x^{2}+3\right)^{3}}=$
$=\frac{-2 x^{3}-6 x+4 x^{3}-12 x}{\left(x^{2}+3\right)^{2}}=\frac{2 x^{3}-18 x}{\left(x^{2}+3\right)^{2}}=\frac{2 x\left(x^{2}-9\right)}{\left(x^{2}+3\right)^{2}}=\frac{2 x(x-3)(x+3)}{\left(x^{2}+3\right)^{2}}=0$
$\Rightarrow x_{1}=2, x_{2,3}= \pm 3$ (2p)

x	$x<-3$	$x=-3$	$-3<x<\theta$	$x=0$	$0<x<3$	$x=3$	$x>3$
$f^{\prime} '$	-	0	+	0	-	0	+
f	\cap	infl $:-\frac{1}{4}$	\cup	infl $: 0$	\cap	infl $: \frac{1}{4}$	\cup

(3p)

The graph of $f:(3 p)$

5. (10+10 points) Calculate the following integrals:
a) $I_{1}=\int x \arctan \left(x^{2}\right) d x$
b) $I_{2}=\int \sin (\sqrt{x}) \mathrm{dx} \quad$ (substitution: $t=\sqrt{x}$)

Solution: a) We use the integration by parts method: $\int f^{\prime} \cdot g=f \cdot g-\int f \cdot g^{\prime}$

$$
\begin{aligned}
& \text { • } f^{\prime}(x)=x \quad \Longrightarrow f(x)=\frac{x^{2}}{2} \\
& \bullet g(x)=\arctan \left(x^{2}\right) \quad \Longrightarrow g^{\prime}(x)=\frac{1}{1+x^{4}} \cdot 2 x \\
& \Rightarrow I_{1}=\int x \arctan \left(x^{2}\right) \mathrm{dx}=\frac{x^{2}}{2} \cdot \arctan \left(x^{2}\right)-\int \frac{x^{2}}{2} \cdot \frac{1}{1+x^{4}} \cdot 2 x \mathrm{dx}= \\
& \\
& =\frac{x^{2}}{2} \cdot \arctan \left(x^{2}\right)-\int \frac{1}{4} \cdot \frac{4 x^{3}}{1+x^{4}} \mathrm{dx}=\frac{x^{2}}{2} \cdot \arctan \left(x^{2}\right)-\frac{1}{4} \ln \left(1+x^{4}\right)+c \\
& \text { b) } I_{2}=\int \sin (\sqrt{x}) \mathrm{dx}=? \text { Substitution: } t=\sqrt{x} \Longrightarrow x=x(t)=t^{2} \Longrightarrow x^{\prime}(t)=\frac{\mathrm{dx}}{\mathrm{dt}}=2 t \Longrightarrow \mathrm{dx}=2 t \mathrm{dt} \\
& \Longrightarrow I_{2}=\int 2 t \cdot \sin (t) \mathrm{dt}(5 \mathrm{p})
\end{aligned}
$$

We use the integration by parts method: $\int f^{\prime} \cdot g=f \cdot g-\int f \cdot g^{\prime}$

- $f^{\prime}(t)=\sin t \quad \Longrightarrow f(t)=-\cos t$
- $g(t)=2 t \quad \Longrightarrow g^{\prime}(x)=2$
$\Rightarrow I_{2}=-2 t \cos t-\int 2 \cdot(-\cos t) d t=-2 t \cos t+2 \sin t+c=-2 \sqrt{x} \cos (\sqrt{x})+2 \sin (\sqrt{x})+c=(\mathbf{5 p})$

6. (10+10 points) Calculate the following integrals:
a) $I_{3}=\int \frac{4 x+1}{(x-4)\left(x^{2}+1\right)} d x$
b) $I_{4}=\int \frac{e^{x}}{e^{2 x}+4 e^{x}-5} d x$ (substitution: $t=e^{x}$)

Solution. a) We use partial fraction decomposition:
$\frac{4 x+1}{(x-4)\left(x^{2}+1\right)}=\frac{A}{x-4}+\frac{B x+C}{x^{2}+1}$ (2p) Multiplying by $(x-4)\left(x^{2}+1\right)$ we get:

$$
4 x+1=A\left(x^{2}+1\right)+(x-4)(B x+C)
$$

$x=4 \Longrightarrow \quad 17=17 A+0 \quad \Rightarrow A=1$
$x=0 \Rightarrow \quad 1=A-4 C \quad \Rightarrow C=0$ (3p)
$x=1 \Longrightarrow \quad 5=2 A-3(B+C) \quad \Longrightarrow 3 B=2 A-5 \Longrightarrow B=-1$
$\Rightarrow I_{3}=\int \frac{4 x+1}{(x-4)\left(x^{2}+1\right)} \mathrm{dx}=\int\left(\frac{1}{x-4}-\frac{x}{x^{2}+1}\right) \mathrm{d} \mathrm{x}=\int\left(\frac{1}{x-4}-\frac{1}{2} \frac{2 x}{x^{2}+1}\right) \mathrm{dx}=$
$=\ln |x-4|-\frac{1}{2} \ln \left(x^{2}+1\right)+c(5 p)$
b) $I_{4}=\int \frac{e^{x}}{e^{2 x}+4 e^{x}-5} d x=$? \quad (substitution: $t=e^{x}$)

Substitution: $t=e^{x} \Longrightarrow x=x(t)=\ln t \Longrightarrow x^{\prime}(t)=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{1}{t} \Longrightarrow \mathrm{dx}=\frac{1}{t} \mathrm{dt}$
$\Rightarrow I_{4}=\int \frac{e^{x}}{e^{2 x}+4 e^{x}-5} \mathrm{dx}=\int \frac{t}{t^{2}+4 t-5} \cdot \frac{1}{t} \mathrm{dt}=\int \frac{1}{(t-1)(t+5)} \mathrm{dt}(\mathbf{4} \mathbf{p})$

Partial fraction decomposition: $\frac{1}{(t-1)(t+5)}=\frac{A}{t-1}+\frac{B}{t+5}$
$\begin{array}{ll} & \Longrightarrow \quad 1=A(t+5)+B(t-1) \\ t=1 \quad & \Longrightarrow \quad 1=6 A+0 \quad \Longrightarrow A=\frac{1}{6}\end{array}$
$t=-5 \quad \Longrightarrow \quad 1=0-6 B \quad \Longrightarrow B=-\frac{1}{6}$ (3p)
$\Rightarrow I_{4}=\int\left(\frac{1}{6} \frac{1}{t-1}-\frac{1}{6} \frac{1}{t+5}\right) \mathrm{dt}=\frac{1}{6} \ln |t-1|-\frac{1}{6} \ln |t+5|+c=\frac{1}{6} \ln \left|e^{x}-1\right|-\frac{1}{6} \ln \left(e^{x}+5\right)+c$ (3p)
7. (10 points) Consider the function $f(x)=\frac{x}{\sqrt[4]{x^{3}+8}}$ on the interval $x \in[1,2]$. Rotate it around the x-axis and find the volume of the arising body.

Solution. The volume is $V=\pi \int_{0}^{\pi} f^{2}(x) \mathrm{dx}=\pi \int_{1}^{2} \frac{x^{2}}{\sqrt{x^{3}+8}} \mathrm{dx}$ (2p)
$=\pi \int_{1}^{2} x^{2} \cdot\left(x^{3}+8\right)^{-\frac{1}{2}} \mathrm{dx}=\pi \int_{1}^{2} \frac{1}{3} \cdot 3 x^{2} \cdot\left(x^{3}+8\right)^{-\frac{1}{2}} \mathrm{dx}$ (3p)
$=\frac{\pi}{3}\left[\frac{\left(x^{3}+8\right)^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{2} \mathbf{(2 p)}=\frac{2 \pi}{3}\left[\sqrt{x^{3}+8}\right]_{1}^{2}=\frac{2 \pi}{3}(\sqrt{16}-\sqrt{9})=\frac{2 \pi}{3} \quad$ (3p)

8. * (10 points - BONUS)

The windows of a house are designed such that the bottom part is a rectangle and the upper part is a semicircle fitting the rectangle. The perimeter of a window is P. What should be the dimensions of the windows to let in as much light as possible?

Solution. Let r denote the radius of the semicircle, then the horizontal side of the rectangle is $2 r$.
Let x denote the vertical side of the rectangle.
The perimeter of the window is $P=2 x+2 r+r \pi$ and its area is $A=\frac{1}{2} r^{2} \pi+2 r x$.
From the perimeter $2 x=P-2 r-r \pi$. Substituting into the area we get
$A(r)=\frac{1}{2} r^{2} \pi+r(P-2 r-r \pi)=P r-2 r^{2}-\frac{1}{2} r^{2} \pi$.
We want to find the maximum of this function.
$A^{\prime}(r)=P-4 r-r \pi=0 \Longrightarrow r=\frac{P}{4+\pi}$.
$A^{\prime \prime}(r)=-4-\pi<0$, so $A(r)$ has a maximum for $r=\frac{P}{4+\pi}$.

