Calculus 1, Final exam, Part 2

12th January, 2022
\qquad

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	\sum

1. (10 points) Find the limit of the following sequence: $a_{n}=\sqrt[n]{\frac{7^{n}+5^{n}}{n^{3}+2}}$
2. (10 points) Decide whether the following series converges or diverges: $\sum_{n=1}^{\infty} \frac{1}{n!}\left(\frac{n}{4}\right)^{n}$
3. (10 points) Find the following limit: $\lim _{x \rightarrow 0} \frac{x^{3}-\sin \left(x^{2}\right)}{\arctan \left(x^{2}\right)}$
4. (10 points) Calculate the minimum and the maximum of the function $f(x)=x^{2} e^{-5 x^{2}-8 x+1}$ on the interval $[-2,0]$.
5. (12 points) Find the Taylor series of the function $f(x)=\sqrt[3]{1-2 x^{3}}$ about $x_{0}=0$ and find the interval of convergence.
6. (12 points) Calculate the following integral with the substitution $t=\tan x: \int \frac{1}{1+\tan x} d x$
7. (12 points) Calculate the following integral: $\int_{0}^{1} x^{3} \ln x \mathrm{~d} x$
8. (12 points) Calculate the following integral: $\int_{1}^{\infty} \frac{1}{x^{2}+5 x+6} d x$
9. (12 points) Consider the function $f(x)=\frac{\sqrt{\sin x}}{\cos x}$ on the interval $x \in\left[0, \frac{\pi}{4}\right]$. Rotate it around the x-axis and find the volume of the arising body.
10.* (10 points - BONUS) Denote by $\{a\}$ the fractional part of the number $a \in \mathbb{R}$ and let $f(x)=x \cdot\left\{\frac{1}{x}\right\}$. Calculate the following limits:
a) $\lim _{x \rightarrow 0}\left\{\frac{1}{x}\right\}$
b) $\lim _{x \rightarrow 0} f(x)$
c) $\lim _{x \rightarrow+\infty} f(x)$
d) $\lim _{x \rightarrow-\infty} f(x)$

Solutions

1. (10 points) Find the limit of the following sequence: $a_{n}=\sqrt[n]{\frac{7^{n}+5^{n}}{n^{3}+2}}$

Upper estimation:
$a_{n}=\sqrt[n]{\frac{7^{n}+5^{n}}{n^{3}+2}} \leq \sqrt[n]{\frac{7^{n}+7^{n}}{0+2}}=\sqrt[n]{\frac{2 \cdot 7^{n}}{2}}=\sqrt[n]{7^{n}}=7 \longrightarrow 7$
Lower estimation:
$a_{n}=\sqrt[n]{\frac{7^{n}+5^{n}}{n^{3}+2}} \geq \sqrt[n]{\frac{7^{n}+0}{n^{3}+n^{3}}}=\sqrt[n]{\frac{7^{n}}{2 \cdot n^{3}}}=\frac{7}{\sqrt[n]{2} \cdot(\sqrt[n]{n})^{3}} \rightarrow \frac{7}{1 \cdot 1^{3}}=7$
By the sandwich theorem $a_{n} \longrightarrow 7$.
2. (10 points) Decide whether the following series converges or diverges: $\sum_{n=1}^{\infty} \frac{1}{n!}\left(\frac{n}{4}\right)^{n}$

By the ratio test: $\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{1}{(n+1)!} \frac{(n+1)^{n+1}}{4^{n+1}} \cdot \frac{n!\cdot 4^{n}}{n^{n}}=\frac{1}{4} \cdot \frac{1}{n+1} \cdot \frac{(n+1)^{n+1}}{n^{n}}=$ $=\frac{1}{4} \cdot \frac{(n+1)^{n}}{n^{n}}=\frac{1}{4} \cdot\left(1+\frac{1}{n}\right)^{n} \rightarrow \frac{e}{4}<1 \Longrightarrow$ the series converges
3. (10 points) Find the following limit: $\lim _{x \rightarrow 0} \frac{x^{3}-\sin \left(x^{2}\right)}{\arctan \left(x^{2}\right)}$

The limit has the form $\frac{0}{0}$. By L'Hospital's rule: $\lim _{x \rightarrow 0} \frac{3 x^{2}-2 x \cos \left(x^{2}\right)}{\frac{2 x}{1+x^{2}}}=$ $=\lim _{x \rightarrow 0} \frac{3 x-2 \cos \left(x^{2}\right)}{\frac{2}{1+x^{2}}}=\frac{0-2}{2}=-1$
4. (10 points) Calculate the minimum and the maximum of the function
$f(x)=x^{2} e^{-5 x^{2}-8 x+1}$ on the interval $[-2,0]$.
$f^{\prime}(x)=2 \mathrm{xe}^{-5 x^{2}-8 x+1}+x^{2}(-10 x-8) e^{-5 x^{2}-8 x+1}=-2 x\left(5 x^{2}+4 x-1\right) e^{-5 x^{2}-8 x+1}=0$
if $x_{1}=0$ or $x=\frac{-4 \pm \sqrt{16+20}}{10}=\frac{-4 \pm 6}{10} \Rightarrow x_{2}=-1$ or $x_{3}=\frac{1}{5}$.
Then $x_{1}, x_{2} \in[-2,0]$ but $x_{3} \notin[0,-2]$.
We have to calculate the function values at the critical points x_{1}, x_{2} and at the endpoints of the interval.
$f\left(x_{1}\right)=f(0)=0$
$f\left(x_{2}\right)=f(-1)=e^{4}$
$f(-2)=4 e^{-3}$
Since $f(0)<f(-2)<f(-1)$ then the minimum of f is $f(0)=0$ and the maximum of f is $f(-1)=e^{4}$ on the interval $[-2,0]$.
5. (12 points) Find the Taylor series of the function $f(x)=\sqrt[3]{1-2 x^{3}}$ about $x_{0}=0$ and find the interval of convergence.

Using the formula for the binomial series: $(1+u)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} u^{k}$ where $|u|<1=R$, we get that
$f(x)=\sqrt[3]{1-2 x^{3}}=\left(1+\left(-2 x^{3}\right)\right)^{\frac{1}{3}}=\sum_{k=0}^{\infty}\binom{\frac{1}{3}}{k}\left(-2 x^{3}\right)^{k}=\sum_{k=0}^{\infty}\binom{\frac{1}{3}}{k}(-2)^{k} x^{3 k}$
where $|u|=\left|-2 x^{3}\right|<1 \Longrightarrow|x|<\frac{1}{\sqrt[3]{2}}$.
6. (12 points) Calculate the following integral with the substitution $t=\tan x: \int \frac{1}{1+\tan x} d x$
$t=\tan x \Longrightarrow x=x(t)=\arctan t \Longrightarrow x^{\prime}(t)=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{1}{1+t^{2}} \Longrightarrow \mathrm{dx}=\frac{1}{1+t^{2}} \mathrm{dt}$
$I=\int \frac{1}{1+\tan x} \mathrm{dx}=\int \frac{1}{1+t} \cdot \frac{1}{1+t^{2}} \mathrm{dt}$
Partial fraction decomposition: $\frac{1}{(1+t) \cdot\left(1+t^{2}\right)}=\frac{A}{1+t}+\frac{B t+C}{1+t^{2}}=\frac{A\left(1+t^{2}\right)+(B t+C)(1+t)}{(1+t) \cdot\left(1+t^{2}\right)}$

$$
\Longrightarrow \quad 1=A\left(1+t^{2}\right)+(B t+C)(1+t)
$$

$t=-1 \Longrightarrow \quad 1=2 A+0 \Longrightarrow A=\frac{1}{2}$
$t=0 \quad \Longrightarrow \quad 1=A+C \quad \Longrightarrow C=1-A=\frac{1}{2}$
$t=1 \Longrightarrow 1=2 A+2 B+2 C \Longrightarrow 2 B=1-2 A-2 C=1-1-1=-1 \Longrightarrow B=-\frac{1}{2}$
$\frac{1}{(1+t) \cdot\left(1+t^{2}\right)}=\frac{1}{2}\left(\frac{1}{t+1}+\frac{-t+1}{t^{2}+1}\right)$
The integral is:
$I=\int \frac{1}{2}\left(\frac{1}{t+1}+\frac{-t+1}{t^{2}+1}\right) \mathrm{dt}=\int^{\frac{1}{2}}\left(\frac{1}{t+1}-\frac{1}{2} \frac{2 t}{t^{2}+1}+\frac{+1}{t^{2}+1}\right) \mathrm{dt}=$
$=\frac{1}{2}\left(\ln |t+1|-\frac{1}{2} \ln \left(t^{2}+1\right)+\arctan t\right)+c=\frac{1}{2} \ln (\tan x+1)-\frac{1}{4} \ln \left(\tan ^{2} x+1\right)+\frac{1}{2} x+c$
7. (12 points) Calculate the following integral: $\int_{0}^{1} x^{3} \ln x d x$

With integration by parts: $\int x^{3} \ln x \mathrm{dx}=-\frac{x^{4}}{16}+\frac{1}{4} x^{4} \ln x+c$
The definite integral is an improper integral:
$\int_{0}^{1} x^{3} \ln x \mathrm{dx}=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1} x^{3} \ln x \mathrm{dx}=\lim _{\varepsilon \rightarrow 0^{+}}\left[-\frac{x^{4}}{16}+\frac{1}{4} x^{4} \ln x\right]_{\varepsilon}^{1}=\lim _{\varepsilon \rightarrow 0^{+}}\left(\left(-\frac{1}{16}+0\right)-\left(-\frac{\varepsilon^{4}}{16}+\frac{1}{4} \varepsilon^{4} \ln \varepsilon\right)\right)=$ $=\left(-\frac{1}{16}+0\right)-(-0+0)=-\frac{1}{16}$

By L'Hospital's rule: $\lim _{x \rightarrow 0+} x^{4} \ln x=\lim _{x \rightarrow 0+} \frac{\ln x}{\frac{1}{x^{4}}}=\lim _{x \rightarrow 0+} \frac{\frac{1}{x}}{-4 \cdot \frac{1}{x^{5}}}=\lim _{x \rightarrow 0+-4} \frac{x^{4}}{=0}$.
8. (12 points) Calculate the following integral: $\int_{1}^{\infty} \frac{1}{x^{2}+5 x+6} d x$

Partial fraction decomposition: $\frac{1}{x^{2}+5 x+6}=\frac{1}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3}=\ldots=\frac{1}{x+2}-\frac{1}{x+3}$
$\int_{1}^{\infty} \frac{1}{x^{2}+5 x+6} \mathrm{dx}=\lim _{A \rightarrow \infty} \int_{1}^{A} \frac{1}{x^{2}+5 x+6} \mathrm{dx}=\lim _{A \rightarrow \infty}[\ln |x+2|-\ln |x+3|]_{1}^{A}=$
$=\lim _{A \rightarrow \infty}(\ln (A+2)-\ln (A+3)-(\ln 3-\ln 4))=\lim _{A \rightarrow \infty}\left(\ln \frac{A+2}{A+3}-\ln \frac{3}{4}\right)=\ln 1-\ln \frac{3}{4}=\ln \frac{4}{3}$
9. (12 points) Consider the function $f(x)=\frac{\sqrt{\sin x}}{\cos x}$ on the interval $x \in\left[0, \frac{\pi}{4}\right]$. Rotate it around the x-axis and find the volume of the arising body.

The volume is $V=\pi \int_{0}^{\pi / 4} f^{2}(x) \mathrm{dx}=\pi \int_{0}^{\pi / 4} \frac{\sin x}{\cos ^{2} x} \mathrm{dx}=\pi \int_{0}^{\pi / 4}-(-\sin x)(\cos x)^{-2} \mathrm{dx}=$ $=\pi\left[-\frac{(\cos x)^{-1}}{-1}\right]_{0}^{\pi / 4}=\pi\left[\frac{1}{\cos x}\right]_{0}^{\pi / 4}=\pi\left(\frac{1}{\frac{\sqrt{2}}{2}}-1\right)=\pi(\sqrt{2}-1)$
10.* (10 points - BONUS) Denote by $\{a\}$ the fractional part of the number $a \in \mathbb{R}$ and let $f(x)=x \cdot\left\{\frac{1}{x}\right\}$. Calculate the following limits:
a) $\lim _{x \rightarrow 0}\left\{\frac{1}{x}\right\}$
b) $\lim _{x \rightarrow 0} f(x)$
c) $\lim _{x \rightarrow+\infty} f(x)$
d) $\lim _{x \rightarrow-\infty} f(x)$
a) Using the sequential criterion for the limit, it can be shown that the limit doesn't exist.

For example, let $x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n+\frac{1}{2}}$. Then $x_{n} \rightarrow 0$ and $y_{n} \rightarrow 0$ but $\left\{\frac{1}{x_{n}}\right\}=\{n\}=0 \neq\left\{\frac{1}{y_{n}}\right\}=\left\{n+\frac{1}{2}\right\}=\frac{1}{2}$
b) Since the range of the function $g(x)=\{x\}$ is $[0,1)$ and $\lim _{x \rightarrow 0} x=0$ then $\lim _{x \rightarrow 0} f(x)=0$.
c) If $x>1$ then $\frac{1}{x} \in(0,1)$, so $\left\{\frac{1}{x}\right\}=\frac{1}{x} \Longrightarrow f(x)=x \cdot \frac{1}{x}=1 \Longrightarrow \lim _{x \rightarrow+\infty} f(x)=1$.
d) If $x<-1$ then $\frac{1}{x} \in(-1,0)$, so $\left\{\frac{1}{x}\right\}=1+\frac{1}{x} \Longrightarrow f(x)=x \cdot\left(1+\frac{1}{x}\right)=x+1 \rightarrow-\infty$ if $x \rightarrow-\infty$.

