Calculus 1, Final exam 3, Part 1

23rd	January,	2023
------	----------	------

Name: ______ Neptun code: ______

Part I: _____ Part II.: _____ Part III.: _____ Sum: _____

I. Definitions and theorems (15 x 3 points)

- 1. What does it mean that the sequence (a_n) is a Cauchy sequence?
- 2. Define the limes inferior of the sequence (a_n) .
- 3. State the ratio test for number series.
- 4. State the comparison test for number series.
- 5. What does it mean that the number $x \in \mathbb{R}$ is a limit point of the set $A \subset \mathbb{R}$?
- 6. What does it mean that the limit of the function f at $x_0 \in \mathbb{R}$ is $A \in \mathbb{R}$?
- 7. State the sequential criterion for continuity.
- 8. What does it mean that a function f has an essential discontinuity at $x_0 \in \mathbb{R}$?
- 9. State Weierstrass' extreme value theorem for continuous functions.
- 10. What does it mean that a function is concave? Write down the definition.
- 11. State the theorem about the derivative of the inverse of a function.
- 12. State the L'Hospital's rule.
- 13. Give two sufficient conditions for a function to have a local minimum at the point x_0 .
- 14. State the Newton-Leibniz formula.
- 15. State the second fundamental theorem of calculus.

II. Proof of a theorem (15 points)

Write down the statement of Lagrange's mean value theorem and prove it.

III. True or false? (15 x 3 points)

Indicate at each statement whether it is true or false and give a short explanation for your answer. The correct answer without an explanation is worth 1 point.

1. If a sequence is monotonic and bounded then it has only one real limit point.

2. If
$$(a_n)$$
 is a nonnegative sequence and $\lim_{n \to \infty} a_n = 1$ then $\lim_{n \to \infty} a_n^n = 1$

3. If the series
$$\sum_{n=1}^{\infty} \sqrt{a_n}$$
 converges, then $\sum_{n=1}^{\infty} a_n$ also converges.
4. If the series $\sum_{n=1}^{\infty} a_n^2$ converges, then $\sum_{n=1}^{\infty} a_n$ also converges.

5. If the series
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$.

6. The set $H = [0, 1] \cap \mathbb{Q}$ is open.

7. The function $f(x) = e^{\frac{1}{x}}$ has a jump discontinuity at x = 0.

8. Let $f(x) = (x - 2) \ln(x^2 + 1)$ for $x \in [0, 2]$. Then there exists a point in (0, 2) at which the tangent line is parallel to the *x*-axis.

9. The function $f(x) = 2^x - \frac{x+2}{x^2+1}$ has a root on the interval [0, 1].

10. There exists a continuous function $f : [a, b] \longrightarrow \mathbb{R}$ that is not bounded.

- 11. If the function f is differentiable at x_0 from the right and from the left then f is differentiable at x_0 .
- 12. If the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ has an inflection point at x_0 , then $f''(x_0) = 0$ and $f'''(x_0) \neq 0$.
- 13. If the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is odd, then f' is even.

14. The partial fraction decomposition of $f(x) = \frac{1}{x^4 - 16}$ cannot contain the term $\frac{1}{(x+2)^2}$.

15. There exists a function $f:[0, 2] \rightarrow \mathbb{R}$ that is Riemann integrable but doesn't have an antiderivative.

Answers

I. Definitions and theorems (15 x 3 points)

1. What does it mean that the sequence (a_n) is a Cauchy sequence?

Definition. (a_n) is a Cauchy sequence if for all $\varepsilon > 0$ there exists $N(\varepsilon) \in \mathbb{N}$ such that if n, m > N then $|a_n - a_m| < \varepsilon$.

2. Define the limes inferior of the sequence (a_n) .

Definition. • If the set of limit points of (a_n) is bounded below, then its infimum is called the limes inferior of (a_n) (notation: lim inf a_n).

• If (a_n) is not bounded below, then we define $\liminf a_n = -\infty$.

3. State the ratio test for number series.

Theorem. Assume that $a_n > 0$. Then

(1) if
$$\limsup \frac{a_{n+1}}{a_n} < 1$$
, then $\sum_{n=1}^{\infty} a_n$ is convergent;
(2) if $\liminf \frac{a_{n+1}}{a_n} > 1$, then $\sum_{n=1}^{\infty} a_n$ is divergent.

4. State the comparison test for number series.

Theorem. Assume that $0 \le c_n \le a_n \le b_n$ for n > N where N is some fixed integer. Then

(1) If
$$\sum_{n=1}^{\infty} b_n$$
 is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent
(2) If $\sum_{n=1}^{\infty} c_n$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

5. What does it mean that the number $x \in \mathbb{R}$ is a limit point of the set $A \subset \mathbb{R}$?

Definition. Let $A \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then x is a limit point of A, if for all r > 0: $(B(x, r) \setminus \{x\}) \cap A \neq \emptyset$ It means that any interval (x - r, x + r) contains a point in A that is distinct from x.

6. What does it mean that the limit of the function f at $x_0 \in \mathbb{R}$ is $A \in \mathbb{R}$?

Definition. The limit of the function $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ at the point $x_0 \in \mathbb{R}$ is $A \in \mathbb{R}$ if (1) x_0 is a limit point of D_f ($x \in D_f$ ') (2) for all $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that if $x \in D_f$ and $0 < |x - x_0| < \delta(\varepsilon)$ then $|f(x) - A| < \varepsilon$.

7. State the sequential criterion for continuity.

Theorem. The function $f: D_f \subset \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at $x_0 \in D_f$ if and only if for all sequences $(x_n) \subset D_f$ for which $x_n \longrightarrow x_0$, $\lim_{n \to \infty} f(x_n) = f(x_0)$.

8. What does it mean that a function f has an essential discontinuity at $x_0 \in \mathbb{R}$?

Definition. f has an essential discontinuity at x_0 , if at least one of the one-sided limits at x_0 doesn't exist or exists but is not finite.

9. State Weierstrass' extreme value theorem for continuous functions.

Theorem. If *f* is continuous on the closed interval [*a*, *b*] then there exist numbers $\alpha \in [a, b]$ and $\beta \in [a, b]$, such that $f(\alpha) \leq f(x) \leq f(\beta)$ for all $x \in [a, b]$, that is, *f* has both a minimum and a maximum on [*a*, *b*].

10. What does it mean that a function is concave? Write down the definition.

Definition. The function f is concave on the interval $I \subset D_f$ if for all x, $y \in I$ and $t \in [0, 1]$ $f(tx + (1 - t)y) \ge tf(x) + (1 - t)f(y)$

Or:

Definition. Let $h_{a,b}(x)$ denote the the secant line passing through the points (a, f(a)) and (b, f(b)). The function f is concave on the interval $I \subset D_f$ if for all $\forall a, b \in I$ and $a < x < b \implies f(x) \ge h_{a,b}(x)$, that is, the secant lines of f always lie below the graph of f.

11. State the theorem about the derivative of the inverse of a function.

Theorem. Assume that *f* is continuous and strictly monotonic on (*a*, *b*),

f is differentiable at $c \in (a, b)$ and $f'(c) \neq 0$. Then f^{-1} is differentiable at f(c) and

$$(f^{-1})'(f(c)) = \frac{1}{f'(c)}$$

12. State the L'Hospital's rule.

Theorem.

Assume that $a \in \mathbb{R} = \mathbb{R} \cup \{-\infty, \infty\}$, *I* is a neighbourhood of *a*, the functions *f* and *g* are differentiable on $I \setminus \{a\}$ and $g(x) \neq 0$, $g'(x) \neq 0$ for all $x \in I \setminus \{a\}$. Assume moreover that

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \quad \text{or} \quad \lim_{x \to a} |f(x)| = \lim_{x \to a} |g(x)| = \infty.$$

If $\exists \lim_{x \to a} \frac{f'(x)}{g'(x)} = b \in \overline{\mathbb{R}}$ then $\exists \lim_{x \to a} \frac{f(x)}{g(x)} = b$.

13. Give two sufficient conditions for a function to have a local minimum at the point x_0 .

Theorems.

1) Assume that f is differentiable at $x_0 \in \text{int } D_f$.

If $f'(x_0) = 0$ and f' changes sign from negative to positive at x_0 , then f has a local minimum at x_0 . 2) Assume that f is twice differentiable at $x_0 \in int D_f$.

If $f'(x_0) = 0$ and $f''(x_0) > 0$ then f has a local minimum at x_0 .

14. State the Newton-Leibniz formula.

Theorem. If $f : [a, b] \rightarrow \mathbb{R}$ is Riemann integrable and $F : [a, b] \rightarrow \mathbb{R}$ is an antiderivative of f,

that is, F'(x) = f(x) for all $x \in [a, b]$, then $\int_a^b f(x) dx = F(b) - F(a) = [F(x)]_a^b$.

15. State the second fundamental theorem of calculus.

Theorem. Assume that f is Riemann integrable on [a, b] and $F(x) = \int_{a}^{x} f(t) dt$, $x \in [a, b]$. Then

1. *F* is Lipschitz continuous on [*a*, *b*].

2. If f is continuous at $x_0 \in [a, b]$ then F is differentiable at x_0 and $F'(x_0) = f(x_0)$.

II. Proof of a theorem (15 points)

Write down the statement of Lagrange's mean value theorem and prove it.

Theorem (Lagrange's mean value theorem).

Assume that $f : [a, b] \rightarrow \mathbb{R}$ is continuous on [a, b], differentiable on (a, b).

Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof. The equation of the secant line connecting the points (a, f(a)) and (b, f(b)) is

$$y = h_{a,b}(x) = \frac{f(b) - f(a)}{b - a} (x - a) + f(a).$$

Let $g(x) = f(x) - h_{a,b}(x) = f(x) - \frac{f(b) - f(a)}{b - a} (x - a) - f(a).$

Then

1) *g* is continuous on [*a*, *b*]

2) g is differentiable on (a, b)

3)
$$g(a) = g(b) = 0$$

 \implies by Rolle's theorem there exists $c \in (a, b)$ such that g'(c) = 0

$$\implies g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0.$$

III. True or false? (15 x 3 points)

1. If a sequence is monotonic and bounded then it has only one real limit point.

True, since if a sequence is monotonic and bounded then it is convergent.

2. If (a_n) is a nonnegative sequence and $\lim_{n \to \infty} a_n = 1$ then $\lim_{n \to \infty} a_n^n = 1$.

False. For example, $a_n = 1 + \frac{1}{n} \longrightarrow 1$, but $a_n^n = \left(1 + \frac{1}{n}\right)^n = e$.

3. If the series $\sum_{n=1}^{\infty} \sqrt{a_n}$ converges, then $\sum_{n=1}^{\infty} a_n$ also converges.

True. If $\sum_{n=1}^{\infty} \sqrt{a_n}$ converges then by the *n*th term test $\sqrt{a_n} \rightarrow 0$. Then by the definition of the limit there exists $n \in \mathbb{N}$ such that for all $n > \mathbb{N}$, $0 \le \sqrt{a_n} < 1$. From this is follows that $0 \le a_n \le \sqrt{a_n} < 1$ also holds. Since $\sum_{n=1}^{\infty} \sqrt{a_n}$ converges, then by the comparison test $\sum_{n=1}^{\infty} a_n$ also converges.

4. If the series $\sum_{n=1}^{\infty} a_n^2$ converges, then $\sum_{n=1}^{\infty} a_n$ also converges.

False. For example, if $a_n = \frac{1}{n}$, then $\sum_{n=1}^{\infty} a_n^2 = \sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, but $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

5. If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$.

False. For example, if $a_n = \frac{(-1)^n}{n}$ or $a_n = \frac{1}{n^2}$ then $\sum_{n=1}^{\infty} a_n$ is convergent, but $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$.

6. The set $H = [0, 1] \cap \mathbb{Q}$ is open.

False. If $x \in H$ and *I* is an interval containing *x* then *I* contains irrational numbers, so *I* cannot be a subset of *H*.

7. The function $f(x) = e^{\frac{1}{x}}$ has a jump discontinuity at x = 0.

False. Since $\lim_{x \to 0-0} \frac{1}{x} = -\infty$ and $\lim_{x \to 0+0} \frac{1}{x} = +\infty$, then $\lim_{x \to 0-0} f(x) = 0$ and $\lim_{x \to 0+0} f(x) = \infty$, so *f* has an essential discontinuity at x = 0.

8. Let $f(x) = (x - 2) \ln(x^2 + 1)$ for $x \in [0, 2]$. Then there exists a point in (0, 2) at which the tangent line is parallel to the *x*-axis.

True. Since f is differentiable on [0, 2] and f(0) = f(2), then by Rolle's theorem there exists $c \in (0, 2)$, such that f'(c) = 0.

9. The function $f(x) = 2^x - \frac{x+2}{x^2+1}$ has a root on the interval [0, 1].

True. f(0) = -1 < 0 and $f(1) = \frac{1}{2} > 0$, so by Bolzano's theorem f has a real root on the interval [0, 1].

10. There exists a continuous function $f : [a, b] \rightarrow \mathbb{R}$ that is not bounded.

False. By Weierstrass boundedness theorem, if f is continuous on [a, b], then f is bounded on [a, b].

11. If the function f is differentiable at x_0 from the right and from the left then f is differentiable at x_0 .

False. For example, if f(x) = |x| then $f_+'(0) = \lim_{x \to 0+0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+0} \frac{x - 0}{x - 0} = 1$ and

 $f_{-}'(0) = \lim_{x \to 0^{-0}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-0}} \frac{-x - 0}{x - 0} = -1.$ Since $f_{-}'(0) \neq f_{+}'(0)$, then f is not differentiable at $x_0 = 0$.

12. If the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ has an inflection point at x_0 , then $f''(x_0) = 0$ and $f'''(x_0) \neq 0$.

False. For example, $f(x) = x^5$ has an inflection point at $x_0 = 0$, but f''(0) = f'''(0) = 0.

13. If the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is odd, then f' is even.

True. Since f is odd, then f(x) = -f(-x), so $f'(x) = -f'(-x) \cdot (-1) = f'(-x)$, therefore f' is even.

14. The partial fraction decomposition of $f(x) = \frac{1}{x^4 - 16}$ cannot contain the term $\frac{1}{(x+2)^2}$.

True. The partial fraction decomposition of $f(x) = \frac{1}{x^4 - 16} = \frac{1}{(x^2 - 4)(x^2 + 4)} = \frac{1}{(x - 2)(x + 2)(x^2 + 4)}$ is

 $\frac{A}{x-2} + \frac{B}{x+2} + \frac{Cx+D}{x^2+4}$

15. There exists a function $f : [0, 2] \rightarrow \mathbb{R}$ that is Riemann integrable but doesn't have an antiderivative.

True. For example, let $f : [0, 2] \rightarrow \mathbb{R}$, f(x) = 1 if $0 \le x < 1$ and f(x) = 2 if $1 \le x \le 2$. Then f is Riemann integrable, since it is bounded and f is discontinuous only at one point, x = 1. By Darboux theorem, f doesn't have an antiderivative, since it has a jump discontinuity.