Calculus 1, Final exam 3, Part 1

23rd January, 2023

Name: \qquad Neptun code: \qquad

Part I: \qquad Part II.: \qquad Part III.: \qquad Sum: \qquad

I. Definitions and theorems (15×3 points)

1. What does it mean that the sequence $\left(a_{n}\right)$ is a Cauchy sequence?
2. Define the limes inferior of the sequence $\left(a_{n}\right)$.
3. State the ratio test for number series.
4. State the comparison test for number series.
5. What does it mean that the number $x \in \mathbb{R}$ is a limit point of the set $A \subset \mathbb{R}$?
6. What does it mean that the limit of the function f at $x_{0} \in \mathbb{R}$ is $A \in \mathbb{R}$?
7. State the sequential criterion for continuity.
8. What does it mean that a function f has an essential discontinuity at $x_{0} \in \mathbb{R}$?
9. State Weierstrass' extreme value theorem for continuous functions.
10. What does it mean that a function is concave? Write down the definition.
11. State the theorem about the derivative of the inverse of a function.
12. State the L'Hospital's rule.
13. Give two sufficient conditions for a function to have a local minimum at the point x_{0}.
14. State the Newton-Leibniz formula.
15. State the second fundamental theorem of calculus.

II. Proof of a theorem (15 points)

Write down the statement of Lagrange's mean value theorem and prove it.

III. True or false? (15 x 3 points)

Indicate at each statement whether it is true or false and give a short explanation for your answer. The correct answer without an explanation is worth 1 point.

1. If a sequence is monotonic and bounded then it has only one real limit point.
2. If $\left(a_{n}\right)$ is a nonnegative sequence and $\lim _{n \rightarrow \infty} a_{n}=1$ then $\lim _{n \rightarrow \infty} a_{n}^{n}=1$.
3. If the series $\sum_{n=1}^{\infty} \sqrt{a_{n}}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges.
4. If the series $\sum_{n=1}^{\infty} a_{n}^{2}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges.
5. If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$.
6. The set $H=[0,1] \cap \mathbb{Q}$ is open.
7. The function $f(x)=e^{\frac{1}{x}}$ has a jump discontinuity at $x=0$.
8. Let $f(x)=(x-2) \ln \left(x^{2}+1\right)$ for $x \in[0,2]$. Then there exists a point in $(0,2)$ at which the tangent line is parallel to the x-axis.
9. The function $f(x)=2^{x}-\frac{x+2}{x^{2}+1}$ has a root on the interval $[0,1]$.
10. There exists a continuous function $f:[a, b] \rightarrow \mathbb{R}$ that is not bounded.
11. If the function f is differentiable at x_{0} from the right and from the left then f is differentiable at x_{0}.
12. If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ has an inflection point at x_{0}, then $f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime \prime}\left(x_{0}\right) \neq 0$.
13. If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is odd, then f ' is even.
14. The partial fraction decomposition of $f(x)=\frac{1}{x^{4}-16}$ cannot contain the term $\frac{1}{(x+2)^{2}}$.
15. There exists a function $f:[0,2] \rightarrow \mathbb{R}$ that is Riemann integrable but doesn't have an antiderivative.

Answers

I. Definitions and theorems (15×3 points)

1. What does it mean that the sequence $\left(a_{n}\right)$ is a Cauchy sequence?

Definition. $\left(a_{n}\right)$ is a Cauchy sequence if for all $\varepsilon>0$ there exists $N(\varepsilon) \in \mathbb{N}$ such that if $n, m>N$ then $\left|a_{n}-a_{m}\right|<\varepsilon$.
2. Define the limes inferior of the sequence $\left(a_{n}\right)$.

Definition. - If the set of limit points of $\left(a_{n}\right)$ is bounded below, then its infimum is called the limes inferior of $\left(a_{n}\right)$ (notation: $\left.\lim \inf a_{n}\right)$.

- If $\left(a_{n}\right)$ is not bounded below, then we define $\lim \inf a_{n}=-\infty$.

3. State the ratio test for number series.

Theorem. Assume that $a_{n}>0$. Then
(1) if $\lim \sup \frac{a_{n+1}}{a_{n}}<1$, then $\sum_{n=1}^{\infty} a_{n}$ is convergent;
(2) if $\lim \inf \frac{a_{n+1}}{a_{n}}>1$, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
4. State the comparison test for number series.

Theorem. Assume that $0 \leq c_{n} \leq a_{n} \leq b_{n}$ for $n>N$ where N is some fixed integer. Then
(1) If $\sum_{n=1}^{\infty} b_{n}$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(2) If $\sum_{n=1}^{\infty} c_{n}$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.
5. What does it mean that the number $x \in \mathbb{R}$ is a limit point of the set $A \subset \mathbb{R}$?

Definition. Let $A \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then x is a limit point of A, if for all $r>0:(B(x, r) \backslash\{x\}) \cap A \neq \varnothing$ It means that any interval $(x-r, x+r)$ contains a point in A that is distinct from x.
6. What does it mean that the limit of the function f at $x_{0} \in \mathbb{R}$ is $A \in \mathbb{R}$?

Definition. The limit of the function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ at the point $x_{0} \in \mathbb{R}$ is $A \in \mathbb{R}$ if
(1) x_{0} is a limit point of $D_{f}\left(x \in D_{f}{ }^{\prime}\right)$
(2) for all $\varepsilon>0$ there exists $\delta(\varepsilon)>0$ such that

$$
\text { if } x \in D_{f} \text { and } 0<\left|x-x_{0}\right|<\delta(\varepsilon) \text { then }|f(x)-A|<\varepsilon
$$

7. State the sequential criterion for continuity.

Theorem. The function $f: D_{f} \subset \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at $x_{0} \in D_{f}$ if and only if for all sequences $\left(x_{n}\right) \subset D_{f}$ for which $x_{n} \longrightarrow x_{0}, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.
8. What does it mean that a function f has an essential discontinuity at $x_{0} \in \mathbb{R}$?

Definition. f has an essential discontinuity at x_{0}, if at least one of the one-sided limits at x_{0} doesn't exist or exists but is not finite.
9. State Weierstrass' extreme value theorem for continuous functions.

Theorem. If f is continuous on the closed interval $[a, b]$ then there exist numbers
$\alpha \in[a, b]$ and $\beta \in[a, b]$, such that $f(\alpha) \leq f(x) \leq f(\beta)$ for all $x \in[a, b]$,
that is, f has both a minimum and a maximum on $[a, b]$.
10. What does it mean that a function is concave? Write down the definition.

Definition. The function f is concave on the interval $/ \subset D_{f}$ if for all $x, y \in I$ and $t \in[0,1]$ $f(t x+(1-t) y) \geq t f(x)+(1-t) f(y)$

Or:
Definition. Let $h_{a, b}(x)$ denote the the secant line passing through the points ($a, f(a)$) and ($b, f(b)$). The function f is concave on the interval $I \subset D_{f}$ if for all $\forall a, b \in I$ and $a<x<b \Longrightarrow f(x) \geq h_{a, b}(x)$, that is, the secant lines of f always lie below the graph of f.
11. State the theorem about the derivative of the inverse of a function.

Theorem. Assume that f is continuous and strictly monotonic on (a, b),
f is differentiable at $c \in(a, b)$ and $f^{\prime}(c) \neq 0$. Then f^{-1} is differentiable at $f(c)$ and $\left(f^{-1}\right)^{\prime}(f(c))=\frac{1}{f^{\prime}(c)}$

12. State the L'Hospital's rule.

Theorem.
Assume that $a \in \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$, lis a neighbourhood of a, the functions f and g are differentiable on $I \backslash\{a\}$ and $g(x) \neq 0, g^{\prime}(x) \neq 0$ for all $x \in I \backslash\{a\}$. Assume moreover that

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0 \quad \text { or } \quad \lim _{x \rightarrow a}|f(x)|=\lim _{x \rightarrow a}|g(x)|=\infty .
$$

If $\exists \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=b \in \overline{\mathbb{R}}$ then $\exists \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=b$.
13. Give two sufficient conditions for a function to have a local minimum at the point x_{0}.

Theorems.

1) Assume that f is differentiable at $x_{0} \in \operatorname{int} D_{f}$.

If $f^{\prime}\left(x_{0}\right)=0$ and f^{\prime} changes sign from negative to positive at x_{0}, then f has a local minimum at x_{0}.
2) Assume that f is twice differentiable at $x_{0} \in \operatorname{int} D_{f}$.

If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$ then f has a local minimum at x_{0}.
14. State the Newton-Leibniz formula.

Theorem. If $f:[a, b] \longrightarrow \mathbb{R}$ is Riemann integrable and $F:[a, b] \longrightarrow \mathbb{R}$ is an antiderivative of f, that is, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) \mathrm{dx}=F(b)-F(a)=[F(x)]_{a}^{b}$.
15. State the second fundamental theorem of calculus.

Theorem. Assume that f is Riemann integrable on $[a, b]$ and $F(x)=\int_{a}^{x} f(t) \mathrm{dt}, x \in[a, b]$. Then

1. F is Lipschitz continuous on $[a, b]$.
2. If f is continuous at $x_{0} \in[a, b]$ then F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

II. Proof of a theorem (15 points)

Write down the statement of Lagrange's mean value theorem and prove it.
Theorem (Lagrange's mean value theorem).
Assume that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous on $[a, b]$, differentiable on (a, b).
Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Proof. The equation of the secant line connecting the points $(a, f(a))$ and $(b, f(b))$ is
$y=h_{a, b}(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$.
Let $g(x)=f(x)-h_{a, b}(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)-f(a)$.
Then

1) g is continuous on $[a, b]$
2) g is differentiable on (a, b)
3) $g(a)=g(b)=0$
\Longrightarrow by Rolle's theorem there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$
$\Longrightarrow g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=0$.

III. True or false? (15×3 points)

1. If a sequence is monotonic and bounded then it has only one real limit point.

True, since if a sequence is monotonic and bounded then it is convergent.
2. If $\left(a_{n}\right)$ is a nonnegative sequence and $\lim _{n \rightarrow \infty} a_{n}=1$ then $\lim _{n \rightarrow \infty} a_{n}^{n}=1$.

False. For example, $a_{n}=1+\frac{1}{n} \rightarrow 1$, but $a_{n}^{n}=\left(1+\frac{1}{n}\right)^{n}=e$.
3. If the series $\sum_{n=1}^{\infty} \sqrt{a_{n}}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges.

True. If $\sum_{n=1}^{\infty} \sqrt{a_{n}}$ converges then by the nth term test $\sqrt{a_{n}} \rightarrow 0$. Then by the definition of the limit there exists $n \in \mathbb{N}$ such that for all $n>\mathbb{N}, 0 \leq \sqrt{a_{n}}<1$. From this is follows that $0 \leq a_{n} \leq \sqrt{a_{n}}<1$ also holds. Since $\sum_{n=1}^{\infty} \sqrt{a_{n}}$ converges, then by the comparison test $\sum_{n=1}^{\infty} a_{n}$ also converges.
4. If the series $\sum_{n=1}^{\infty} a_{n}^{2}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges.

False. For example, if $a_{n}=\frac{1}{n}$, then $\sum_{n=1}^{\infty} a_{n}^{2}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, but $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
5. If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$.

False. For example, if $a_{n}=\frac{(-1)^{n}}{n}$ or $a_{n}=\frac{1}{n^{2}}$ then $\sum_{n=1}^{\infty} a_{n}$ is convergent, but $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$.
6. The set $H=[0,1] \cap \mathbb{Q}$ is open.

False. If $x \in H$ and / is an interval containing x then / contains irrational numbers, so I cannot be a subset of H.
7. The function $f(x)=e^{\frac{1}{x}}$ has a jump discontinuity at $x=0$.

False. Since $\lim _{x \rightarrow 0-0} \frac{1}{x}=-\infty$ and $\lim _{x \rightarrow+0+} \frac{1}{x}=+\infty$, then $\lim _{x \rightarrow 0-0} f(x)=0$ and $\lim _{x \rightarrow 0+0} f(x)=\infty$, so f has an essential discontinuity at $x=0$.
8. Let $f(x)=(x-2) \ln \left(x^{2}+1\right)$ for $x \in[0,2]$. Then there exists a point in $(0,2)$ at which the tangent line is parallel to the x-axis.

True. Since f is differentiable on $[0,2]$ and $f(0)=f(2)$, then by Rolle's theorem there exists $c \in(0,2)$, such that $f^{\prime}(c)=0$.
9. The function $f(x)=2^{x}-\frac{x+2}{x^{2}+1}$ has a root on the interval $[0,1]$.

True. $f(0)=-1<0$ and $f(1)=\frac{1}{2}>0$, so by Bolzano's theorem f has a real root on the interval $[0,1]$.
10. There exists a continuous function $f:[a, b] \longrightarrow \mathbb{R}$ that is not bounded.

False. By Weierstrass boundedness theorem, if f is continuous on $[a, b]$, then f is bounded on $[a, b]$.
11. If the function f is differentiable at x_{0} from the right and from the left then f is differentiable at x_{0}.

False. For example, if $f(x)=|x|$ then $f_{+}^{\prime}(0)=\lim _{x \rightarrow 0+0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0+0} \frac{x-0}{x-0}=1$ and
$f_{-}^{\prime}(0)=\lim _{x \rightarrow 0-0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0-0} \frac{-x-0}{x-0}=-1$. Since $f_{-}^{\prime}(0) \neq f_{+}^{\prime}(0)$, then f is not differentiable at $x_{0}=0$.
12. If the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ has an inflection point at x_{0}, then $f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime \prime}\left(x_{0}\right) \neq 0$.

False. For example, $f(x)=x^{5}$ has an inflection point at $x_{0}=0$, but $f^{\prime \prime}(0)=f^{\prime \prime \prime}(0)=0$.
13. If the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is odd, then f^{\prime} is even.

True. Since f is odd, then $f(x)=-f(-x)$, so $f^{\prime}(x)=-f^{\prime}(-x) \cdot(-1)=f^{\prime}(-x)$, therefore f^{\prime} is even.
14. The partial fraction decomposition of $f(x)=\frac{1}{x^{4}-16}$ cannot contain the term $\frac{1}{(x+2)^{2}}$.

True. The partial fraction decomposition of $f(x)=\frac{1}{x^{4}-16}=\frac{1}{\left(x^{2}-4\right)\left(x^{2}+4\right)}=\frac{1}{(x-2)(x+2)\left(x^{2}+4\right)}$ is $\frac{A}{x-2}+\frac{B}{x+2}+\frac{C x+D}{x^{2}+4}$
15. There exists a function $f:[0,2] \longrightarrow \mathbb{R}$ that is Riemann integrable but doesn't have an antiderivative.

True. For example, let $f:[0,2] \longrightarrow \mathbb{R}, f(x)=1$ if $0 \leq x<1$ and $f(x)=2$ if $1 \leq x \leq 2$. Then f is
Riemann integrable, since it is bounded and f is discontinuous only at one point, $x=1$. By Darboux theorem, f doesn't have an antiderivative, since it has a jump discontinuity.

